Secure I/O Device Sharing among Virtual Machines on Multiple Hosts

Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh
ISCA’13 Tel-Aviv, Israel
June 25, 2013
I/O Device Disaggregation

- **Reduce Cost**: 1 device instead of each one per server.
- **Increase Utilization**: Accessible from every server.
- **Flexible and Scalable**: Easy to add/remove.
- **Reliability**: Pool of devices to choose for backup.

Problem: MR-IOV capable switches and devices are not available.
Ladon: Software-based MR-SRIOV

- Standard PCIe switch / SR-IOV endpoint:
 - Without MR-IOV capability
 - Native driver / zero copy

- Native Performance:
 - Control path goes to a central authority
 - Direct data path to/from devices

- Secure Sharing:
 - Access control using existing technologies
Outline

• Introduction
 – I/O Virtualization (IOV)
 – SR-IOV v.s MR-IOV
 – NTB (Non-Transparent Bridge)

• Ladon
 – Architecture
 – Secure Mechanism

• Performance
 – Throughput / Latency
I/O Virtualization (IOV)

- **Direct communication:**
 - Direct assigned to VMs
 - Hypervisor bypassing

- **Physical Function (PF):**
 - Configure and manage the SR-IOV functionality

- **Virtual Functions (VFs):**
 - Lightweight PCIe function
 - With resources necessary for data movement

Applicable inside a single host (SR -> Single Root)

Figure: Intel® 82599 SR-IOV Driver Companion Guide
Single Root (SR) Architecture

- Multi-CPU, one root complex hierarchies
 - Today’s motherboard architecture
 - Single PCIe hierarchy

- Single Address Domain
 - BIOS/System software probes topology
 - Partition and allocate resources

- Each device owns a range (s) of physical address
 - BAR addresses, MSI-X, and device ID

TB: Transparent Bridge
Multi Root (MR) Architecture

- **Interconnect multiple hosts**
 - Devices shared in the cluster
- **Enhanced switch/ endpoints**
 - New switch silicon
 - New endpoint silicon
 - Management model
- **Solution**
 - **NTB** as isolation element between domains
 - Extend SR-IOV endpoints to multiple hosts
Non-Transparent Bridge (NTB)

- Isolation of two hosts or memory domains
 - Host stops PCI enumeration at NTB-D.
 - Yet allow status and data exchange

- Translations between domains
 - PCI device ID: Querying the ID lookup table (LUT)
 - Address: From primary side and secondary side

Figure: Multi-Host System and Intelligent I/O Design with PCI Express
NTB Address Mapping

• NTB address translation:
 – <the primary side to the secondary side>
• Configuration:
 – Addr0 at primary side’s BAR window to Addr1 at the secondary side

• Example:
 – Addr0 = 0x8000 at BAR4 from HostA
 – Addr1 = 0x10000 at HostB’s DRAM
• One-way Translation:
 – Read/write at Addr0 (0x8000) == read/write Addr1
 – Read/write at Addr0 does not translated to Addr1

Figure: Multi-Host System and Intelligent I/O Design with PCI Express
ARCHITECTURE OF LADON

A software-based MR-SRIOV

Ladon: a hundred-heads dragon who guards the Garden of Hesperides
System Components

- **Management Host (MH)**
 - Manage the shared I/O devices

- **Compute Host (CH)**
 - Non-virtualized host OS can directly access VF
 - Virtualized host with VMs can directly access VF

- **Non-Transparent Bridge (NTB)**
 - Each CH connects to the fabric via an NTB

- **PCIe Switch & SR-IOV device**
 - PF and multiple VFs
Prototype Implementation

CH: Intel i7 3.4GHz 8-core CPU 8 GB of memory

MH: Supermicro E3 tower 8-core Intel Xeon 3.4GHz 8GB memory

OS/hypervisor: Fedora15 / KVM Linux 2.6.38

VM: Pin 1 core, 2GB RAM

NTB/Switch: PLX8619 PLX8696

NIC: Intel 82599
Global Address Space Allocation

Address Space of MH

Management Host

0

NTB

IOMMU

SRIOV device

VF1

VF2

VF n

CSR/MMIO

MSI-X

Physical Memory

MSI-X

Physical Memory

Physical Memory

Physical Memory

CH1

CH2

CHn
Per-Virtual NIC Configuration

- Virtual NIC is backed by a VF of an SRIOV NIC
- Identify the virtual NIC’s CSR, MMIO, MSI-X and DMA payload area
- Install mappings in the BARs of the NTB port

CSR: control and status register
Security Threats

Consider malicious VM and malicious CH

VF1 is assigned to VM1 in CH1, but it can screw multiple memory areas.
Security Guarantees: Summary

• Inter-host
 – A VF can only access the CH it belongs to.
 – Accessing other hosts is blocked by other host’s LUT & IOMMU
• Intra-host
 – A VF assigned to a VM can only access to memory assigned to the VM.
 – Accessing other VMs is blocked host’s IOMMU
• Inter-VF / inter-device
 – A VF can not write to other VF’s registers (MMIO).
 – Isolate by IOMMU in MH
• Compromised CH
 – Not allow to touch other CH’s memory nor MH
EVALUATION

Let’s see some performance numbers!

Video Available at: http://youtu.be/B_-GesOjkG0
Latency

- **SRIOV**: between VM in MH and remote test host
- **MRIOV**: between VM in CH and remote test host
- **MRIOV+**: between VM in CH and remote test host with zero-copy optimization

![Graph showing latency versus message size for SRIOV, MRIOV, and MRIOV+ with MTU=1500.](image-url)
TCP RX Throughput

Bandwidth (Gbps)

Message Size (Kbytes)

Copying Overhead

SRIOV MRIOV MRIOV+
Conclusion

• A scalable PCIe-based system interconnect architecture
 – Decouple devices from CPU/memory in the motherboard
 – Open up a new design space for compute cluster

• A secure I/O device sharing scheme that
 – Leverages the address/ID translation schemes, such as EPT, BAR translation registers, IOMMU, LUT
 – Prevent unauthorized accesses to shared I/O devices

• A fully operational prototype
 – Demonstrates the feasibility and efficiency of the software-based MR-IOV
 – Virtually no throughput/latency penalty when compared with SRIOV.
SHALOM!

THANK YOU

Cheng-Chun Tu, u9012063@gmail.com
Multiple VMs and CHs

Little unfairness between CH and VM
Optimization

- **Zero driver modification**
 - Driver on the CH only see CH’s physical address space.
 - Solution: trapping the DMA access API.
- **Zero-copy**
 - Limited BAR size support in BIOS (between 3G-4G)
 - Solution: Mapping the entire CH’s physical memory space to avoid copying.
Scalability / Compatibility

• How many CHs/VMs can Ladon support?
 – Each CH: 2 BARs for CSR and MMIO, 2 BARs for DMA and MSI-X
 – As many VMs as a CH could run
 – As many CHs as allowed by the PCIe switch

• How many SRIOV devices can Ladon shares?
 – As many as allowed by the PCIe switch

• Vendor-neutrality
 – Ladon only uses the basic features of NTB: address translation and LUT
 – Intel’s on-board NTB: Xeon C5500/C3500