
1

69

XML Query Languages

• XPath – core query language. Very limited, a
glorified selection operator. Very useful, though:
used in XML Schema, XSLT, XQuery, many
other XML standards

• XSLT – a functional style document
transformation language. Very powerful, very
complicated

• XQuery – W3C standard. Very powerful, fairly
intuitive, SQL-style

• SQL/XML – extension of SQL for XML

70

Why Query XML?

• Need to extract parts of XML documents

• Need to transform documents into different
forms

• Need to relate – join – parts of the same or
different documents

71

XPath
• Analogous to path expressions in object-oriented

languages (e.g., OQL)
• Extends path expressions with query facility
• XPath views an XML document as a tree

– Root of the tree is a new node, which doesn’t correspond to
anything in the document

– Internal nodes are elements
– Leaves are either

• Attributes
• Text nodes
• Comments
• Other things that we didn’t discuss (processing instructions, …)

72

XPath Document Tree

73

Document Corresponding to the Tree

• A fragment of the report document that we used frequently

<?xml version=“1.0” ?>
<!-- Some comment -->
<Students>

<Student StudId=“111111111” >
<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1997” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” />

</Student>
<Student StudId=“987654321” >

<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1994” />

</Student>
</Students>
<!-- Some other comment -->

74

Terminology

• Parent/child nodes, as usual
• Child nodes (that are of interest to us) are:

of types text, element, attribute
– We call them t-children, e-children, a-children
– Also, et-children are child-nodes that are either

elements or text, ea-children are child nodes
that are either elements or attributes, etc.

• Ancestor/descendant nodes – as usual in
trees

2

75

XPath Basics

• An XPath expression takes a document tree as
input and returns a multi-set of nodes of the tree

• Expressions that start with / are absolute path
expressions
– Expression / – returns root node of XPath tree
– /Students/Student – returns all Student-elements that

are children of Students elements, which in turn must
be children of the root

– /Student – returns empty set (no such children at
root)

76

XPath Basics (cont’d)

• Current (or context node) – exists during the evaluation
of XPath expressions (and in other XML query
languages)

• . – denotes the current node; .. – denotes the parent
• foo/bar – returns all bar-elements that are children of foo nodes,

which in turn are children of the current node

• ./foo/bar – same

• ../abc/cde – all cde e-children of abc e-children of the parent of the
current node

• Expressions that don’t start with / are relative (to the
current node)

77

Attributes, Text, etc.

• /Students/Student/@StudentId – returns all StudentId
a-children of Student, which are e-children of Students,
which are under root

• /Students/Student/Name/Last/text() – returns all t-
children of Last e-children of …

• /comment() – returns comment nodes under root
• XPath provides means to select other document

components as well

Denotes an
attribute

78

Overall Idea and Semantics

• An XPath expression is:
locationStep1/locationStep2/…

• Location step:
Axis::nodeSelector[predicate]

• Navigation axis:
• child, parent – have seen
• ancestor, descendant, ancestor-or-self, descendant-or-self – will see

later
• some other

• Node selector: node name or wildcard; e.g.,
– ./child::Student (we used ./Student, which is an abbreviation)
– ./child::* – any e-child (abbreviation: ./*)

• Predicate: a selection condition; e.g.,
Students/Student[CourseTaken/@CrsCode = “CS532”]

This is called full syntax.
We used abbreviated syntax before.
Full syntax is better for describing

meaning. Abbreviated syntax is
better for programming.

79

XPath Semantics

• The meaning of the expression
locationStep1/locationStep2/… is the set of all
document nodes obtained as follows:

• Find all nodes reachable by locationStep1 from the current
node

• For each node N in the result, find all nodes reachable
from N by locationStep2; take the union of all these
nodes

• For each node in the result, find all nodes reachable by
locationStep3, etc.

• The value of the path expression on a document is the
set of all document nodes found after processing the last
location step in the expression

80

Overall Idea of the Semantics (Cont’d)

• locationStep1/locationStep2/… means:
– Find all nodes specified by locationStep1

– For each such node N:
• Find all nodes specified by locationStep2 using N as the

current node

• Take union

– For each node returned by locationStep2 do the same

• locationStep = axis::node[predicate]
– Find all nodes specified by axis::node

– Select only those that satisfy predicate

3

81

More on Navigation Primitives

• 2nd CrsTaken child of 1st Student child of
Students:
/Students/Student[1]/CrsTaken[2]

• All last CourseTaken elements within each
Student element:
/Students/Student/CrsTaken[last()]

82

Wildcards

• Wildcards are useful when the exact structure of
document is not known

• Descendant-or-self axis, // : allows to descend down
any number of levels (including 0)

• //CrsTaken – all CrsTaken nodes under the root

• Students//@Name – all Name attribute nodes under the elements
Students, who are children of the current node

• Note:

– ./Last and Last are same

– .//Last and //Last are different

• The * wildcard:
• * – any element: Student/*/text()

• @* – any attribute: Students//@*

83

XPath Queries (selection predicates)

• Recall: Location step = Axis::nodeSelector[predicate]

• Predicate:
– XPath expression = const | built-in function | XPath expression

– XPath expression

– built-in predicate

– a Boolean combination thereof

• Axis::nodeSelector[predicate] ⊆ Axis::nodeSelector but
contains only the nodes that satisfy predicate

• Built-in predicate: special predicates for string matching, set
manipuation, etc.

• Built-in function: large assortment of functions for string
manipulation, aggregation, etc.

84

XPath Queries – Examples

• Students who have taken CS532:
//Student[CrsTaken/@CrsCode=“CS532”]

True if : “CS532” ∈ //Student/CrsTaken/@CrsCode

• Complex example:
//Student[Status=“U3” and starts-with(.//Last, “A”)

and contains(concat(.//@CrsCode), “ESE”)

and not(.//Last = .//First)]

• Aggregation: sum(), count()
//Student[sum(.//@Grade) div count(.//@Grade) > 3.5]

85

Xpath Queries (cont’d)
• Testing whether a subnode exists:

• //Student[CrsTaken/@Grade] – students who have a grade
(for some course)

• //Student[Name/First or CrsTaken/@Semester

or Status/text() = “U4”] – students who have
either a first name or have taken a course in some semester or
have status U4

• Union operator, | :
//CrsTaken[@Semester=“F2001”] | //Class[Semester=“F1990”]

– union lets us define heterogeneous collections of nodes

86

XPointer

• XPointer = URL + XPath
• A URL on steroids

• Syntax:
url # xpointer (XPathExpr1) xpointer (XPathExpr2) …
• Follow url
• Compute XPathExpr1

– Result non-empty? – return result
– Else: compute XPathExpr2; and so on

• Example: you might click on a link and run a query
against your Registrar’s database

http://yours.edu/Report.xml#xpointer(
//Student[CrsTaken/@CrsCode=“CS532”

and CrsTaken/@Semester=“S2002”])

4

87

XSLT: XML Transformation Language

• Powerful programming language, uses functional
programming paradigm

• Originally designed as a stylesheet language: this is
what “S”, “L”, and “T” stand for
– The idea was to use it to display XML documents by

transforming them into HTML

– For this reason, XSLT programs are often called
stylesheets

– Their use is not limited to stylesheets – can be used to
query XML documents, transform documents, etc.

• In wide use, but semantics is very complicated

88

XSLT Basics

• One way to apply an XSLT program to an XML
document is to specify the program as a stylesheet in
the document preamble using a processing instruction:

<?xml version=“1.0” ?>
… … …
<?xml-stylesheet type=“text/xsl”

href=“http://xyz.edu/Report/report.xsl” ?>
… … …
<Report Date=“2002-11-11”>
… … …
</Report>

Processing
instruction

P
re

am
bl

e

89

Simple Example
• Extract the list of all students from this (hyperlinked)

document
<?xml version=“1.0” ?>

<StudentList xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”

xsl:version=“1.0” >

<xsl:copy-of select=“//Student/Name” />

</StudentList>

• Result:
<StudentList>

<Name><First>John</First><Last>Doe</Last></Name>

<Name><First>Bart</First><Last>Simpson</Last></Name>

</StudentList>

• Quiz: Can we use the XSLT namespace as the default namespace
in a stylesheet? What problem might arise?

Standard XSLT namespace

Result
document
skeleton

XSLT instruction – copies the
result of path expression to stdout

90

More Complex (Still Simple) Stylesheet

<StudentList xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”

xsl:version=“1.0”>

<xsl:for-each select=“//Student”>

<xsl:if test=“count(CrsTaken) > 1” >

<FullName>

<xsl:value-of select=“*/Last” /> ,

<xsl:value-of select=“*/First” />

</FullName>

</xsl:if>

</xsl:for-each>

</StudentList>
Result:

<StudentList>
<FullName>

Doe, John
</FullName>

</StudentList>

Extracts contents of
element, not the element

itself (unlike copy-of)

91

XSLT Pattern-based Templates

• Where the real power lies
… and also where the peril lurks

• Issue: how to process XML documents by
descending into their structure

• Previous syntax was just a shorthand for
template syntax – next slide

92

Full Syntax vs. Simplified Syntax

• Simplified syntax:
<StudentList xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”

xsl:version=“1.0”>
<xsl:for-each select=“//Student”>

… … …
</xsl:for-each>

</StudentList>

• Full syntax:
<xsl:stylesheet xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”

xsl:version=“1.0”>
<xsl:template match=“/” >

<StudentList>
<xsl:for-each select=“//Student”>

… … …
</xsl:for-each>

</StudentList>
</xsl:template>

</xsl:stylesheet>

5

93

Recursive Stylesheets

• A bunch of templates of the form:
<xsl:template match=“XPath-expression” >

… tags, XSLT instructions …

</xsl:template>

• Template is applied to the node that is current in the evaluation
process (will describe this process later)

• Template is used if its XPath expression is matched:
– “Matched” means: current node ∈ result set of XPath expression

– If several templates match: use the best matching template – template
with the smallest (by inclusion) XPath expression result set

– If several of those: other rules apply (see XSLT specs)

– If no template matches, use the matching default template
• There is one default template for et-children and one for a-children – later

94

Resursive Traversal of Document

• <xsl:apply-templates/> – XSLT instruction that drives the recursive
process of descending into the document tree

• Constructs the list of et-children of the current node
• For each node in the list, applies the best matching template
• A typical initial template:

<xsl:template match=“/” >
<StudentList>

<xsl:apply-templates />
</StudentList>

</xsl:template>

– Outputs <StudentList> – </StudentList> tag pair
– Applies templates to the et-children of the current node
– Inserts whatever output is produced in-between <StudentList> and

</StudentList>

Start with the root node –
typically the first template
to be used in a stylesheet

95

Recursive Stylesheet Example
• As before: list the names of students with > 1 courses:

<?xml version=“1.0” ?>
<xsl:stylesheet xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”

xsl:version=“1.0” >
<xsl:template match=“/” >

<StudentList>
<xsl:apply-templates/>

</StudentList>
</xsl:template >
<xsl:template match=“//Student” >

<xsl:if test=“count(CrsTaken) > 1” >
<FullName>

<xsl:value-of select=“*/Last” />
<xsl:value-of select=“*/First” />

</FullName>
</xsl if>

</xsl:template>
<xsl:template match=“text()” >
</xsl:template>

</xsl:stylesheet>

Empty template – no-op.
Needed to block default
template for text – later.

Initial template

The workhorse,
does all the job

96

Example Dissected
• Initial template: starts off, applies templates to et-

children. The only et-child is Students element
• Stylesheet has no matching template for Students!
• Use default template: For e-nodes or root (/) the

default is to go down to the et-children:
<xsl:template match = “ * | / ” >

<xsl:apply-templates />
</xsl:template>

• Children of Students node are two Student nodes – the
“workhorse” template matches!
– For each such (Student) node output:

<FullName>Last, First</FullName>

97

Example (cont’d)

• Consider this expanded document :
<Report>

<Students>
<Student StudId=“111111111” >

… … …
</Student>
<Student StudId=“987654321” >

… … …
</Student>

</Students>
<Courses>

<Course CrsCode=“CS308” >
<CrsName>Software Engineering</CrsName>

</Course>
… … …

</Courses>
</Report>

• Then the previous stylesheet has another branch to explore

Old part

New part

98

Example (cont’d)

• No stylesheet template applies to Courses-element, so use the
default template

• No explicit template applies to children, Course-elements – use the
default again

• Nothing applies to CrsName – use the default
• The child of CrsName is a text node. If we used the default here:

For text/attribute nodes the XSLT default is
<xsl:template match=“text() | @*” >

<xsl:value-of select=“.” />
</xsl:template>

i.e., output the contents of text/attribute – we don’t want this!

This is why we provided the empty template for text nodes – to suppress
the application of the default template

6

99

XSLT Evaluation Algorithm

• Very involved

• Not even properly defined in the official XSLT
specification!

• More formally described in a research paper by
Wadler – can only hope that vendors read this

• Will describe simplified version – will omit the
for-each statement

100

XSLT Evaluation Algorithm (cont’d)

• Create root node, OutRoot, for the output document

• Copy root of the input document, InRoot, to output document:
InRootR. Make InRootR a child of OutRoot

• Set current node variable: CN := InRoot

• Set current node list: CNL := <InRoot>

– CN : always the 1st node in CNL

– When a node N is placed on CNL, its copy, NR, goes to the output
document (becomes a child of some node – see later)

• NR is a marker for where subsequent actions apply in the output document

• Might be deleted or replaced later

• Find the best matching template for CN (or default template, if
nothing applies)

• Apply this template to CN – next slide

101

XSLT Evaluation Algorithm –
Application of a Template

• Application of template can cause these changes:
Case A: CNR is replaced by a subtree

Example: CN = Students node in our document. Assume our
stylesheet has the following template instead of the initial
template (it thus becomes best-matching):

<xsl:template match=“//Students” >

<StudentList>

<xsl:apply-templates />

</StudentList>

</xsl:template>

Then:
– CNR is replaced with StudentList

– Each child of CN (Students node) is copied over to the output
tree as a child of StudentList

102

XSLT Evaluation Algorithm –
Application of a Template (cont’d)

Case B: CNR is deleted and its children become children of
the parent of CNR

Example: The default template, below, deletes CNR when

applied to any node:

<xsl:template match=“* | /” >

<xsl:apply-templates />

</xsl:template>

103

The Effect of ������� ���	��

���
� ����
�� on Document Tree

104

XSLT Evaluation Algorithm (cont’d)

• In both cases (A & B):
– If CN has no et-children, CNL becomes shorter

– If it does have children, CNL is longer or stays the same
length

– The order in which CN’s children are placed on CNL is
their order in the source tree

– The new 1st node in CNL becomes the new CN

• Algorithm terminates when CNL is empty
– Be careful – might not terminate (see next)

7

105

XSLT Evaluation Algorithm –Subtleties

• apply-templates instruction can have select attribute:
<xsl:apply-templates select=“node()” /> – equivalent to the usual

<xsl:apply-templates />

<xsl:apply-templates select=“@* | text()” /> – instead of the et-
children of CN, take at-children

<xsl:apply-templates select=“..” /> – take the parent of CN

<xsl:apply-templates select=“.” /> – will cause an infinite loop!!

• Recipe to guarantee termination: make sure that
select in apply-templates selects nodes only from a
subtree of CN

106

Advanced Example
• Example: take any document and replace attributes

with elements. So that
<Student StudId=“111111111”>

<Name>John Doe</Name>
<CrsTaken CrsCode=“CS308” Semester=“F1997” />

</Student>

would become:
<Student>

<StudId>111111111</StudId>
<Name>John Doe</Name>
<CrsTaken>

<CrsCode>CS308</CrsCode> <Semester>F1997</Semester>
</CrsTaken>

</Student>

107

Advanced Example (cont’d)
• Additional requirement: don’t rely on knowing the

names of the attributes and elements in input
document – should be completely general. Hence:
1. Need to be able to output elements whose name is not

known in advance (we don’t know which nodes we might
be visiting)
• Accomplished with xsl:element instruction and Xpath functions

current() and name():

<xsl:element name=“name(current())” >
Where am I?

</xsl:element>
If the current node is foobar, will output:

<foobar>
Where am I?

</foobar>
108

Advanced Example (cont’d)

2. Need to be able to copy the current element over
to the output document
– The copy-of instruction won’t do: it copies elements

over with all their belongings. But remember: we don’t
want attributes to remain attributes

– So, use the copy instruction

– Copies the current node to the output document, but
without any of its children

<xsl:copy>

… XSLT instructions, which fill in the body

of the element being copied over …

</xsl:copy>

109

Advanced Example (cont’d)
<xsl:stylesheet … … …>

<xsl:template match=“node()”>
<xsl:copy>

<xsl:apply-templates select=“@*” />
<xsl:apply-templates />

</xsl:copy>
<xsl:template>
<xsl:template match=“@*”>

<xsl:element name=“name(current())” >
<xsl:value-of select=“.” />

</xsl:element>
<xsl:template>

</xsl:stylesheet>

Process elements/text

Deal with attributes separately

Convert
attribute to

element

Process a-children
of current element

Process et-children of
current element

<… Attr=“foo” >

becomes
<Attr>foo</Attr> 110

Limitations of XSLT as a Query Language

• Programming style unfamiliar to people
trained on SQL

• Most importantly: Hard to do joins, i.e.,
real queries

• Requires the use of variables (we didn’t discuss)

• Even harder than a simple nested loop (which one
would use in this case in a language like C or Java)

8

111

XQuery – XML Query Language

• Integrates XPath with earlier proposed
query languages: XQL, XML-QL

• SQL-style, not functional-style

• Much easier to use as a query language than
XSLT

• Can do pretty much the same things as
XSLT, but typically easier

• 2003: XQuery 1.0 standard

112

XQuery Basics

• General structure:
FOR variable declarations
WHERE condition
RETURN document

• Example:
FOR $t IN document(“http://xyz.edu/transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student

• Result:
<Student StudId=“111111111” Name=“John Doe” />
<Student StudId=“123454321” Name=“Joe Blow” />

XQuery
expression

This document on
next slide

113

transcript.xml

<Transcripts>

<Transcript>
<Student StudId=“111111111” Name=“John Doe” />
<CrsTaken CrsCode=“CS308” Semester=“F1997” Grade=“B” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” Grade=“B” />
<CrsTaken CrsCode=“EE101” Semester=“F1997” Grade=“A” />
<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“A” />

</Transcript>

<Transcript>
<Student StudId=“987654321” Name=“Bart Simpson” />
<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“C” />
<CrsTaken CrsCode=“CS308” Semester=“F1994” Grade=“B” />

</Transcript>

… … cont’d … …
114

transcript.xml (cont’d)

<Transcript>
<Student StudId=“123454321” Name=“Joe Blow” />
<CrsTaken CrsCode=“CS315” Semester=“S1997” Grade=“A” />
<CrsTaken CrsCode=“CS305” Semester=“S1996” Grade=“A” />
<CrsTaken CrsCode=“MAT123” Semester=“S1996” Grade=“C” />

</Transcript>

<Transcript>
<Student StudId=“023456789” Name=“Homer Simpson” />
<CrsTaken CrsCode=“EE101” Semester=“F1995” Grade=“B” />
<CrsTaken CrsCode=“CS305” Semester=“S1996” Grade=“A” />

</Transcript>

</Transcripts>

115

XQuery Basics (cont’d)

• Previous query doesn’t produce a well-formed
XML document; the following does:

<StudentList>
{

FOR $t IN document(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student

}
</StudentList>

• FOR binds $t to Transcript elements one by one, filters using
WHERE, then places Student-children as e-children of
StudentList using RETURN

Query
inside XML

116

Document Restructuring with XQuery

• Reconstruct lists of students taking each class using the
Transcript records:
FOR $c IN distinct-values(document(“transcript.xml”)//CrsTaken)
RETURN

<ClassRoster CrsCode = {$c/@CrsCode} Semester = {$c/@Semester}>
{

FOR $t IN document(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/[@CrsCode = $c/@CrsCode and

@Semester = $c/@Semester]
RETURN $t/Student

ORDER BY $t/Student/@StudId
}
</ClassRoster>
ORDER BY $c/@CrsCode

Query inside
RETURN – similar

to query inside
SELECT in OQL

9

117

Document Restructuring (cont’d)

• Output elements have the form:
<ClassRoster CrsCode=“CS305” Semester=“F1995” >

<Student StudId=“111111111” Name=“John Doe” />
<Student StudId=“987654321” Name=“Bart Simpson” />

</ClassRoster>

• Problem: the above element will be output twice –
once when $c is bound to

<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“A” />

and once when it is bound to

<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“C” />

Note: grades are different – distinct-values() won’t eliminate
transcript records that refer to same class!

John Doe’sBart Simpson’s

118

Document Restructuring (cont’d)

• Solution: instead of
FOR $c IN distinct-values(document(“transcript.xml”)//CrsTaken)

use

FOR $c IN document(“classes.xml”)//Class

where classes.xml lists course offerings (course code/semester)

explicitly (no need to extract them from transcript records).

Then $c is bound to each class exactly once, so each class roster

will be output exactly once

Document on
next slide

119

http://xyz.edu/classes.xml
<Classes>

<Class CrsCode=“CS308” Semester=“F1997” >
<CrsName>SE</CrsName> <Instructor>Adrian Jones</Instructor>

</Class>
<Class CrsCode=“EE101” Semester=“F1995” >

<CrsName>Circuits</CrsName> <Instructor>David Jones</Instructor>
</Class>
<Class CrsCode=“CS305” Semester=“F1995” >

<CrsName>Databases</CrsName> <Instructor>Mary Doe</Instructor>
</Class>
<Class CrsCode=“CS315” Semester=“S1997” >

<CrsName>TP</CrsName> <Instructor>John Smyth</Instructor>
</Class>
<Class CrsCode=“MAR123” Semester=“F1997” >

<CrsName>Algebra</CrsName> <Instructor>Ann White</Instructor>
</Class>

</Classes> 120

Document Restructuring (cont’d)

• More problems: the above query will list classes with
no students. Reformulation that avoids this:

FOR $c IN document(“classes.xml”)//Class
WHERE document(“transcripts.xml”)

//CrsTaken[@CrsCode = $c/@CrsCode
and @Semester = $c/@Semester]

RETURN
<ClassRoster CrsCode = {$c/@CrsCode} Semester = {$c/@Semester}>
{

FOR $t IN document(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and

@Semester = $c/@Semester]
RETURN $t/Student ORDER BY $t/Student/@StudId

} </ClassRoster>
ORDER BY $c/@CrsCode

Test that classes
aren’t empty

121

XQuery Semantics

• So far the discussion was informal

• XQuery semantics defines what the
expected result of a query is

• Defined analogously to the semantics of
SQL

122

XQuery Semantics (cont’d)

• Step 1: Produce a list of bindings for variables
– The FOR clause binds each variable to a list of nodes

specified by an XQuery expression.
The expression can be:

• An XPath expression

• An XQuery query

• A function that returns a list of nodes

– End result of a FOR clause:
• Ordered list of tuples of document nodes

• Each tuple is a binding for the variables in the FOR clause

10

123

XQuery Semantics (cont’d)

Example (bindings):
– Let FOR declare $A and $B

– Bind $A to document nodes {v,w}; $B to {x,y,z}

– Then FOR clause produces the following list of
bindings for $A and $B:

• $A/v, $B/x

• $A/v, $B/y

• $A/v, $B/z

• $A/w, $B/x

• $A/w, $B/y

• $A/w, $B/z

124

XQuery Semantics (cont’d)
• Step 2: filter the bindings via the WHERE clause

– Use each tuple binding to substitute its conponents for
variables; retain those bindings that make WHERE true

– Example: WHERE $A/CrsTaken/@CrsCode = $B/Class/@CrsCode

• Binding: $A/w, where w = <CrsTaken CrsCode=“CS308” …/>

$B/x, where x = <Class CrsCode=“CS308” … />

• Then w/CrsTaken/@CrsCode = x/Class/@CrsCode, so the WHERE
condition is satisfied & binding retained

125

XQuery Semantics (cont’d)

• Step 3: Construct result
– For each retained tuple of bindings, instantiate the

RETURN clause

– This creates a fragment of the output document

– Do this for each retained tuple of bindings in
sequence

126

User-defined Functions

• Can define functions, even recursive ones

• Functions can be called from within an
XQuery expression

• Body of function is an XQuery expression

• Result of expression is returned
• Result can be a primitive data type (integer, string),

an element, a list of elements, a list of arbitrary
document nodes, …

127

XQuery Functions: Example

• Count the number of e-children recursively:

DECLARE FUNCTION countNodes($e AS element()) AS integer {
RETURN

IF empty($e/*) THEN 0
ELSE

sum(FOR $n IN $e/* RETURN countNodes($n))
+ count($e/*)

}

XQuery
expression

Built-in
functions sum,
count, empty

Function
signature

128

Class Rosters (again) Using Functions

DECLARE FUNCTION extractClasses($e AS element()) AS element()* {
FOR $c IN $e//CrsTaken
RETURN <Class CrsCode={$c/@CrsCode} Semester={$c/@Semester} />

}

<Rosters>
FOR $c IN

distinct-values(FOR $d IN document(“transcript.xml”) RETURN extractClasses($d))
RETURN

<ClassRoster CrsCode = {$c/@CrsCode} Semester = {$c/@Semester} >
{

LET $trs := document(“transcript.xml”)
FOR $t IN $trs//Transcript[CrsTaken/@CrsCode=$c/@CrsCode and

CrsTaken/@Semester=$c/@Semester]
RETURN $t/Student
ORDER BY $t/Student/@StudId

}
</ClassRoster>

</Rosters>

11

129

Converting Attributes to Elements with XQuery

• An XQuery reformulation of a previous XSLT query – much more
straightforward (but ignores text nodes)

DECLARE FUNCTION convertAttributes($a AS attribute()) AS element() {
RETURN element {name($a)} {data($a)}

}
DECLARE FUNCTION convertElement($e AS node()) AS element() {

RETURN element {name($e)}
{

{ FOR $a IN $e/@* RETURN convertAttribute ($a) } ,
IF empty($e/*) THEN $e/text()
ELSE { FOR $n IN $e/* RETURN convertElement($n) }

}
}
RETURN convertElement(document(“my-document”)/*)

The actual query:
Just a RETURN statement!!

Computed
element

Concatenate
results

130

Integration with XML Schema and
Namespaces

• Let type FOO be defined in http://types.r.us/types.xsd:

IMPORT SCHEMA “http://types.r.us at

http://types.r.us/types.xsd”
DECLARE NAMESPACE trs = “http://types.r.us”

DECLARE NAMESPACE xsd =
“http://www.w3.org/2001/XMLSchema”

DECLARE FUNCTION doSomething($x AS trs:FOO)
AS xsd:string {

… … …
}

Namespace
Location

Prefix for namespace

131

Grouping and Aggregation

• Does not use separate grouping operator
– Recall that OQL does not need one either

– Subqueries inside the RETURN clause obviate this
need (like subqueries inside SELECT did so in OQL)

• Uses built-in aggregate functions count, avg,
sum, etc. (some borrowed from XPath)

132

Aggregation Example

• Produce a list of students along with the number of
courses each student took:

FOR $t IN document(“transcripts.xml”)//Transcript,
$s IN $t/Student

LET $c := $t/CrsTaken
RETURN

<StudentSummary StudId = {$s/@StudId} Name = {$s/@Name}

TotalCourses = {count(distinct-values($c))} />

ORDER BY StudentSummary/@TotalCourses

• The grouping effect is achieved because $c is bound to a new
set of nodes for each binding of $t

133

Quantification in XQuery
• XQuery supports explicit quantification:

SOME (∃) and EVERY (∀)
• Example:

FOR $t IN document(“transcript.xml”)//Transcript
WHERE SOME $ct IN $t/CrsTaken

SATISFIES $ct/@CrsCode = “MAT123”
RETURN $t/Student

“Almost” equivalent to:
FOR $t IN document(“transcript.xml”)//Transcript,

$ct IN $t/CrsTaken
WHERE $ct/@CrsCode = “MAT123”
RETURN $t/Student

– Not equivalent, if students can take same course twice!
134

Implicit Quantification

• Note: in SQL, variables that occur in FROM, but not SELECT are
implicitly quantified with ∃

• In XQuery, variables that occur in FOR, but not RETURN are
similar to those in SQL. However:
– In XQuery variables are bound to document nodes

• Two nodes may look textually the same (e.g., two different instances of the
same course element), but they are still different nodes and thus different
variable bindings

• Instantiations of the RETURN expression produced by binding variables to
different nodes are output even if these instantiations are textually identical

– In SQL a variable can be bound to the same value only once; identical tuples
are not output twice (in theory)

– This is why the two queries in the previous slide are not equivalent

12

135

Quantification (cont’d)
• Retrieve all classes (from classes.xml) where each student took

MAT123
– Hard to do in SQL (before SQL-99) because of the lack of explicit

quantification

FOR $c IN document(classes.xml)//Class

LET $g := { -- Transctipt records that correspond to class $c

FOR $t IN document(“transcript.xml”)//Transcript

WHERE $t/CrsTaken/@Semester = $c/@Semester

AND $t/CrsTaken/@CrsCode = $c/@CrsCode

RETURN $t

}

WHERE EVERY $tr IN $g SATISFIES

NOT empty($tr[CrsTaken/@CrsCode=“MAT123])

RETURN $c ORDER BY $c/@CrsCode 136

SQL/XML – Extending SQL

• In the past, SQL was extended for OO:
- added values for reference, tuple(row type),
and collection(arrays), …
- kind of took over ODL and OQL of ODMG

• Currently, SQL is extended for XML:
- adding data types and functions for XML
- will it take over XQuery?

137

Why SQL/XML

• Publish contents of SQL tables or entire DB
as XML doc – need convention for translating
primitive SQL data types

• Create XML doc out of SQL query results –
need extension of SQL queries to create XML
elements

• Store XML doc in relational DB and query
them – need extension of SQL to use XPath for
tree structures

138

Publishing Relations as XML Doc: Tables

• Current proposal: no built-in function from
table to XML, but can create arbitrary XML
using SELECT

• Encoding relational data in XML:

- Entire relation: an element named after the relation

- Each row: an elememt named ‘row’

- Each attribute: an element named after the attribute

139

Publishing Relations as XML Doc: Tables

<Professor>
<row>

<Id>1024</Id><Name>Bob Smith</Name><DeptId>CS<DeptId>
</row>
< row>

<Id>3093</Id><Name>Amy Doe</Name><DeptId>EE<DeptId>
</row >
...

</Professor>

Professor

EEAmy Doe3093

…

CSBob Smith1024

DeptIdNameId

140

Publishing Relations as XML Doc: Schema
Schema Id: INTEGER

Name: CHAR(50)
DeptId: CHAR(3)

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targeNamespace="http://xyz.edu/Admin">

<element name="Professor">
<complexType>
<sequence>
<element name="row" minOccurs="0" maxOccurs="unbounded">

<complexType>
<sequence>

<element name="Id" type="integer"/>
<element name="Name" type="CHAR_50"/>
<element name="DeptId" type="CHAR_3"/>

</sequence>
…

</schema>

13

141

Publishing Relations as XML Doc: Schema

CHAR_len: standard conventions in SQL/XML for
CHAR(len) in SQL, defined as

<simpleType>
<restriction base="string">
<length value="50">

</restriction>
</simpleType>

A lot of the standard deals with such primitives, as
well as user-defined types (defined using
CREATE DOMAIN).

142

Storing XML in Relational DB:
Data Type XML

Not stored as a string, but natively as a tree structure.
Support navigation via efficient storage and indexing.

CREATE TABLE StudentXML (
Id INTEGER,
Details XML)

where Details attribute contains
<Student>
<Name><First>Amy</First><Last>Doe</Last></Name>
<Status>U4</Status>
<CrsTaken CrsCode="305" Semester="F2003"/>
<CrsTaken CrsCode="336" Semester="F2003"/>

</Student>

143

Storing XML in Relational DB:
Data Type XML

To validate

CREATE TABLE StudentXML (

Id INTEGER,

Details XML,

CHECK(Details ISVALID INSTNACE OF ’http://xyz.edu/student.xsd’))

assuming schema is stored at http://xyz.edu/student.xsd

144

Creating XML from Queries: Functions
XMLELEMENT, XMLATTRIBUTES

An SQL query does not return XML directly.

Can produce particular column as an XML document.
SELECT P.Id, XMLELEMENT (

NAME "Prof", --- element name

XMLATTRIBUTES (P.DeptId AS "Dept"), --- attributes

P.Name --- content

) AS Info

FROM Professor P

produce tuples
1024, <Prof Dept="CS">Bob Smith</Prof>

3093, <Prof Dept="EE">Amy Doe</Prof>

145

Creating XML from Queries: Functions
XMLELEMENT, XMLATTRIBUTES

XMLELEMENT can be nested.
SELECT XMLELEMENT (NAME "Prof"

XMLELEMENT(NAME "Id", P.Id),

XMLELEMENT(NAME "Name", P.Name),

XMLELEMENT(NAME "DeptId", P.DeptId),

) AS ProfElement

FROM Professor P

produce tuples
<Prof><Id>1024</Id><Name>Bob Smith</Name><DeptId>CS</DeptId>

</Prof>

<Prof><Id>3093</Id><Name>Amy Doe</Name><DeptId>EE</DeptId>

</Prof>

146

Creating XML from Queries: Function
XMLGEN

SELECT XMLGEN (’<Prof>

<Id>{$I}</Id><Name>{$N}</Name><DeptId>{$D}</DeptId>

</Prof>’, --- template with placeholder variables

P.Id AS I, --- values of exps subst for placehoders

P.Name AS N,

P.DeptId AS D,

) AS ProfElement

FROM Professor P

Placeholder can occur in position of XML elements and attibutes.

Expressions can be XML-generating exps or SELECT statements.
In example above, can replace
<Id>{$I}</Id> with {$I}

P.Id AS I with XMLELEMENT(NAME "Id", P.Id) AS I

14

147

Creating XML from Queries: Grouping and
XMLAGG

In XQuery: group elements as children of another element by
putting a subquery in RETURN clause of parent query.

In SQL/XML:
putting SELECT inside XML func in SELECT clause of parent.

Example: group the taken courses by student ids
SELECT XMLELEMENT (

NAME "Student",
XMLATTRIBUTES(S.Id AS "Id"),
(SELECT XMLELEMENT(NAME "CrsTaken",

XMLATTRIBUTES(T.CrsCode AS "CrsCode",
T.Semester AS "Semester"))

FROM Transcript T
WHERE S.Id=T.StudId))

FROM Student S
Return set of 1-tuples, not list of elements.

waiting for standard for conversion.

148

Creating XML from Queries: Grouping and
XMLAGG

Same example: group the taken courses by student ids

SELECT XMLELEMENT (

NAME "Student",

XMLATTRIBUTES(S.Id AS "Id"),

XMLAGG(XMLELEMENT(Name "CrsTaken",

XMLATTRIBUTES(T.CrsCode AS "CrsCode",

T.Semester AS "Semester"))

ORDER BY T.CrsCode))

FROM Student S, Transcript T

WHERE S.Id=T.StudId

GROUP BY S.Id

149

Querying XML Stored in Relations:
XMLEXTRACT, XMLEXISTS

Use XPath expressions.

Can be in both SELECT and WHERE clauses.

Example: return Ids and names of students who have
status U3 and have taken MAT123:

SELECT S.Id, XMLEXTRACT(S.Details, ’//Name’)

FROM StudentXML S

WHERE XMLEXTRACT(S.Details, ’//Status/text()’)=’U3’ AND

XMLEXTRACT(S.Details, ’//CrsTaken/@CrsCode’)=’MAT124’

150

Querying XML Stored in Relations:
XMLEXTRACT, XMLEXISTS

Tell whether the set of nodes returned by XPath
expression is empty.

Example: return Ids and names of students who have
taken any course

SELECT S.Id, SMLEXTRACT(S.Details, ’//Name’)

FROM StudentXML S

WHERE XMLEXISTS(S.Details, ’//CrsTaken’)

151

Modifying Data in SQL/XML:
XMLPARSE, XMLVALIDATE

XML stored as appropriately indexed tree structure,

so need to parse.
INSERT INTO StudentXML(Id, Details)

VALUES(12343,

XMLPARSE(

’<Student>

<Name><First>Bob</First><Last>Smith</Last></Name>

<Status>U4</Status>

<CrsTake CrsCode="CS305" Semester="F2003"/>

<CrsTake CrsCode="CS339" Semester="S2004"/>

</Student>’))

152

Modifying Data in SQL/XML:
XMLPARSE, XMLVALIDATE

To validate
INSERT INTO StudentXML(Id, Details)

VALUES(12343,

XMLVALIDATE(XMLPARSE(

’<Student>

<Name><First>Bob</First><Last>Smith</Last></Name>

<Status>U4</Status>

<CrsTake CrsCode="CS305" Semester="F2003"/>

<CrsTake CrsCode="CS339" Semester="S2004"/>

</Student>’)))

waiting for standard for option of specifying schema location

15

153

XMLSERIALIZE: Reverse of XMLPARSE

To store XML as string or

use by a host language that does not understand XML

Example: return Ids and names of students who have
taken any course

EXEC SQL DECLARE GetEnrolled CURSOR FOR

SELECT S.Id, XMLSERIALIZE(XMLEXTRACT(S.Details,’//Name’))

FROM StudentXML S

WHERE XMLEXISTS(S.Details, ’//CrsTaken’)

return ids and strings, which can then be processed by
EXEC SQL GetEnrolled INTO :stuDId, :details

