
1

1

Security and Electronic
Commerce

Chapter 26

2

Security in Transaction
Processing Systems

• Security is essential in many transaction
processing applications

• Authentication
– Is the user who he says he is?

• Authorization
– What is an authenticated user allowed to do?

• Only cashiers can write cashier’s checks

• Only faculty members can assign grades

3

Security on the Internet

• Security is particularly important on the
Internet
– Interactions are anonymous, hence

authentication of servers and users is important

– Eavesdroppers can listen to conversations
• Credit card numbers can be stolen

– Messages can be altered

• Encryption used to increase security

4

Encryption

• Protect information:
– Stored in a file

– Transmitted between sites

• Against intruders:
• Passive intruder: eavesdrops and copies messsages

• Active intruder: intercepts messages, sends modified
or duplicate messages

5

Model of an Encryption System

Encryption
algorithm

Decryption
algorithmplaintext plaintext

ciphertext

intruder

copy

insert,
intercept

Encryption key Decryption key

sender receiver

6

Notation

• For encryption and decryption
ciphertext = Ksender[plaintext]

plaintext = Kreceiver[ciphertext]

• then
plaintext =Kreceiver[Ksender[plaintext]]

2

7

The Encryption Algorithm

• It is assumed that the encryption algorithm is
common knowledge and is known to all intruders

• The only secret is the decryption key
– Since one approach to cracking an encryption system is

to try all possible keys, the longer the key the more
secure the system

• Two kinds of cryptography:
– Symmetric cryptography

Ksender = Kreceiver

– Asymmetric cryptography
Ksender ≠ Kreceiver

8

Symmetric Cryptography

• Same key used for encryption and decryption
M = K[K[M]]

• Key associated with communication session
(not with sender or receiver)

• Computationally efficient (compared with
asymmetric cryptography)
– Hence, most security systems use symmetric

techniques to encrypt data

9

Symmetric Cryptography

• Block cipher
– Plaintext is divided into fixed sized blocks,

which are separately encrypted

• Types of block cipher:
– Substitution cipher

• Each plaintext block is replaced by another that can
be calculated using the key.

abc → xza, def → tyy, ghi → rew, ...

– Transposition cipher
• The characters within a block are rearranged in

accordance with the key (some fixed permutation):
abc → bca, def → efd, ghi → hig, ...

10

Block Cipher Attacks
• Frequency analysis attack:

– Plaintext block frequency (calculated from a sample
of normal communication) is compared with block
frequency in intercepted (encrypted) message;
blocks with similar frequency are matched

– Problem: Frequency analysis of plaintext can be
performed accurately when block size is small

• Solution: use large block size

– Problem: The longer the ciphertext stream, the
more accurate ciphertext block frequency can be
measured

• Solution: change keys often

11

Data Encryption Standard (DES)

• An ANSI standard symmetric
cipher widely used in commerce

• Product cipher :
– Sequence of stages

– Each stage is a substitution or
transposition cipher

– Block = 64 bits; key = 56 bits
• Problem: Key size too small; hence

“easy” to crack

plaintext

ciphertext

key

12

Asymmetric (Public Key)
Cryptography

• Each user, U, has a pair of related keys:

Ku
Pub and Ku

Pri

• Different keys for encryption and decryption
M = Ku

Pri[Ku
Pub[M]]

• Encryption key, Ku
Pub, is public knowledge

• Decryption key, Ku
Pri, is private (secret)

• Anyone can send U a message by encrypting with Ku
Pub

• Only U can decrypt it, using Ku
pri

3

13

Public Key Cryptography

• Current systems based on Rivest, Shamir,
Adelman (RSA) algorithm

• Computationally expensive for extended
exchange of data

• Often used to encrypt (short) messages of
security protocols

14

The RSA Algorithm
• Pick two large random primes p and q
• Let N = p*q
• Pick a large integer d relatively prime to (p-1)*(q-1)
• Find the integer e such that e*d = 1 (mod (p-1)*(q-1))
• Encryption key is (e, N). If C is ciphertext, M is

plaintext (a block with numerical value < N), then
C = M e (mod N)

• Decryption key is (d, N). To decrypt:
M = C d (mod N)

• Security based on the difficulty of factoring N

15

Digital Signatures

• Digital Signatures can be used for
– Proof of authorship

– Non-repudiation by author

– Guarantee of message integrity

• Important for many Internet applications

• Based on public key cryptography
– Current systems use RSA algorithm

16

Digital Signatures --Basic Idea

• Roles of public and private keys can be reversed:
since (M e)d (mod N) = (M d)e (mod N) it follows that

KPub[KPri[M]] = M
• U encrypts message with its private key:

Ku
Pri[M]

• Anyone can decrypt message with U’s public key:
Ku

Pub[Ku
Pri[M]]

– If decryption produces an intelligible message,
only U could have created it

17

Signatures and a Message Digest

• Problem: It is computationally expensive to
encrypt an entire message with KPri

• Solution: Encrypt a message digest, f(M)
| f (M) | << | M |

– Example: f takes the hash of M
– f is public

• Signature is KPri[f(M)]
• Complete signed message is (M, KPri[f(M)])

18

Verifying Signatures
• To verify a signed document (M, q)

1. Compute message digest of first part, f(M)
2. Decrypt second part: Kpub(q)
3. Compare the results of (1) and (2)

• Signature is secure if:
– f is one-way: Given y, it is not feasible to find

an x such that y=f(x)
• Hence, intruder cannot find M′ to which the

signature sent with M, KPri[f(M)],can be attached
– (M′ , KPri[f(M)]) is not valid

– No replay attack

4

19

One-Way Function
• Over the range of possible messages, all

digests are equally likely.
– If f maps a large percentage of messages to the

same digest, it may be easy to find an M′ such
that f(M) = f(M′)

• If any bit of M changed, each bit of f(M)
has a 50% chance of being reversed
– Guards against the possibility that closely

related messages have the same digest

20

One-Way function

M1, M2, M3 M4, M5, M6 M7, M8, M9

v1 v2 v3

Sets have roughly equal size.
Elements of a set are unrelated.

f f f

digests

21

Replay Attack

• Problem: Intruder copies the message and
then resends it to receiver

• Solution: Include unique timestamp (or
sequence number) in message. Receiver
keeps timestamps of recently received
messages and does not accept a duplicate

22

Digital Signature

• Receiver can verify who sent M
• Receiver can be sure that M has not been

changed in transit (integrity)
• Sender cannot deny having sent M (non-

repudiation)
• Note: M is sent in the clear and can be read

by an intruder
– If security it needed, M can be encrypted with

another key

23

Key Distribution and
Authentication

• How do two processes agree on the key(s) they will
use to encrypt messages?

• How can a process be sure that it reaches agreement
with the right process?

– How does server know with which client it is
communicating?

– How can client be sure that it is communicating
with intended server?

• These are problems when either symmetric or
asymmetric cryptography is used.

24

Key Distribution and
Authentication

• Key distribution and authentication are related and can
be dealt with in the same protocol
– You need to authenticate the process to which a key is being

distributed

• Since the protocol involves the exchange of only a few
messages, it can use symmetric or asymmetric
techniques to encrypt protocol messages
– Data exchange (after protocol completes) generally uses

symmetric encryption

• TP monitors often provide modules that implement key
distribution and authentication

5

25

Symmetric Key Distribution and
Session Keys

• Solution 1: Assign symmetric key, KP, to each process,
P. Each communication session between P and
another process uses KP

• Problem 1: Any process that can communicate with P
can decode all communication with P

• Solution 2: Session keys

– A new symmetric key is created for each session

– Key discarded when session completed
26

Kerberos

• Developed at MIT as middleware to be used
in distributed systems

• Goals:
– Authenticate a client to a server
– Distribute a session key for subsequent data

exchange between the client and the server

• Uses symmetric cryptography to distribute a
symmetric session key

27

Key Server

• Kerberos uses a key server, KS: a trusted third party
responsible for distributing keys

• Each client, C, and server, S, registers a symmetric key
with KS
– Client key, KC,KS , is a one-way function of C’s password, PWC

• hence it need not be stored on the client machine

• KC,KS known only to C and KS

– Server key, KS,KS , known only to S and KS

– C and S can communicate securely with KS

28

Kerberos Protocol: Tickets

• (M1) C sends (C, S) to KS in the clear, asking KS
for a ticket that C can use to communicate with S

• (M2) KS sends to C :
KC, KS [KSess C-S , S, LT] --- C can decrypt this

KS, KS [KSess C-S , C, LT] --- The ticket; C cannot
decrypt this

where:

• KSess C-S is a new session key created by KS

• LT is the lifetime of the ticket

29

Kerberos Protocol: Authenticators

• When C receives M2, it
– Decrypts first part to obtain KSess C-S

– Saves ticket until it invokes service from S

• (M3) When C invokes S it sends:
– Ticket

– A newly created authenticator, KSess c-s [C, TS]
• TS is a timestamp

– Arguments of invocation encrypted with KSess C-S

30

Kerberos Protocol

• On receiving M3, S:
– Decrypts ticket using KS, KS to determine KSess C-S

– Decrypts authenticator using KSess C-S

– Checks that authenticator is live (TS is within LT)

– Checks that authenticator has not been used before
• S keeps a list of live authenticators that it has received

– C is authenticated to S (S knows that C constructed M3)

• (M4) S performs requested service and returns result
to C encrypted with KSess C-S

• Only C can decrypt M4 since it is the only process
(other than S and KS) that knows KSess C-S

6

31

The Sequence of Message in
Kerberos

C

KS

C: KC,KS

S: KS,KS

S

PWC

M1: (C, S)

M2: (ticket,…)

M3: (ticket, authenticator, arguments)

M4: results

32

Possible Attacks

• Intruder, I, copies ticket from M2 and tries to
use it with an authenticator it creates
– Not possible since I does not know KSess C-S

• I copies M3 and later replays it
– Not possible since authenticator is on S’s list

• I intercepts M3 and uses ticket and
authenticator for its own service invocation
– Not possible if arguments encrypted with KSess C-S

33

Possible Attacks

• I obtains a ticket for S from KS and later
pretends to be C (by sending C in authenticator)
– Not possible since I (not C) is in the ticket

• I intercepts M1 and sends (C,I) instead of (C,S);
KS returns to C a ticket for I (instead of for S)
– Goal: fool C into sending M3 to S using a session

key that I knows. I can copy M3 and decrypt C’s
arguments (note: S is not fooled).

– Not possible since I (not S) is in first part of M2

34

Kerberos Protocol: Single Sign-on
• Servers often do their own authentication, maintain

their own set of user passwords.

• Problem: A user interacting with multiple servers has
to maintain multiple passwords, execute multiple
authentication protocols.

• Goal: User supplies a single password; servers do not
do authentication or keep user passwords.

• Kerberos Solution:
– C authenticates itself once to an authentication server, AS

– C gets a server ticket from ticket granting server, TGS, for
each server with which it wants to interact

35

Kerberos Protocol: Ticket-
Granting Server

• C sends to AS a request for a ticket for use with TGS

• AS sends to C
KC, AS [KSess C-TGS , TGS, LT] - session key for TGS

KTGS, AS [KSess C-TGS , C, LT] - tkt for service from TGS

• When C wants to invoke S, it sends to TGS:
– tkt

– An authenticator (encrypted with KSess C-TGS)

– Arguments (S), (encrypted with KSess C-TGS)

36

Kerberos Protocol Ticket-
Granting Server

• TGS creates a new session key, KSess C-S , and
sends to C

KSess,C-TGS [KSess C-S , S, LT] - session key for S

KS, AS [KSess C-S , C, LT] - ticket for S

• C and S then proceed as before

7

37

Nonce
• Problem: P1 and P2 share a session key, KSess.

P1 sends M1 to P2 and gets M2 back.
– How can P1 be sure that M2 came from P2 and not

an intruder, I ?

• I might:
– send a random string that P1 decrypts (using Ksess)

to another random string that looks like a correct
response

– replay an earlier message sent by P1 encrypted
with KSess , that is a possible response (P1 is not a
server that maintains a list of timestamps)

38

Nonce

• Solution: Include a nonce, N, in M1
– A random string generated by P1

– Long enough so that I cannot guess it

– If M2 contains N+1 then it can only have been
generated by P2 (since only P2 knows KSess)
and it cannot be a replay

39

Authorization
• Assuming client has been authenticated, which

of S’s operations is it allowed to perform?
– An access control list stores this information at S

• One entry for each user or user group

• Entry = (user Id, access bits); each access bit
corresponds to an operation that S exports

• Each server has an authorization policy
implemented in a module called a reference
monitor provided by TP monitor
– Responsible for constructing, retrieving, and

interpreting access control lists
40

Authenticated RPC

• Implement authentication in the rpc stubs
• When a client wants to access a server, it invokes

the client stub
• Authentication and key exchange are performed

by the stub and the security server (e.g., Kerberos)
• Security server participates in authorization by

managing Ids for users and user groups and
storing the Ids of each group to which a user
belongs

41

Authenticated RPC

API

client stub

server stub

API

security server

client

server

Ticket returned to client
contains client’s Id and Ids
of groups client belongs to

reference
monitor

API
Ids are transmitted with
invocation; server API
makes them accessible
to reference monitor

42

Internet Commerce

• Security particularly important on Internet
– Authentication

• Because impersonation is easy
• We are now interested in authenticating the server to the client

as well as the client to the server

– Encryption
• Because eavesdropping is easy

• A higher level of suspicion exists on Internet
– Interactions are not face-to-face
– Easy to make impressive looking Web sites

8

43

Secure Sockets Layer Protocol
(SSL)

• Developed by Netscape for use on Internet
• Used for authentication of a server to a

client (represented by a browser) and the
distribution of a session key
– Are you really sending your credit card number

to Macy’s?

• Server uses a certificate to authenticate
itself

44

Certificates

• A server, S, registers with a certification
authority (CA)
– CA is a trusted third party

– To create a certificate, S gives to CA its name, its
URL, and its public key (among other items)

– CA uses a number of means to satisfy itself that
the party that requested the certificate is, in fact,
who it claims to be

– CA generates a certificate for S

45

Certificates
• A certificate contains (among other items) S’s name,

URL, and public key (unencrypted)
• CA signs the certificate and sends it to S

– CA has certified the correctness of the association between
S’s name, public key, and URL by its signature on the
certificate

– CA’s public key is well known
• A browser stores the public keys of the CAs that it trusts

• S can then distribute copies of the certificate to clients
– Client can be sure that the public key in the certificate

corresponds to the server named in the certificate
– Solves the key distribution problem in the asymmetric case

46

Kerberos Compared with
Certification Authority

• Both are trusted third parties;

• Kerberos
– Distributes symmetric keys

– Operates on-line, when interaction takes place since it creates
a new symmetric key for each session

• Certification authority
– Distributes public keys

– Operates off-line, prior to interaction since public key is fixed
• once certificate created, intervention by CA no longer required

47

Secure Socket Layer Protocol--
SSL

(1) A browser, C, connects to a server, S,
which claims to be some enterprise
(Macy’s)

(2) S sends C a copy of its certificate -- in the
clear

48

SSL Protocol

(3) C verifies that the certificate is valid using CA’s
public key (stored in its browser)
– C now knows S’s public key
– C generates a (symmetric) session key, KSess , and

sends it to S encrypted with S’s public key
• C generates KSess since it can send an encrypted message to S,

but not the other way around

(4) The session follows using KSess

– SSL is a session-oriented protocol

9

49

Why SSL Works

• C knows it has established a session key
with the enterprise that S claimed to be
– C made up the session key and sent it to S using

the public key found in its certificate

– The certificate guarantees that the public key
corresponds to the enterprise named in the
certificate

50

Authenticating the Client

• If C needs to be authenticated to S, it sends
its password, encrypted with the session key
– In some applications, C might have a certificate

• In many purchasing applications, client
authentication is not required
– C sends its credit card number, encrypted with

the session key

– S learns C’s credit card number (a possibly
undesirable side effect)

51

Purchasing Over the Internet

• Issue 1: Single sign-on
– Customer, C, interacts with several servers, S,

and has to be authenticated at each

– Microsoft Passport addresses this problem
• Uses an authentication server (an on-line trusted

third party), A

• C and S register with A
– A stores C’s password

– A stores a symmetric key, KS,A , that it shares with S

52

Passport

When S wants to authenticate C:
1. S sends a page to C’s browser containing A’s address

and attribute
��� � �����	��
	� �� � ����� �����

which causes the
page to be redirected to A

2. A sends a page and its certificate to C requesting
password

3. C sets up an SSL session to A, sends password

4. A validates password; sends page and cookie to C
– Cookie encrypted with A’s private key and stored on C’s

browser

– Page contains authentication information about C encrypted
with KS,A and is redirected to S. C is now authenticated to S

53

Passport

• Suppose C later contacts another server, S′
– S′ redirects a page through C to A requesting

authentication

– A retrieves its cookie from C’s browser, indicating
that C has already been authenticated

• C does not have to resubmit its password

– A redirects a page through C to S′ indicating that
C has been authenticated.

54

Passport

• Advantages
– Single sign-on

– Servers can off-load authentication

• Disadvantage
– Security flaw: intruder can steal cookie off C’s

and use it

10

55

Purchasing Over the Internet

• Issue 2: Revealing your credit card number
to the merchant
– This is more of a problem than with normal

credit card purchases since the physical card is
not required

– PayPal addresses this problem
• Uses an authentication server (on-line trusted third

party), PP
• C and S register with PP

– C stores its credit card #, password, etc., at PP
– S maintains an account at PP

56

PayPal

• C’s “add to shopping cart” request off S’s web
page is forwarded by S to PP

• PP sends its certificate to C and an SSL
connection between them is established.

• PP sends a page to C describing the purchase for
confirmation

• C replies to PP with confirmation and password

• PP executes a transaction that charges C’s credit
card and credits S’s account

57

Secure Electronic Transactions
Protocol -- SET

• A transaction-oriented protocol

• Developed by Visa and MasterCard

• The merchant, M, does not learn the
customer’s credit card number

• In addition to C and M, there is a trusted
third party, G, the payment gateway

• Uses a linear commit

58

SET Protocol: The Basic Idea

• Prior to start of protocol
– C sends M its certificate
– M sends C its certificate and G’s certificate

• C sends M a message with two parts:
– The purchase amount and C’s credit card

information encrypted with G’s public key
• M cannot decrypt and learn C’s credit card number

– The purchase amount and the description of the
item encrypted with M’s public key

59

SET Protocol: The Basic Idea

• M sends to G a message with two parts:
– The first part of the message sent by C
– The purchase amount of the order encrypted

with G’s public key

• G :
– Decrypts the messages (and compares amounts)
– Approves the credit card purchase
– Commits the transaction

60

(Simplified) SET Protocol

• Two new ideas:
– C’s certificate contains a message digest of credit

card information (in addition to other data
describing C)

• Credit card information itself not included

– Security is enhanced using a dual signature,
based on a message digest function, f()

11

61

(Simplified) SET Protocol

• (1) M sends C a message with a unique
transaction identifier, Trans_id .

• (2) C sends M
m1: KG

Pub[Trans_id, credit_card_info, $_amount]

m2: KM
Pub[Trans_id, $_amount, desc]

f(m1), f(m2), KC
Pri[f(f(m1)*f(m2))]

Dual signature

62

Dual Signature

• Dual signature verifies that:
– The message has not been altered

• M computes f(m1) and f(m2) and compares the result with
the corresponding fields in the dual signature

• M uses the public key in C’s certificate to verify that the
third field is the correct signature for the concatenation of
the first two fields

– The message was constructed by C

– Although the two parts are separate and encrypted in
different ways, they belong to the same transaction

• M cannot decrypt m1, but it can decrypt m2

63

(Simplified) SET Protocol

• (3) M sends G
m1

dual_signature

m4: KG
Pub[Trans_id, $_amount,

KM
Pri[f(Trans_id, $_amount)]]

64

Dual Signature

• When G receives M’s message it uses the dual
signature -- f(m1), f(m2), KC

Pri[f(f(m1)*f(m2))] --
to verify that m1 was prepared by C:
– It computes f(m1) and compares the result with the

corresponding field in the dual signature

– It uses the public key in C’s certificate to verify that
the third field corresponds to the concatenation of
the first two fields

• It does not need m2 to do this, since the signature contains
f(m2) and the encryption is on a digest of f(m2)

65

(Simplified) SET Protocol

• (4) G decrypts both parts of message and :
– Uses the message digest of the credit card number in

C’s certificate to verify the credit card number in m1

– Uses the signature in m4 and the public key in M’s
certificate to verify that m4 was prepared by M

– Matches purchase price and Trans_Id in m1 and m4

– Checks that Trans_id was not used before

– Approves the credit card debit and commits

– Sends a commit message to M

• (5) M sends a commit message to C
66

Atomic Commit for SET

• SET uses a linear commit protocol

• The messages from C to M and from M to
G are ready messages

• G commits the transaction

• The messages from G to M and from M to
C are commit messages

12

67

Goods Atomicity

• Some Internet transactions involve the
actual delivery of goods (e.g., software)

• Goods Atomicity: The goods are delivered if
and only if the transaction commits
– Difficult to implement because the action of

delivering the goods cannot be rolled back

68

Certified Delivery

• Certified Delivery:
– Suppose C and M have a dispute about the

delivered goods and go to an arbiter
• If C is not satisfied with the goods, how can it

prove that the goods it demonstrates to the arbiter
are the goods that were delivered?

• If C attempts to deceive the arbiter by demonstrating
different goods than were delivered, how does M
prove to the arbiter that C is cheating?

69

SET with Goods Atomicity and
Certified Delivery

• SET can be enhanced to provide goods
atomicity and certified delivery

• In Step (1) of the SET protocol, M sends C
the goods, encrypted with a new symmetric
key, KC,M , and a message digest of the
encrypted goods
– C can verify that the encrypted goods were

correctly received using the message digest

70

SET with Goods Atomicity and
Certified Delivery

• In Step (2), C sends M the message digest
of the delivered encrypted goods signed
with C’s private key

• In Step (3), M verifies the message digest
and sends G
– The key, KC,M

– The message digest signed with C’s private key
and countersigned with M’s private key

71

SET with Goods Atomicity and
Certified Delivery

• After G commits the transaction in Step (5)
and sends M the commit message, M sends
C a commit message in Step (6), including
the key, KC,M

• If M does not send the key. C can get the
key from G, which is a trusted third party.

72

SET with Goods Atomicity and
Certified Delivery

• Guarantees goods atomicity
– C gets the key and can decrypt the goods if and

only if the transaction commits
• If a failure occurs before the commit, the money has

not been transferred and C does not have KC,M

• If a failure occurs after the commit, but before C
gets the key, G has a durable copy of the key, which
it can send to C

13

73

SET with Goods Atomicity and
Certified Delivery

• Guarantees Certified Delivery
– G has

• The message digest of the encrypted goods signed
by both C and M

• The key, KC,M

– Given a copy of the goods, the arbiter can
determine its correctness

• M cannot deny sending it
• C cannot deny receiving it

74

Escrow Agent

• A trusted third party that provides goods
atomicity for non-electronic goods
– Purchased on the Internet from someone you do

not know --- perhaps at an auction site

– Goods are delivered, not downloaded

75

Escrow Agent

– Customer, C, sends money to escrow agent, E

– E notifies merchant, M (commit)

– M sends goods using shipping method that
allows tracking

– When C gets and inspects goods, he notifies E,
which pays merchant

– If C gets goods (as can be demonstrated by
tracking) but does not notify E, agent pays M

76

Electronic Cash

• SET involved the transfer of notational money.
– Examples: credit card, checks

• Digital money (E-cash) has certain advantages :
– Anonymity:

• The merchant does not know who the customer is

• The bank does not know with what merchant the customer
is doing business

– Small denomination purchases possible
• Credit company charges preclude charging small

purchases

77

Money Atomicity

• Money atomicity is a crucial requirement:
– Money cannot be created or destroyed

• Money might be created if someone makes an
electronic copy

• Money might be destroyed if the system fails

78

Tokens

• E-cash is represented by tokens of various
denominations

• Each token consists of a unique s-bit serial
number, n, encrypted with a private key
known only to the bank Kj

pri[n]
– The jth denomination uses the key Kj

pri

– The corresponding public key, Kj
pub, is

available to all

14

79

Tokens

• The number n satisfies a redundancy
predicate r(), known to all
– For all valid serial numbers, n, the predicate

r(n) is true

– r() must be such that for a randomly selected bit
string p, it is extremely unlikely that r(p) is true

• Total number of serial numbers <<<<2s

80

Properties of Tokens

• Anyone can determine that a given bit string,
t, is a valid token of a given denomination
– Decrypt t with Kj

pub to obtain n

– Verify that r(n) is true

• Tokens cannot be easily counterfeited
– If counterfeiter picks a random number t1, the

probability that Kj
pub[t1] will satisfy r() is

vanishingly small

81

Minting and Depositing Tokens

• Tokens are minted by the bank, B.
– B does not keep a list of the serial numbers it

has used (the likelihood of using the same
number twice is vanishingly small)

• Spent tokens are returned to B for deposit
– B keeps a list, LS , of the serial numbers of the

tokens that have been deposited
– Using this list, B can reject a token that is being

deposited for a second time

82

Simple E-Cash Protocol

• Principals are the customer, C, the bank, B, and the
merchant, M

• Creating Tokens
– (1) C authenticates herself to B and sends a message asking

to withdraw some cash in the form of tokens from her
account

– (2) B
• Debits C’s account
• Mints the tokens
• Encrypts the tokens for transmission, and sends them to C
• Commits the transaction

83

Simple E-Cash Protocol

• Spending Tokens
– (1) C sends M a purchase order and some tokens

– (2) M
• Verifies that the tokens are valid using Kj

pub and r

• Authenticates itself to B, encrypts the tokens for
transmission, and sends them to B

84

Simple E-Cash Protocol

• Spending Tokens
– (3) B

• Verifies that each token is valid using Kj
pub and r

• Checks that each token is not in LS

• If all tokens are not in LS,
– Adds the tokens to LS

– Credits M’s account with the amount of the tokens

– Commits the transaction and notifies M

15

85

Anonymous E-Cash Protocol

• Simple E-Cash protocol is not anonymous
– When token is minted, B can associate C with

the serial numbers it creates; when token is
spent B can associate serial number with M

• To achieve anonymity:
– C (not B) makes up the serial number n such

that r(n) is true
– B creates the token by signing n, without

knowing what n is
• A blind signature

86

Blind Signatures

• The implementation of blind signatures uses
the concept of a blinding function, b, and its
inverse, b-1, such that
– Given b(n), it is very difficult to determine n

– For any private key KPri, and any n, b(n)
commutes with KPri

KPri[b(n)] = b(KPri[n])

87

Anonymous E-Cash Protocol

• Creating Tokens:
– (1) C

• Selects a valid serial number n, such that r(n)

• Selects a blinding function b (known only to C) and
computes b(n)

• Sends b(n) to B and requests B to debit her account and
mint the tokens

• It is not in C’s interest to cheat by picking an n
that does not satisfy r(n)
– Her account will be debited to pay for the token

– If token not valid, it cannot be spent
88

Anonymous E-Cash Protocol

• Note that B cannot determine n since it does not know
b-1

– Not a problem: even in the simple E-cash protocol, B did not
keep a list of used serial numbers

• (2) B
• Debits C’s account by the requested amount

• Signs b(n) with the appropriate key for the requested denomination
Kj

Pri , creating Kj
Pr

• Encrypts Kj
Pri[b(n)] for transmission and sends it to C

• Commits the transaction

89

Anonymous E-Cash Protocol

• (3) C unblinds the token
– Applies the inverse blinding function, b-1(), to

Kj
Pri[b(n)] to obtain the token Kj

Pri[n]

b-1(Kj
Pri[b(n)]) = b-1(b(Kj

Pri[(n)])) = Kj
Pri[n]

90

A Blinding Function for the RSA
Protocol

• C picks a random number u that is relatively prime
to N

• Because u is relatively prime to N, it has a
multiplicative inverse, u-1

u*u-1 1 (mod N)

• To blind a serial number n, C computes
Kj

Pub[u] * n (mod N)

• The signed result returned by B to C
sr= Kj

Pri[Kj
Pub[u]*n]

• To unblind the signed result, C computes
Kj

Pri[n] = u-1 * sr (mod N)

≡

16

91

Anonymous E-Cash Protocol

• Spending Tokens
– Same as before

• Protocol is anonymous
– B cannot associate C with the serial number

deposited by M

92

Money Atomicity in the
Anonymous E-Cash Protocol

• Money might be created if a token could be copied and
spent twice
– Prevented by B’s list, Ls

• Money might be lost on system failure.
– B logs tokens created so if C does not receive token, it can be

resent
• If C tries to cheat by saying it has not received a token it had received

and B resends the token, C cannot spend both tokens

– C and M keep copies of the tokens they send. If they do not
get acknowledgements, they can ask B if the token was spent

• Might lose anonymity

93

Web Services Security

XML Encryption, XML Signature
and

WS-Security

94

Why WS-Security?
• Standard signature and encryption techniques can be

used to sign and encrypt an XML document but …
– these techniques are generally tied to transmission

(e.g., SSL) and do not protect the document once it
arrives.

– a document needs to be sent as a whole, and
different parts might have different security
requirements.

• Transmission system cannot be expected to respect
these differences

• Example: Merchant needs to know customer’s name
and address, but not credit card number.

95

Complexity of the Problem
• An XML document might contain data describing an

entire interaction; however each portion should be viewed
only by a particular audience
– Personal details of a medical record should not be

available to a researcher, doctor should be able to see
medical details but not credit card data, some medical
details should not be available to administrator.

– Different parts of document might have to be signed by
different participants

– The subsets might intersect, so multiple encryption
might be required for certain portions

• Should tags be encrypted?
– If yes, searching with XPath might be inhibited and

security might be compromised (since the plaintext
associated with encrypted data can be guessed) 96

WS-Security

• A standard set of SOAP extensions that can be
used to implement a variety of security models
and encryption techniques.
– Supports:

• Security token (passwords, keys, certificates) transmission

• Message integrity

• Message encryption

– Makes use of other standards: XML Signature, XML
Encryption

17

97

XML Encryption

• Example:

<payment xmlns=“…”>
<name> John Doe </name>
<creditCard type=“visa” limit=“5000” \>

<number> 1234 5678 9012 3456 </number>
<issuer> Bank of XY </issuer>
<expiration> 04/09 </expi9797ration>

</creditCard>
</payment>

98

XML Encryption
• Example: encrypt the credit card element (including tags)

– Encrypted element replaces element

<payment xmlns=“…”>
<name> John Doe </name>
<EncryptedData Type=“http://www.w3.org/2001/04/xmlenc#Element

xmlns=“…XML encryption namespace…”>
<EncryptionMethod Algorithm=“…” />
<KeyInfo xmlns=“…”>

<KeyName> keyABC </KeyName>
</KeyInfo>
<CipherData>

<CipherValue> AB12VY54321X ….. </CipherValue>
</CipherData>

</EncryptedData>
</payment>

encrypting
an element

encryption
algorithm

identify key to
receiver

encrypted
data

99

XML Encryption

• Type – granularity of encryption
– An entire document, or an element (with or without tags)

can be encrypted.

– Different parts can be encrypted with different keys

• Algorithm –algorithm used to encrypt data
– Example – DES, RSA

• KeyName – key is known to receiver; just identify it

• CipherData – octet stream

• The standard provides a number of options that can
be used to accommodate a variety of needs

100

XML Encryption – Some
Alternatives

1. Symmetrically encrypt data, assume the
receiver knows the key and include key name
(previous example)

2. Symmetrically encrypt data, include
encrypted key in message (encrypted with
public key of receiver) (next example)

101

XML Encryption and SOAP

• Store encryption key in header, encrypted
data in body, in an element within body, or
in an attachment

• The result of the encryption must be a valid
SOAP envelope
– Cannot encrypt <s:Envelope>, <s:Header> or

<s:Body> elements; only their descendants

102

XML Encryption

<s:Header>
<wsse:Security>

<xenc:EncryptedKey >
<xenc:EncryptionMethod

Algorithm=“…pub. key algo. to encrypt symmetric key…”/>
<ds:KeyInfo> <ds:KeyName> Bill </ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>abcd456…</xenc:CipherValue>
</xenc:CipherData>
<xenc:ReferenceList>

<xenc:DataReference URI=“#EncrData” />
</xenc:ReferenceList>

</xenc:EncryptedKey>
</wsse:Security>

</s:Header>

encrypted
symmetric key

Encrypted key is stored in header

list of data items
encrypted with
symmetric key

wsse – prefix for WS-Security
xenc – prefix for XML Encryption
ds – prefix for KeyInfo element

Bill’s publ. key
encrypts sym. key optional,

receiver
may know it

WS-Security used
to attach XML

Encryption

18

103

XML Encryption

<s:Body>
<xenc:EncryptedData Id=“EncrData”

Type=“http://www.w3.org/2001/04/xmlenc#Element />
<xenc:EncryptionMethod

Algorithm=“…symmetric algo. to encrypt data…” />
<xenc:CipherData>

<xenc:CipherValue>A341BB…</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
</s:Body> data encrypted

with symmetric key

identifies data

Encrypted data is stored in body

104

XML Signature

• An entire document or individual elements can be
signed. Allows for the fact that
– Different individuals might be responsible for different

parts of the message
– Some parts of the message should not be changed,

others are changeable

• The signature is computed in two stages
– A digest, using dig_fn1 , is computed of the data and

encapsulated in a <SignedInfo> element
– A digest, using dig_fn2 , is computed of the

<SignedInfo> element and signed using the private key
of the sender

105

XML Signature

<Signature xmlns=“ …XML Signature namespace…” >
<SignedInfo>

<CanonicalizationMethod Algorithm=“ … ” />
<SignatureMethod Algorithm=“…hash/public key encryption …” />
<Reference URI=“…locate item to be signed …” />

<DigestMethod Algorithm=“ …hash algorithm for item…” />
<DigestValue>xyT14Rst…</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>xYzu2fR….</SignatureValue>

</Signature>

signature of entire
<SignedInfo> element

digest of
data

106

Canonicalization Method

• Problem: Blank spaces, tabs, line delimiters
etc. do not affect the semantics of an XML
element, but two different semantically
identical elements will have different
digests and hence different signatures

• Solution: Put element into a canonical form
before digesting it (but send the original).

107

Canonicalization

• New Problem: Receiver must know to
canonicalize the data before checking the
signature.

• This is one example of a transformation that
the receiver must perform before digesting
the data
– Other examples: Sender might compress,

encrypt, … after signing

108

Transforms

• Solution: Signature contains a <Transforms>
element whose children enumerate the
transformations applied to the data by the
sender.
– Example: Receiver must decrypt and then

canonicalize the data before checking the
signature.

19

109

Two-Stage Signature
Computation

• Signature is over <SignedInfo> element (not over
the data directly)
– Change to data produces change to its <DigestValue>

which produces change to signature of <SignedInfo>
• Double digesting does not effect integrity of signature

– Technique used to do the signing (but not the signature
itself) is signed.

• Defends against an attack in which intruder attempts to
substitute weaker signature algorithm

110

KeyInfo Element

• Problem: Suppose the public key corresponding to the
private key used to sign <SignedInfo> is not known to
the receiver.

<SignedInfo>
<CanonicalizationMethod Algorithm=“ … “/>
<SignatureMethod Algorithm=“…hash/public key encryption …” />
….. other children …

</SignedInfo>

<SignatureValue> …. </SignatureValue>
<KeyInfo> …. </KeyInfo>

produced by algorithm
using a private key

identifies the private key:
- a name
- a certificate
- a corresponding public key

111

KeyInfo Element

• Problem: Since <KeyInfo> is not contained
in <SignedInfo> it is not bound by
signature to <SignedInfo>
– Intruder might substitute a different <KeyInfo>

element

• Solution: use multiple <Reference>
elements

112

Multiple Reference Elements
<s:Envelope>

<s:Header>
<wsse:Security>

<ds:Signature>
<ds:SignedInfo>

….
<ds:Reference URI=“#mess”> … </ds:Reference>
<ds:Reference URI=“#K”> … </ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue> … </ds:SignatureValue>
<ds:KeyInfo Id=“K”> … </ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</s:Header>
<s:Body Id=“mess”>

….
</s:Body>

</s:Envelope>

both Body and
KeyInfo are signed

part of WS-
Security

each Reference
element contains

digest of item
referred to

113

WS-Security

• Defines Security header block as a mechanism for
attaching security-related information to a SOAP
message in a standard way.
– Uses the concept of a security token:

• Asserts a claim by the sender of security-related information
– username, PW, Kerberos ticket, key

– Provides a mechanism for referring to security related
information that is not in message

– Tokens are children of Security header block
– Leverages XML Encryption and XML Signature

114

Security Tokens

1. Username token element

2. Binary security token – an element that
carries binary security information

<UsernameToken Id=“…”>
<Username> …. </Username>
<Password> …. </Password>

</UsernameToken>

<BinarySecurityToken
ValueType=“….” -- type of token (e.g., certificate, ticket)
EncodingType=“….” > -- encoding format

NmgT446C7…. -- token
</BinarySecurutyToken>

20

115

Security Tokens

3. Security token reference – a mechanism for
referencing tokens not contained in the message

4. <KeyInfo> (part of XML Signature) provides an
alternate (more general) mechanism for
transmitting information of this type. It can be
inserted as a child of Security header block

<SecurityTokenReference Id=“…” >
<Reference URI=“…” />

</SecurityTokenReference>

116

Example<s:Header>
<wsse:Security>

<wsse:BinarySecurityToken
ValueType=“…certificate…” Id=“X509Token”> xDee45TsYU….

</wsse:BinarySecurityToken>
<ds:Signature>

<ds:SignedInfo>
<ds:CanonicalizationMethod ……/> <ds:SignatureMethod …../>
<ds:Reference URI=“#B”> -- body is signed

<ds:DigestMethod …./> <ds:DigestValue …./>
</ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue> afdSkK… </ds:SignatureValue> -- signature
<ds:KeyInfo>

<wsse:SecurityTokenReference> <wsse:Reference URI=“#X509Token”/>
</wsse:SecurityTokenReference>

</ds:KeyInfo>
</ds:Signature>

</wsse:Security>
</s:Header>
<s:Body Id=“B”> …body… </s:Body>

information
about key used in
the signature is

found here

token

WS-Security
header block

XML
Signature

117

Security Token

5. Signature – An XML Signature element
can be a child of a Security header block

• There can be multiple signatures referencing
different (perhaps overlapping) components
of the message

• Example:
• Client signs orderId header block and body of message

and sends to order processing dept

• Order processing dept adds a shippingId header block
and signs it and the orderId header block and sends to
billing …

118

Encryption in WS-Security
• WS-Security uses XML Encryption in a standard

way to encrypt portions of a message
<s:Header>

<wsse:Security>
<xenc:ReferenceList>

<xenc:DataReference URI=“#bodyId” />
</xenc:ReferenceList>

<wsse:Security>
</s:Header>
<s:Body>

<xenc:EncryptedData Id=“bodyId” >
<ds:KeyInfo>

<ds:KeyName> xyz </ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData> <xenc:CipherValue> … </xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
</s:Body>

ReferenceList used as a
stand-alone header

block; lists encrypted
items

each EncryptedData
element in ReferenceList
provides its own key info

xyz is the name associated with the
symmetric key used to encrypt data

119

Security Assertion Markup
Language

(SAML)

120

SAML Goals

• Create trusted security statements
– Example: Bill’s address is xxx@yyyyyyy and he was

authenticated using a password
– Example: Bill has permission to access resource X

• Exchange security statements
– Example: implement single-sign-on (SSO)

• Bill is authenticated at his company, then wants to purchase
tickets at Travel.com. He shouldn’t have to re-authenticate

• SAML non-goal:
– Performing authentication
– Granting Bill access to X

21

121

Why SAML?

• Permissions management data is currently
handled in mostly proprietary ways, among
tightly coupled modules in a single security
domain.

• Web is loosely coupled, consisting of many
security domains. A standard is needed to
govern the transfer of assertions between
domains.

122

SAML Use Case: Single Sign On

user

site2
(security

domain 2)

site1
(security
domain 1)

1. authenticate

2. access
resource

user is authenticated at
site1; then accesses a
resource at site2

asserting
party

relying
party

123

SAML Use Case: Authorization

user

policy
decision

point

policy
enforcement

point

same
security
domain

authorization decision
not made at site of resource

1. access resource

2. check
permission

relying party

asserting party

resource
stored
here

124

SAML Use Case: Back Office
Transaction

user

site2
(security

domain 2)

site1
(security

domain 1)

authentication
not made at site of
resource

1. authenticate
and place order

2. invoke back
office transaction

asserting
party

relying
party

resource stored here

125

Why SAML?

• Cookies do not do everything SAML does
– Cookie (signed with server’s private key) can

be used for re-authentication at a particular
server, but is of no use at a different server

• Cross domain authentication currently
requires proprietary single-sign-on software

• SAML intended as a Web standard that will
supercede proprietary software

126

Security Context

• SAML must be used in the context of a trust relationship
between asserting and relying parties
– Example: statement “Bill has access to resource X” might be

of no use unless we know that Bill is at the other end of the line

• Trust relationship is established using a security
framework (e.g., SSL, signatures, encryption, etc.)
– Example:

• Relying party sets up an SSL connection to asserting party
– Relying party knows (and trusts) who it is connected to (trust relationship)

• Asserting party sends an encrypted assertion to relying party over the
connection

• Relying party can use the assertion with confidence

• Security framework is not part of SAML

22

127

Assertion

• A set of statements (claims) made by a
SAML authority (asserting party)
– Authentication statement: subject was

authenticated using a particular technique at a
particular time

– Attribute statement: particular attribute values
are associated with the subject

– Authorization decision statement: subject is
authorized to perform certain actions

128

Assertion

<saml:Assertion xmlns:saml=“….”
…version information goes here…

AssertionID=“….”
IssueInstant=“….”>

<saml:Issuer> www.acompany.com </saml:Issuer>
<ds:Signature> … XML Signature goes here … </ds:Signature>
<saml:Subject>

<saml:NameIdentifier ….> uid=joe </saml:NameIdentifier>
</saml:Subject>
<saml:Conditions …. />
… SAML statements go here …

</saml:Assertion>

SAML authority
making the claim

entity about which
the claim is being

made

129

Signature

• A signed assertion supports
– Assertion integrity
– Authentication of creator of assertion (the SAML authority)

• A signed protocol request/response message supports
– Message integrity
– Authentication of message origin (asserting party) (might be

different from creator)
• A signature is not always needed

– Assertion might inherit signature of containing message
– Assertion might be received over a secure channel whose

other end was authenticated by other means

• Signature is a restricted version of XML Signature
130

Subject

• Identifies the entity to which the assertion pertains

• Identifies confirmation method and (optionally)
confirmation data
– If the relying party performs the specified

authentication method (perhaps using the data), then it
can treat the entity presenting the assertion as the entity
that the SAML authority associates with the name
identifier

– Example: method = public key, data = key information

131

Conditions

• Restrictions under which the assertion is to be used
– NotBefore – earliest time at which assertion is valid
– NotOnOrAfter – latest time at which assertion is valid
– AudienceRestrictionCondition – assertion is addressed to

a particular audience
– DoNotCacheCondition – assertion must be used

immediately
– ProxyRestrictionCondition – limitation that the asserting

party places on a relying party that wishes to create its own
assertion based on this assertion

132

Authentication Statement

• Asserts that the enclosing assertions’
subject was authenticated by a particular
means at a particular time
– Authentication itself is not part of SAML

– Statement refers to an authentication act that
took place at a prior time

<saml:AuthenticationStatement
AuthenticationMethod=“password”
AuthenticationInstant=“….” />

23

133

Attribute Statement

• Asserts that the enclosing assertion’s subject
is associated with attribute attrib with value
val.
– Example: the value of the attribute Department

associated with the assertion’s subject is
Accounting

<saml:AttributeStatement>
<saml:Attribute Name =“attrib”>

<saml:AttributeValue> val </saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>

134

Authorization Decision Statement

• Asserts that the enclosing assertion’s
subject’s request for a particular action at the
specified resource has resulted in the
specified decision

<saml:AuthorizationDecisionStatement Decision=“permit”
Resource=“… some URI … >

<saml:Action> Execute </saml:Action>
</saml:AuthorizationDecisionStatement>

135

SAML Protocols

• Using a request/response pattern, SAML defines
protocols/messages that
– Request an assertion identified by unique Id
– Request assertions containing authentication statements

about the subject
– Request assertions containing attribute statements

concerning a particular attribute relating to the subject
– Request assertions containing authorization decision

statements concerning a particular resource and subject
– Request that an authentication assertion of a particular type

be created (this might involve execution of an
authentication protocol)

– Transmit protocol message by reference (artifact protocol)
136

Profiles

• SAML defines message exchange patterns
that illustrate how SAML assertions can be
exchanged to achieve particular goals in a
particular context
– Involve the use of SAML protocols

137

Browser/Artifact Profile

• Browser, authenticated at site1 (asserting
party) requests access to a resource at site2
(relying party).
– site1 creates a protocol message containing an

authentication statement and a reference to that
message called an artifact

– site2 pulls the protocol message from site1
using the artifact

138

Artifact

• A string consisting of
– Identity of source site (asserting party)

– Reference to a protocol message at source site

• Use: relying party wants to retrieve
assertions in a protocol message at the
asserting party; supplies an artifact that
identifies the message

24

139

Artifact – Pull Model

relying
party, R

browser, U

asserting
party, P

resource, X message, M

(1)

(3)

SAMLreq(artif)

SAMLresp(M)

artif is an artifact
referencing M

1. U creates authenticated
session with P

2. U requests access to X (through P).
3. P creates protocol msg, M, containing assertion about U, and an artifact

referring to M
4. Access, containing artifact, is redirected from P to R through browser
5. R pulls M (identified by artifact) from P

(5)

(2)(4)

SAML
protocol

site1site2

140

Request Message

• Request message (part of request/response
protocol) from relying party for an assertion held
by asserting party identified by artifact

<env:Body>
<samlp:request xmlns:samlp=“…”

RequestID=“…..”
IssueInstant=“….” >
<samlp:Artifact>

ASDFGHasdfgh….
</samlp:Artifact>

</samlp:Request>
</env:Body>

141

Response Message

• Protocol message is returned in response message

<env:Body>
<samlp:Response xmlns:samlp=“….”

ResponseID=“….”
InResponseTo=“….”
IssueInstant=“….” >
<samlp:Status>

<samlp:StatusCode Value=:”samlp:Success”/>
</samlp:Status>
… a protocol message goes here …

</samlp:Response>
</env:Body>

142

Browser/Post Model

relying
party

browser, U

asserting
party

resource, X assertion, A

(1)

(3)

1. U creates authenticated
session

2. U accesses remote resource X through asserting party.
3. A asserts fact about U
4. Access, containing signed assertion, is redirected (pushed) through browser

to relying party (signature required since assertion is routed through browser)

(2)

(4)

site1site2

143

Security

• Message integrity and confidentiality can be achieved
using SSL

• Relying party can have confidence in the assertion:
– Pull model: bi-lateral authentication should be used when

connection is set up between relying and asserting parties

– Push model: digital signature of asserting party used on
message containing assertion

– Either way, relying party knows who asserting party is and
can trust the assertion accordingly

