
1

1

Implementing Atomicity and
Durability

Chapter 22

2

System Malfunctions

• Transaction processing systems have to
maintain correctness in spite of malfunctions
– Crash

– Abort

– Media Failure

3

Failures: Crash

• Processor failure, software bug
– Program behaves unpredictably, destroying contents of main

(volatile) memory

– Contents of mass store (non-volatile memory) generally
unaffected

– Active transactions interrupted, database left in inconsistent
state

• Server supports atomicity by providing a recovery
procedure to restore database to consistent state
– Since rollforward is generally not feasible, recovery rolls

active transactions back

4

Failures: Abort

• Causes:
– User (e.g., cancel button)

– Transaction (e.g., deferred constraint check)

– System (e.g., deadlock, lack of resources)

• The technique used by the recovery
procedure supports atomicity
– Roll transaction back

5

Failures: Media

• Durability requires that database state
produced by committed transactions be
preserved

• Possibility of failure of mass store implies
that database state must be stored redundantly
(in some form) on independent non-volatile
devices

6

Log

• Sequence of records (sequential file)
– Modified by appending (no updating)

• Contains information from which database can be
reconstructed
– Read by routines that handle abort and crash recovery

• Log and database stored on different mass storage
devices

• Often replicated to survive media failure

• Contains valuable historical data not in database
– How did database reach current state?

2

7

Log

• Each modification of the database causes an
update record to be appended to log

• Update record contains:
– Identity of data item modified
– Identity of transaction (tid) that did the

modification
– Before image (undo record) – copy of data item

before update occurred
• Referred to as physical logging

8

Log

• Update records in a log

x y z u y w z
T1 T1 T2 T3 T1 T4 T2

17 A 2.4 18 ab 3 4.5

most recent
database update

9

Transaction Abort Using Log

• Scan log backwards using tid to identify transaction’s
update records
– Reverse each update using before image
– Reversal done in last-in-first-out order

• In a strict system new values unavailable to concurrent
transactions (as a result of long term exclusive locks);
hence rollback makes transaction atomic

• Problem: terminating scan (log can be long)
• Solution: append a begin record for each transaction,

containing tid, prior to its first update record
10

Transaction Abort Using Log

• Abort Procedure: Scan back to
begin record using update records
to reverse changes

B U U U U U U U
x y z u y w z

T1 T1 T1 T2 T3 T1 T4 T2

17 A 2.4 18 ab 3 4.5

Key:
B – begin record
U – update record

abort T1

11

Logging Savepoints

• Savepoint record inserted in log when
savepoint created
– Contains tid, savepoint identity

• Rollback Procedure:
– Scan log backwards using tid to identify update

records
– Undo updates using before image
– Terminate scan when appropriate savepoint

record encountered

12

Crash Recovery Using Log

• Abort all transactions active at time of crash

• Problem: How do you identify them?

• Solution: abort record or commit record appended
to log when transaction terminates

• Recovery Procedure:
– Scan log backwards - if T’s first record is an update

record, T was active at time of crash. Roll it back

• A transaction is not committed until its commit record
is in the log

3

13

Crash Recovery Using Log

• T1 and T3 were not active at
time of crash

B U U U U U C U A U
x y z u y w z

T1 T1 T1 T2 T3 T1 T3 T4 T1 T2

17 A 2.4 18 ab 3 4.5

Key:
B – begin record
U – update record
C – commit record
A – abort record

crash

14

Crash Recovery Using Log
• Problem: Scan must retrace entire log
• Solution: Periodically append checkpoint

record to log. Contains tid’s of all active
transactions at time of append
– Backward scan goes at least as far as last checkpoint

record appended
– Transactions active at time of crash determined from

log suffix that includes last checkpoint record
– Scan continues until those transactions have been

rolled back

15

Example

B2 B3 U2 B1 C2 B5 U3 U5 A5 CK U1 U4 B6 C4 U6 U1

T1
T4
T3

crash

Backward scan

Key:
U - update record
B - begin record
C - commit record
A - abort record
CK - checkpoint record

T1, T3 and T6 active
at time of crash

16

Write-Ahead Log
• When x is updated two writes must occur: update x in

database, append of update log record
– Which goes first?

…………………..update x; append to log …………….

crash crash crash
(no before image in log)

………………..append to log; update x ………………….

crash crash crash
(use before image;

it has no effect)

17

Write-Ahead Log: Performance

• Problem: two I/O operations for each
database update

• Solution: log buffer in main memory
– Extension of log on mass store

– Periodically flushed to mass store

– Flush cost pro-rated over multiple log appends
• This effectively reduces the cost to one I/O

operation for each database update

18

Performance

• Problem: one I/O operation for each database
update

• Solution: database page cache in main memory
– Page is unit of transfer

– Page containing requested item is brought to cache;
then a copy of the item is transferred to application

– Retain page in cache for future use

– Check cache for requested item before doing I/O
(I/O can be avoided)

4

19

Page and Log Buffering

database log

cache log buffer

mass
store

main
memory

20

Cache Management

• Cache pages that have been updated are
marked dirty; others are clean

• Cache ultimately fills
– Clean pages can simply be overwritten

– Dirty pages must be written to database before
page frame can be reused

21

Atomicity, Durability and Buffering

• Problem: page and log buffers are volatile
– Their use affects the time data becomes non-volatile
– Complicates algorithms for atomicity and durability

• Requirements:
– Write-ahead feature (move update records to log on mass

store before database is updated) necessary to preserve
atomicity

– New values written by a transaction must be on mass store
when its commit record is written to log (move new values
to mass store before commit record) to preserve durability

– Transaction not committed until commit record in log on
mass store

• Solution: requires new mechanisms
22

New Mechanism 1

• Forced vs. Unforced Writes:
– On database page –

• Unforced write updates cache page, marks it dirty and
returns control immediately.

• Forced write updates cache page, marks it dirty, uses it
to update database page on disk, and returns control
when I/O completes.

– On log –
• Unforced append adds record to log buffer and returns

control immediately.
• Forced append, adds record to log buffer, writes buffer

to log, and returns control when I/O completes.

23

New Mechanism 2

• Log Sequence Number (LSN):
– Log records are numbered sequentially

– Each database page contains the LSN of the
update record describing the most recent update
of any item in the page

9
x

17

10 11 12
y

17

138
12

x
y

Database
page 17

log LSN
24

Preserving Atomicity: the Write-
Ahead Property and Buffering

• Problem 1: When the cache page replacement
algorithm decides to write a dirty page, p, to mass
store, an update record corresponding to p might
still be in the log buffer.

• Solution: Force the log buffer if the LSN stored in
p is greater than or equal to the LSN of the oldest
record in the log buffer. Then write p. This
preserves write-ahead policy.

5

25

Preserving Durability I

• Problem 2: Pages updated by T might still be
in cache when T’s commit record is appended
to log buffer.
– Once commit record is in log buffer, it may be

flushed to log at any time, causing a violation of
durability.

• Solution: Force the (dirty) pages in the cache
that have been updated by T before appending
T’s commit record to log buffer (force
policy).

26

Force Policy for Commit
Processing

1. Force any update records of T in log buffer then …

2. Force any dirty pages updated by T in cache then …

• (1) and (2) ensure atomicity (write-ahead policy)

3. Append T’s commit record to log buffer then …

– Force log buffer for immediate commit or …

– Write log buffer when a group of transactions have
committed (group commit)

– (2) and (3) ensure durability

27

Force Policy for Commit
Processing

s
xold

cache

j
xnew

database

log

r+1 j ···· k
xold

update
record
for T

commit
record
for T

log buffer

r

1
2

3

LSN

28

Force Policy

• Advantage:
– Transaction’s updates are in database (on mass

store) when it commits.

• Disadvantages:
– Commit must wait until dirty cache pages are forced

– Pages containing items that are updated by many
transactions (hotspots) have to be forced with the
commit of each such transaction …

• but an LRU page replacement algorithm would not write
such a page out

29

Preserving Durability II

• Problem 2: Pages updated by T might still be
in cache when T’s commit record is appended
to log buffer

• Solution: Update record contains after image
(called a redo record) as well as before image
– Write-ahead property still requires that update

record be written to mass store before page
– But it is no longer necessary to force dirty pages

when commit record is written to log on mass store
since all after images precede commit record in log

– Referred to as a no-force policy
30

No-Force Commit Processing

• Append T’s commit record to log buffer
– Force buffer for immediate commit
– T’s update records precede its commit record in

buffer ensuring updates are durable before (or at
the same time as) it commits

• T’s dirty pages can be flushed from cache at any
time after update records have been written

– Necessary for write-ahead policy
• T’s dirty pages can be written before or after

commit record

6

31

No Force Policy for Commit
Processing

s
xold

cache

j
xnew

database

log

r+1 j ···· k
xold xnew

update
record
for T

commit
record
for T

log buffer

r

1
2

LSN

32

No-Force Policy

• Advantages:
– Commit doesn’t wait until dirty pages are forced

– Pages with hotspots don't have to be written out

• Disadvantage:
– Crash recovery complicated: some updates of

committed transactions (contained in redo records)
might not be in database on restart after crash

– Update records are larger

33

Recovery With No-Force Policy

• Problem: When a crash occurs there might
exist some pages in database (on mass store)
– containing updates of uncommitted transaction:

they must be rolled back

– that do not (but should) contain the updates of
committed transactions: they must be rolled
forward

• Solution: Use a sharp checkpoint

34

Recovery With No-Force Policy

U U C
p1 p2
T1 T2 T1

xold xnew yold ynew

p1

xold

p2

ynew

database

log
crash

T1 committed
T2 active
p2 flushed
p1 not flushed

p1 must be rolled forward using xnew

p2 must be rolled back using yold

35

Sharp Checkpoint

• Problem: How far back must log be scanned in
order to find update records of committed
transactions that must be rolled forward?

• Solution: Before appending a checkpoint record,
CK, to log buffer, halt processing and force all dirty
pages from cache
– Recovery process can assume that all updates in records

prior to CK were written to database (only updates in
records after CK might not be in database)

36

Recovery with Sharp Checkpoint

• Pass 1: Log is scanned backward to most recent
checkpoint record, CK, to identify transactions active
at time of crash.

• Pass 2: Log is scanned forward from CK to most
recent record. The after images in all update records
are used to roll the database forward.

• Pass 3: Log is scanned backwards to begin record of
oldest transaction active at time of crash. The before
images in the update records of these transactions are
used to roll these transactions back.

7

37

Recovery with Sharp Checkpoint

• Issue 1: Database pages containing items
updated after CK was appended to log might
have been flushed before crash
– No problem – with physical logging, roll

forward using after images in pass 2 is
idempotent.

• Rollforward in this case is unnecessary, but not
harmful

38

Recovery with Sharp Checkpoint

• Issue 2: Some update records after CK might
belong to an aborted transaction, T1. These
updates will not be rolled back in pass 3 since
T1 was not active at time of crash
– Treat rollback operations for aborting T1 as ordinary

updates and append compensating log records to log

CK
U1

xold xnew

CL1

xnew xold

crash

A1

before images

39

Recovery with Sharp Checkpoint

• Issue 3: What if system crashes during
recovery?
– Recovery is restarted

– If physical logging is used, pass 2 and pass 3
operations are idempotent and hence can be
redone

40

Fuzzy Checkpoints

• Problem: Cannot stop the system to take
sharp checkpoint (write dirty pages).
– Use fuzzy checkpoint: Before writing CK,

record the identity of all dirty pages (do not
flush them) in volatile memory

– All recorded pages must be flushed before next
checkpoint record is appended to log buffer

41

Fuzzy Checkpoints

• Page corresponding to U1 is recorded at CK1

and will have been flushed by CK2

• Page corresponding to U2 is recorded at CK2,
but might not have been flushed at time of crash
– Pass 2 must start at CK1

U1 CK1 U2 CK2

crash

42

Archiving the Log
• Problem: What do you do when the log fills

mass store?
– Initial portions of log are not generally

discarded since they contain important data:
• Record of how database got to its current state
• Information for analyzing performance

• Solution: Archive the initial portion of the log
on tertiary storage. Only the portion of the log
containing records of active transactions needs
to be maintained on secondary store

8

43

Logical Logging

• Problem: With physical logging, simple
database updates can result in multiple update
records with large before and after images
– Example – “insert t in T” might cause

reorganization of a data page and an index page
for each index. Before and after images might be
entire pages

• Solution: Log the operation and its inverse
instead of before and after images
– Example - store “insert t in T ”, “delete t from T ”

in update record
44

Logical Logging

• Problem 1: Logical operations might not be
idempotent (e.g., “

���������
	
T �

	��
x = x+5”)

– Pass 2 roll forward does not work (it makes a
difference whether the page on mass store was
updated before the crash or after the crash)

• Solution: Do not apply operation in update
record i to database item in page P during
pass 2 if P.LSN ≥ i

45

Logical Logging
• Problem 2: Operations are not atomic

– A crash during the execution of a non-atomic
operation can leave the database in a physically
inconsistent state

• Example - “insert t in T ” requires an update to both a
data and an index page. A crash might occur after t has
been inserted in T but before the index has been
updated

– Applying a logical redo operation in pass 2 to a
physically inconsistent state is not likely to work

• Example - There might be two copies of t in T after
pass 2

46

Physiological Logging
• Solution: Use physical-to-a-page, logical-

within-a-page logging (physiological logging)
– A logical operation involving multiple pages is

broken into multiple logical mini-operations
– Each mini-operation is confined to a single page and

hence is atomic
• Example - “insert t in T” becomes “insert t in a page of

T” and “insert pointer to t in a page of index”

– Each mini-operation gets a separate log record
– Since mini-operations are not idempotent, use LSN

check before applying operation in pass 2

47

Deferred-Update System

• Update - append new value to intentions list (in
volatile memory); append update record
(containing only after image) to log buffer;
– write-ahead property does not apply since there is no

before image

• Abort - discard intentions list

• Commit - force commit record to log; initiate
database update using intentions list

• Completion of intentions list processing - write
completion record to log

48

Recovery in Deferred-Update System

• Checkpoint record - contains list of committed
(not active) but incomplete transactions

• Recovery -
– Scan back to most recent checkpoint record to

determine transactions that are committed but for
which updates are incomplete at time of crash

– Scan forward to install after images for incomplete
transactions

– No third pass required since transactions active (not
committed) at time of crash have not affected
database

9

49

Media Failure

• Durability requires that the database be stored
redundantly on distinct mass storage devices
1. Redundant copy on (mirrored) disk => high availability

- Log still needed to achieve atomicity after an abort or crash

2. Redundant data in log

• Problem: Using the log (as in 2 above) to
reconstruct the database is impractical since it
requires a scan starting at first record

• Solution: Use log together with a periodic dump

50

Simple Dump

• Simple dump
– System stops accepting new transactions

– Wait until all active transactions complete

– Dump: copy entire database to a file on mass
storage

– Restart log and system

51

Restoring Database From Simple
Dump

• Install most recent dump file

• Scan backward through log
– Determine transactions that committed since

dump was taken
• Ignore aborted transactions and those that were

active when media failed

• Scan forward through log
– Install after images of committed transactions

52

Fuzzy Dump

• Problem: The system cannot be shut down
to take a simple dump

• Solution: Use a fuzzy dump
– Write begin dump record to log
– Copy database records to dump file while

system active
• Even copying records of active transactions and

records that are locked

53

Fuzzy Dump

• Dump file might:
– reflect incomplete execution of an active

transaction that later commits

– reflect updates of an active transaction that later
aborts

wT(x) dump(x) dump(y) wT(y) commitT

wT(x) dump(x) abortT

time

time
54

Naïve Restoration Using Fuzzy
Dump

• Install dump on disk

• Scan log backwards to begin dump record to
produce list, L, of all transactions that
committed since start of dump

• Scan log forward and install after images in
update records of all transactions in L

10

55

Naïve Restoration Using Fuzzy Dump

start dump

wT(x)

dump(x,y)

wT(y)

end dump

commitT

time

T in L; roll it forward

wT(x)

start dump end dump

abortTbeginT

time

T not in L; do not roll it forward

- It does some things correctly

56

Naïve Restoration Using Fuzzy Dump

start dump

wT(x)

dump(x) end dump

abortT

time

• Problem: Naïve algorithm does not handle two cases:
– T commits before dump starts but its dirty pages might not

have been flushed until dump completed
• Dump does not read T’s updates and T is not in L .

– Dump reads T’s updates but T later aborts:

57

Taking a Fuzzy Dump

• Solution: Use fuzzy checkpointing and
compensating log records

• Dump algorithm:
– Write checkpoint record

– Write begin dump record (BD)

– Dump

– Write end dump record (ED)

58

Restoration Using Fuzzy Dump
– Install dump on mass storage device
– Scan backward to CK3 to produce list, L, of all

transactions active at time of media failure
– Scan forward from CK1; use redo records to roll the

database forward to its state at time of media failure
– Scan backwards to begin record of oldest transaction

in L, roll all transactions in L back

CK1 CK2 BD ED CK3

media
failure

all dirty pages in cache
at time of CK1 have been
written to database

