
1

1

Isolation in Relational Databases

Chapter 21

2

What’s Different About Locking
in Relational Databases?

• In the simple databases we have been studying,
accesses are made to a named item (for example r(x)).
– x can be locked

• In relational databases, accesses are made to items
that satisfy a predicate (for example, a

���������	�
statement)
– What should we lock?

– What is a conflict?

3

Conflicts in Relational Databases

• Operations on Accounts and Depositors conflict

• Interleaved execution is not serializable

Audit:
���
�������
����
(balance)�������

Accounts��� ���!�
name = ‘Mary’;

���
������
totbal�������

Depositors��� ���!�
name = ‘Mary’

NewAccount:" #�
����$�%" #����
Accounts&('%
�� �)
+*-,

123’ . ‘Mary’,100 /-0
� 1�2�'3���

Depositors
��4�
totbal = totbal + 100�5� �����

name = ‘Mary’

4

What to Lock?

• Lock tables:
– Execution is serializable but ...

– performance suffers because lock granularity is
coarse

• Lock rows:
– Performance improves because lock granularity

is fine but ...

– execution is not serializable

5

Problem with Row Locking

• Audit
(1) Locks and reads Mary’s rows in Accounts

• NewAccount
(2) Inserts and locks new row, t, in Accounts
(3) Locks and updates Mary’s row in Depositors
(4) Commits and releases all locks

• Audit
(5) Locks and reads Mary’s row in Depositors

time

6

Row Locking

• The two 687�9�7�:<; statements in Audit see
inconsistent data
– The second sees the effect of NewAccount; the

first does not

• Problem: Audit’s 6%7�9!7�:=; and NewAccount’s>@? 6%7�A3; do not commute, but the row locks
held by Audit did not delay the

>@? 6%7�A3;
– The inserted row is referred to as a phantom

2

7

Phantoms

• Phantoms occur when row locking is used and
– T1

���������	�
s � �������8��� s � or

�	���������
s using a

predicate, P

– T2 creates a row (using � 	 ����
�� or
�����
�8���

)
satisfying P

• Example:
T1:

� 1�2 ' ���
Table T2:

" #�
������8" #����
Table
��4�

Attr = ….
&('%
�� �)
+*

… satisfies P…)��� �����
P

8

Phantoms

� >@? 6%7(A ; and ������� ;37 cause phantoms with
row locking.

• Question: Why does ��7(9�7!; 7 not cause a
similar problem with row locking?
– Answer: A row that has been read cannot be

deleted because it is locked

9

Preventing Phantoms
• Table locking prevents phantoms; row locking does not

• Predicate locking prevents phantoms

– A predicate describes a set of rows, some are in a
table and some are not; e.g. name = ‘Mary’

• A subset of the rows satisfying name = ‘Mary’ are in
Accounts

– Every SQL statement has an associated predicate

– When executing a statement, acquire a (read or
write) lock on the associated predicate

– Two predicate locks conflict if one is a write and
there exists a row (not necessarily in the table) that
is contained in both 10

Phantoms

rows in
table R

rows satisfying
predicate P

all rows that can
possibly be in table R

rows in R satisfying P
(rows that can be locked)

rows satisfying P
that do not exist in R

11

Preventing Phantoms With
Predicate Locks

• Audit gets read lock on predicate name=‘Mary’.

• NewAccount requests a write lock on predicate
(acctnum= � 123’ ∧ name=‘Mary’ ∧ bal=100)
– Request denied since predicates overlap

Audit:
���
�������
����
(balance)�������

Accounts��� ���!�
name = ‘Mary’

NewAccount:" #�
������%" #����
Accounts&�'%
�� �)
 * ,

123’ . ‘Mary’,100 /

12

Conflicts And Predicate Locks

• Example 1

– Statements conflict since predicates overlap and one is a
write

• There might be an account with bal < 100 and name = ‘Mary’

• Locking is conservative: there might be no rows in Accounts
satisfying both predicates

• No phantom involved in this (�����������) case

� �"!#�%$'&�� (*)
(balance) + �"!#��&"�,.-0/
)

Accounts
,.-0/
)

Accounts1324�5- �
name = ‘Mary’

1324�5- �
bal < 100

3

13

Conflicts And Predicate Locks

• Example 2

– Statements commute since predicates are disjoint.
• There can be no rows (in or not in Accounts) that satisfy

both predicates

• No phantom involved in this (+ �"!#��&5�) case

� �"!#� $'&�� (*)
(balance) + �"!#��&"�,.-0/
)

Accounts
,.-0/
)

Accounts1324�5- �
name = ‘Mary’

1324�5- �
name = ‘John’

14

Serializability in Relational
Databases

• Predicate locking prevents phantoms and produces
serializable schedules, but is too complex to implement

• Table locking prevents phantoms and produces
serializable schedules, but negatively impacts
performance

• Row locking does not prevent phantoms and can
produce nonserializable schedules

• What’s an implementor to do?
– Later we discuss more efficient locking methods (granular

locking and index locking) that prevent phantoms and
produce serializable schedules

15

Isolation Levels
• SQL defines several isolation levels weaker than ������� �
	�� �
����	��

that allow non-serializable
schedules and hence allow more concurrency

Serializable schedules

Schedules allowed
at a weaker isolation level

serializable
conc. control

s
•

weaker
conc. control

s

s s

s′

fewer delays

delays

s′
•

16

Isolation Levels

• Schedules that are produced by concurrency
controls operating at isolation levels lower
than SERIALIZABLE might be correct for
some applications
– We give examples later.

• SQL standard defines isolation levels in
terms of certain anomalies they do or do not
allow

17

Anomaly

• We have already talked about some
anomalies
– Dirty Read
– Dirty Write
– Lost Update
– Phantom

• Now we discuss one more
– Non-Repeatable Read

18

Anomaly - Non-Repeatable Read

� �"!#� $'&�� (*)
(balance),.-0/
)

Accounts1324� - �
name = ‘Mary’ (�� +�� &"� Accounts� � &

balance = 1.05 * balance1 24�0- �
name = ‘Mary’

� �"!#� $'&�� (*)
(balance),.-0/
)

Accounts1324� - �
name = ‘Mary’

T1 T2

does not introduce a
phantom into predicate
name=‘Mary’

4

19

Non-Repeatable Reads and
Phantoms

• With a phantom, execution of same ���������	�
twice yields different sets of rows
– The second returns at least one row not returned

by the first

• With a non-repeatable read, execution of
same ���
������� twice yields the same set of
rows, but attribute values might be different

20

SQL Isolation Levels

�� ������������������� ��� �
� – dirty reads, non-

repeatable reads, and phantoms allowed
�� �����!��������� �"� �
�!# dirty reads not allowed,
but non-repeatable reads and phantoms allowed
�� �
$%��������&%��� � �'���)(dirty reads, non-
repeatable reads not allowed, but phantoms
allowed
 ��� � � ���*� +��,&-����(dirty reads, non-repeatable
reads, and phantoms not allowed; all schedules
must be serializable

21

SQL Isolation Levels

• Defining isolation levels in terms of
anomalies leads to an ambiguous
specification:
– At what levels are dirty writes allowed?

– Are there other anomalies that are not
accounted for?

22

Statement Isolation

• In addition – statement execution must be isolated
– DBMS might be executing several SQL statements (from

different transactions) concurrently

– The execution of statement involves the execution of a
program implementing that statement’s query plan

• This might be a complex program

– While the execution of transactions T1 and T2 might not be
isolated, the execution of each statement within T1 must be
isolated with respect to the execution of each statement within
T2.

23

Locking Implementation of SQL
Isolation Levels

• SQL standard does not say how to implement levels

• Locking implementation is based on:

– Entities locked: rows, predicates, …

– Lock modes: read and write

– Lock duration:
• Short - locks acquired in order to execute a statement

are released when statement completes

• Long - locks acquired in order to execute a statement
are held until transaction completes

• Medium – something in between (we give example
later) 24

Locking Implementation of SQL
Isolation Levels

• Write locks are handled identically at all
isolation levels:
– Long-duration predicate write locks are associated

with .�/10 �-2 �43 0 ��	 ��2 � , and
� 5 ������2

statements
• This rules out dirty writes

• In practice, predicate locks are implemented with table
locks or by acquiring locks on an index as well as the
data

– We discuss index locking later

5

25

Locking Implementation of SQL
Isolation Levels

• Read locks handled differently at each level:� ��� � 0�. 5�������� � 2 2 � 0 : no read locks
• Hence a transaction can read a write-locked item!
• Allows dirty reads, non-repeatable reads, and

phantoms� ��� � 0 ���	�
� � 2 2 � 0 : short-duration read locks
on rows returned by

����	 ��� 2
• Prevents dirty reads, but non-repeatable reads and

phantoms are possible

26

Locking Implementation

� ��� / �
�-2 ����	�� ��� � 0 : long-duration read locks
on rows returned by

����	���� 2
• Prevents dirty and non-repeatable reads, but

phantoms are possible� ������� �
	�� �
����	�� : long-duration read lock on
predicate specified in
�� ����� clause

• Prevents dirty reads, non-repeatable reads, and
phantoms and …

• guarantees serializable schedules

27

Bad Things Can Happen

• At every isolation level lower than
��� � � ����� +�� &%�*� , bad things can happen

• Schedules can be
– Non-serializable

– Specifications of transactions might not be met

28

Some Problems at
�������

��������� �"! #$#��%�

• Since no read locks are obtained, T2 can read a row, t,
write locked by T1

– Some DBMSs allow only read-only transactions to
be executed at this level

T1: w(t) abort
T2: r(t) w(t′) commit

T1: w(t) w(t) commit
T2: r(t) w(t′) commit

T1: w(t) w(t′) commit
T2: r(t) r(t′) commit

T2 uses an aborted
value to update db

T2 uses an intermediate
value to update db

T2 does not see a
committed snapshot

29

Some Problems at &�')(�*+-,/.0.21 343
'�*

• Non-repeatable reads:

• Lost updates:

T1: r(t) r(t) commit
T2: w(t) commit

T1: r(t) w(t) commit
T2: r(t) w(t) commit

30

Problems at &�'�5�')(
3
(76�8�'

&�')(�*
• Phantoms:

– t satisfies pred

– A constraint relates rows satisfying pred and t′

Audit: r(pred) r(t′) commit
NewAccount: insert(t) update(t′) commit

6

31

Implications of Locking
Implementation

• Transactions can be assigned to different isolation
levels and can run concurrently.
– Since all write locks are long-duration predicate locks and ������� ���	�
	�����	�

transactions have long-duration predicate
read locks,

���
��� ���	�
	�������
transactions are serialized with

respect to all writes.
• A ������� ����� �����	��� transaction either sees the entire effect of another

transaction or no effect.

– A transaction at a lower level does not see the anomalies
prohibited at that level.

32

Implications of Locking
Implementation

• Even though all transactions are designed to be
consistent,
– Transactions executed at lower isolation levels can

see anomalies that can cause them to write
inconsistent data to the database

– Transactions executed at any isolation levels can
see that inconsistent data and as a result return
inconsistent data to user or store additional
inconsistent data in database

33

+��
& � , &!� 3 (76 1 8 1 3#"

• A commonly implemented isolation level (not
in the SQL standard) deals with cursor access

• An extension of � � ��� ��������� �"� �1�%$
– Long-duration write locks on predicates

– Short-duration read locks on rows

– Additional locks for handling cursors

34

Cursors at &�')(�*
+-, . .21 343

'�*
• Access by T1 through a cursor, C, generally involves&('*),+

followed by a sequence of -)
.0/ 1 s
– Each statement is atomic and isolated
– C is 2 +#3,)4+53 2 . 2 6),7 rows -)�.0/ 1 ed cannot be

affected by concurrent updates (since
&('*),+

is
isolated)

– C is not 2 +#3,),+#3 2 . 2 6),7 some rows -)
.0/81 ed might
have been updated by a concurrent transaction, T2,
and others might not

• Furthermore, T1 might fetch a row, T2 might update the
row and commit, and then T1 might overwrite the update

35

+��
& � , &!� 3 (76 1 8 1 3#"

• Read lock on row accessed through cursor is
medium-duration; held until cursor is moved

• Example

– Allowed at 9)0:<;=/>&@?A? 2 .�.�)4; , hence lost update
possible

– Not allowed at
/ B 9 3�& 9 3�.
:>C 2 D�2 .
E (since T1

accesses t through a cursor)

T1: fetch(t) update(t)
T2: update(t) commit

36

+��
& � , &!� 3 (6 1 8 1 3#"

• Beware -
/%B 9 34& 9 3
.�:<C 2 D
2 .0E does not solve all

problems
– Does not eliminate all lost updates: T1 accesses t

through cursor, T2 (also at FHG �I�0J<����K	�#��� �L� K�M4N
accesses t directly (e.g., through an index)

– Can be prone to deadlock: Both T1 and T2 accesses
t through cursor,

T1: fetch(t) update(t) commit
T2: r(t) update(t) commit

T1: fetch(t) request_update(t)
T2: fetch(t) request_update(t)

7

37

Update Locks

• Some DBMS provide update locks to
alleviate deadlock problem

• A transaction that wants to read an item
now and possibly update it later requests an
update lock on the item (manual locking)
– An update lock is a read lock that can be

upgraded to a write lock

• Often used with updatable cursors

38

Update Locks

• An update lock conflicts with other update
locks and with write locks, but not with read
locks.

Granted mode
Requested mode read write update

read x
write x x x
update x x

39

Update Locks

• Schedule that causes a deadlock at
/8B 9 3�& 93
.
:<C 2 D
2 .
E :

T1: fetch(t) request_update(t)
T2: fetch(t) request_update(t)

• If both fetches had requested update locks, T2’s fetch
would be made to wait until T1 had completed,
avoiding the deadlock

40

OPTIMISTIC READ
COMMITTED

• Some systems provide a version of READ
COMMITTED called OPTIMISTIC READ
COMMITTED
– Transactions get the same short-term read locks

on tuples as at READ COMMITTED
– If such a transaction, T, later tries to write a

tuple it has previously read, if some other
transaction has written that tuple and then
committed, T is aborted

41

OPTIMISTIC READ
COMMITTED

• Called optimistic because the transaction
“optimistically” assumes that no transaction
will write what it has read and hence it
gives up its read lock
– If that assumption is not true, it is aborted.

• Prevents lost updates, but can still lead to
nonserializable schedules

42

Sometimes Good Things Happen

• For some applications, schedules are
serializable and/or correct even though
transactions are executing at isolation levels
lower than ������� �	�
� ����
��
�

• Designers must analyze applications to
determine correctness

8

43

Correct Execution at & ')(*��� +-,/.0.21 3 3
'�*

• Example - Print_Alumni_Transcript(s)
– Reads Transcript table and prints a transcript

for a student, s, that has graduated. Since no
concurrently executing transaction will be
updating s’s record, the transaction executes
correctly at 9)�:<; B +H/>&@?A? 2 .�.�),;

44

Correct Execution &�')(�*+-,/.0.21 343
'�*

• Example - Register(s,c)
– Step 1: Read table Requires to determine c’s prerequisites
– Step 2: Read table Transcript to check that s has completed

all of c’s prerequisites
– Step 3: Read table Transcript to check that s does not enroll

for more than 20 credits
– Step 4: If there is room in c, update Class:

– Step 5: Insert row for s in Transcript

G���� � K
� Class C���LK
C.Enrollment = C.Enrollment +1���������

C.CrsCode = :c
�
	 �

C.Enrollment < C.MaxEnrollment

45

Possible Interactions
• Register(s,c) executed at 9)0:<;=/>&@?A? 2 .�.�)4;

concurrently with a transaction that:

– adds/deletes prerequisite for c
– either Register sees new prerequisite or does not

– However, application specification states that
prerequisites added this semester do not apply to the
registration this semester, but the following semester

• Hence it does not matter if Register sees the new
prerequisite

Register: ����� (Requires); � ��� (Transcript); �
��� (Class); � ��� (Transcript)

Add_Prereq: � ��� (Requires)

46

Possible Interactions
• Register(s,c) executed at ��� ����������� � ��� ���

concurrently with a transaction that
– registers another student in c

• Can a lost update occur and the Enrollment exceed
MaxEnrollment?

• No, since check and increment are done in a single
(isolated) G���� ��K
� over enrollment and lost update not
possible

– registers the same student in a different class
– Each can execute step 3 and determine that the 20 credit

maximum is not exceeded
– Each can then complete and the maximum can be exceeded
– Each does not see the phantom inserted in Transcript by the other
– But this interaction might be ignored since it is highly unlikely

47

Possible Interactions

• These checks are necessary, but not sufficient
to guarantee correct execution
– Must look at interactions with other transactions

– Schedules involving multiple transactions that
might be non-serializable

48

Serializable, ���! �"$#&%'")(*#,+�%'� , and
Correct

• Serializable - Equivalent to a serial schedule- ��� ��� �	�
� � ��
�� � - An SQL isolation level
defined in the standard

• Correct - Leaves the database consistent and
a correct model of the real world

9

49

Serializable, ��� �")#&%'")(*#,+�%'� , and
Correct

• If a schedule is serializable, it is correct

• If a schedule is produced at the
��� ��� � �
� � ��
��
� isolation level, it is
serializable, and hence correct

• But as we have seen ...

50

Serializable, ���! �"$#&%'")(*#,+�%'� , and
Correct

• All schedules of an application run at an
isolation level lower than ��� ��� � � � � ��
�� �
might be serializable

• A schedule can be correct, but not serializable

• One challenge of the application designer is to
design applications that execute correctly at
the lowest isolation level possible

51

Granular Locks

• Transactions access data at different levels of
granularity

• Many DBMSs provide both fine and coarse
granularity locks
– DBMS attempts to automatically choose appropriate

granularity

– A particular application might be able to force a
particular granularity

52

Granular Locks

• Problem: T1 holds a (fine grained) lock on field F1 in
record R1. T2 requests a conflicting (coarse grained)
lock on R1. How does the concurrency control detect
the conflict since it sees F1 and R1 as different items?

• Solution: Organize locks hierarchically by
containment and require that in order for a transaction
to get a fine grained lock it must first get a coarse
grained lock on the containing item

– T1 must first get a lock on R1 before getting a lock
on F1. The conflict with T2 is detected at R1

53

Intention Locking

• Performance improvement results if lock on parent is weak

• Intention shared (IS) lock: in order to get an S lock on an item, T
must first get IS locks on all containing items (to root of
hierarchy)

• Intention exclusive (IX) lock: in order to get an X lock on an
item, T must first get IX locks on all containing items (to root of
hierarchy)

• Shared Intention Exclusive (SIX): Equivalent to an S lock and an
IX lock on an item

• Intention lock indicates transaction’s intention to acquire
conventional lock on a contained item

54

Conflict Table

• Example 1: T2 denied an IX lock (intends to update
some contained items) since T1 is reading all
contained items

• Example 2: T2 granted IS lock even though T1 holds
IX lock (since they may be accessing different subsets
of contained items)

Granted mode
Requested mode IS IX S X SIX

IS x
IX x x x
S x x x
X x x x x x
SIX x x x x

10

55

Preventing Phantoms With
Granular Locks

• Preventing phantoms (
3,) 9 2 : D
2 ��:<C D)):

– Lock entire table - this works
• T1 executes ����� (P) (where P is a predicate); obtains long-duration

S lock on table

• T2 executes � ��� (t); requires long-duration X lock on table

• Phantom prevented

– Lock the predicate P - this works but entails too much
overhead

– Can granular locking be used?

56

Granular Locking and Phantoms

• Assume containment hierarchy is table/pages
• Case 1: no appropriate index for predicate P

– T1 does 	�

� (P) - obtains long-duration S lock on table
• Since it must read every page to find rows satisfying P

– T2 requests � ��	 (t) – obtains long-duration IX lock on table
(lock conflict detected) and X lock on page into which t is
to be inserted.

• Hence (a potential) phantom is prevented
• However other transaction can read parts of the table that are stored

on pages other than the one on which t is stored

57

Granular Locking and Phantoms

• Case 2: index, I, exists on an attribute in P
– T1 obtains long-duration IS lock on table, uses I

to locate pages containing rows satisfying P,
and acquires long-duration S locks on them.

– T2 obtains long-duration IX lock on table (no
conflict) and X lock on page, p, into which t is
to be inserted.

• Problem: Since p might not be locked by T1, a
phantom can result.

58

Index Locking

• Solution: lock pages of the index in addition
• Example: I is an unclustered B+ tree.

– T1 obtains long-duration IS lock on table, long-duration S
locks on the pages containing rows satisfying P, and long-
duration S locks on the leaf index pages containing entries
satisfying P

– T2 requests long-duration IX lock on table (granted), long-
duration X locks on the page into which t is to be inserted
(might be granted), and long-duration X lock on the leaf
index page into which the index entry for t will be stored
(lock conflict if t satisfies P)

• The phantom is prevented.

59

Index Locking - Example
T1 ��	�

��
���� F.Name�������

Faculty F� �

�

 F.Salary > 70000

holds: IS lock on Faculty,
S lock on a, b, d,
S lock on e

unclustered
index on
Salary

Faculty

T2: � ��	�

� �!� ��� � Faculty"$# ��%&
'	 (…75000, …)

requests: IX lock on Faculty,
X lock on c, X lock on e

a b c d

e

inserted row

60

Index Locks, Predicate Locks,
and Key-Range Locking

• If a WHERE clause refers to a predicate name =
mary and if there is an index on name, then an
index lock on the index entries for name = mary
is like a predicate lock on that predicate

• If a WHERE clause refers to a predicate such as
50000< salary < 70000 and if there is an index on
salary, then a key-range index lock can be used
to get the equivalent of a predicate lock on the
predicate 50000<salary<70000

11

61

Key-Range Locking

• Instead of locking index pages, index entries at the
leaf level are locked
– Each such lock is interpreted as a lock on a range

• Suppose the domain of an attribute is A…Z and
suppose at some time the entries in the index are

C G P R X

• A lock on G is interpreted as a lock on the half-
open interval

[G P)
• Which includes G but not P

62

Key-Range Locking (cont)

• Recall the index entries are: C G P R X

• Two special cases
– A lock on X locks everything greater than X

– A new lock must be provided for [A C)

• Then for example to lock the interval
H < K < Q, we would lock G and P

63

Key-Range Locking (cont)

• Recall the index entries are: C G P R X
• To insert a new key, J, in the index

– Lock G thus locking the interval [G P)
– Insert J thus splitting the interval into [G J) [J P)
– Lock J thus locking [J P)
– Release the lock on G

• If a SELECT statement had a lock on G as part of
a key-range, then the first step of the insert
protocol could not be done
– Thus phantoms are prevented and the key-range lock is

equivalent to a predicate lock 64

Locking a B-Tree Index

• Many operations need to access an index structure
concurrently
– This would be a bottleneck if conventional two-phase

locking mechanisms were used

• Because we understand the semantics of the index,
we can develop a more efficient locking algorithm
– The goal is to maintain isolation amount different

operations that are concurrently accessing the index
– The short term locks on the index structure are called

latches
• The long term locks on leaf entries we have been discussing

are still obtained

65

Locking a B-Tree Index (cont)

• Read Locks
– Obtain a read lock on the root, and work your way

down the tree locking each entry as it is reached

– When a new entry is locked, the lock on the previous
entry (its parent) can be released

• This operation will never revisit the parent

• No write operation of a concurrent transaction can pass this
operation as it goes down the tree

• Called lock coupling or crabbing

66

Locking a B-Tree Index (cont)

• Write Locks
– Obtain a write lock on the root, and work your way

down the tree locking each entry as it is reached

– When a new entry, n, is locked, if that entry is not full,
the locks on all its parents can be released

• An insert operation might have to go back up the tree,
revisiting and perhaps splitting some nodes

• Even if that occurs, because n is not full, it will not have to
split n and therefore will not have to go further up the tree

• Thus it can release locks further up in the tree.

12

67

Granular and Index Locking
Summary

• Algorithm has property that a lock conflict that
prevents phantoms will occur:
– In the index, when an index is used
– At the table level, when no index is used

• Even if there is no index, write operations need
not get an X lock on whole table, only an IX
lock, which allows more concurrency

68

���������
	
Statement

• An �
���
����� can be treated as if it were a
����������� followed by an ���
���� ��
– If an index attribute is changed, the index entry

for the tuple must be moved to a new position

– The transaction must obtain write locks on both
the old and new index pages

69

Lock Escalation

• To avoid acquiring many fine grain locks on a
table, a DBMS can set a lock escalation
threshold. If more than the threshold number of
tuple (or page) locks are acquired, the DBMS
automatically trades them in for a table lock
but …

• Beware of deadlock

70

Granular Locking in an Object
Database

• Containment hierarchy exists in two ways
in an object database
– Class contains object instances

– Class contains subclasses (and hence object
instances of subclasses)

• Intentions locking can be used over this
hierarchy in the same way as in
table/page/row hierarchy

71

Granular Locking Protocol for
Object Databases

• Before obtaining a lock on an object
instance, the system must obtain the
appropriate intention locks on the object’s
class and all the ancestor classes

• Before obtaining a lock on a class, the
system must get the appropriate intention
locks on all ancestors of that class

72

Performance Hints

• Use lowest correct isolation level

• Embedding constraints in schema might permit the use
of an even lower level

– Constraint violation due to interleaving detected at
commit time (an optimistic approach)

• No user interaction after a lock has been acquired

• Use indexes and denormalization to support frequently
executed transactions

• Avoid deadlocks by controlling the order in which
locks are acquired

13

73

Multi-Version Controls

• Version: a snapshot of the database containing the
updates of all and only committed transactions

• A multi-version DBMS maintains all versions
created in the (recent) past

• Major goal of a multi-version DBMS: avoid the
need for read locks

w1(x) w2(y) c1 w3(x) w2(z) c2

create version 1
(contains updates
of T1, but not T2)

create version 2
(contains updates of
T1 and T2, but not T3)

74

Read Consistency
• All DBMSs guarantee that statements are isolated:

– Each statement sees state produced by the complete
execution of other statements, but state might not be
committed

• A multiversion control guarantees that each statement sees a
committed state:
– A statement is executed in a state whose value is a version
– Referred to as statement-level read consistency

• A multiversion control can also guarantee that all statements of
a transaction see the same committed state:
– All statements of a transaction access the same version
– Referred to as transaction-level read consistency

75

Read-Only Multi-Version Control

• Distinguishes in advance read-only (R/O)
transactions from read/write (R/W)
transactions.
– R/W transactions use a (conventional) immediate-

update, pessimistic control. Hence, transactions
access the most current version of the database.

– All the reads of a particular R/O transaction, TRO ,
are satisfied using the most recent version that
existed when TRO requested its first read.

76

Read-Only Multi-Version Control

• Assuming R/W transactions are executed at
���� � � ��� � ��� ����� all schedules are serializable
– R/W transactions are serialized in commit order
– Each R/O transaction is serialized after the

transaction that created the version it read.
– Equivalent serial order is not commit order

• All transactions see transaction-level read
consistency

77

Example

• T1 and T2 are read/write transactions, T3 is
read/only

• T3 sees the version produced by T1

• The equivalent serial order is T1, T3, T2

r1(x) w1(y) r2(x) c1 w2(x) r3(x) w2(y) c2 r3(y) c3

78

Implementation

• DBMS maintains a version counter (VC)
– Incremented each time a R/W transaction

commits
• The new version of a data item created by a R/W

transaction is tagged with the value of VC at the
time the transaction commits

• When a R/O transaction makes its first read request,
the value of VC becomes its counter value. Each
request to read an item is satisfied by the version of
the item having the largest version number less than
or equal to the transaction’s counter value

14

79

• Values read by a R/O transaction with counter value 4

17

x

22

123

a

ab

abf

.223

.24

y z

v1 v1v2

v2

v3

v3 v5

v6

38
v4

Multiversion Database
u

80

Read-Only Multi-Version
Control

• R/O transactions do not use read locks.
– They never wait

– They never cause R/W transactions to wait

81

Read Consistency Multi-Version
Control

• R/O transactions

– Treated as before: get transaction-level read
consistency

• R/W transactions

– Write statements acquire long-duration write locks
(delay other write statements)

– Read statements use most recent (committed)
version at time of read

• Not delayed by write locks (since read locks are not
requested).

82

Example

• T1 and T2 are R/W, T3 is R/O

• T3 uses v1

• T2 takes the value of x from v0, y from v1

• There is no equivalent serial order

w1(x) w1(y) r2(x) c1 w2(x) r3(x) r2(y) w2(y) c2 r3(y) c3

83

Read Consistency Multi-Version
Control

• Satisfies the ANSI definition of the �� ���
������� � � � ��� isolation level, but in addition ...
– Provides transaction-level read consistency for R/O

transactions

– No read locks: reads do not wait for writes and
writes do not wait for reads

• Version of � � � ������� � � � ��� supported by
Oracle

84

SNAPSHOT Isolation

• Does not distinguish between R/W and R/O
transactions

• A transaction reads the most recent version that
existed at the time of its first read request
– Guarantees transaction-level read consistency

• The write sets of any two concurrently
executing transactions must be disjoint
– Two implementations of this specification

• First Committer Wins
• Locking implementation

15

85

First Committer Wins
Implementation

– Writes use deferred-update (intentions list)

– T is allowed to commit only if no concurrent
transaction

• committed before T and

• updated a data item that T also updated

86

First Committer Wins

• Control is optimistic:
– It can be implemented without any locks

– Deadlock not possible

– Validation (write set intersection) is required for R/W
transactions and abort is possible

– Schedules might not be serializable

T1: r(xn) w(x) request_commit
T2: r(xn) w(x) request_commit

counter value = n commit and
create w(xn+1)

abort

to intentions list

87

Locking Implementation of
SNAPSHOT Isolation

• Immediate update pessimistic control
• Reads do not get any locks and execute as in the

previous implementation
• A transaction T that wants to perform a write on

some item must request a write lock
– If the version number of that item is greater than that of

T, T is aborted (first committer wins)
– Otherwise, if another transaction has a write lock on

that item, T waits until that transaction completes
• If that transaction commits, T is aborted (first committer wins)
• If that transaction aborts, T is given the write lock and allowed

to write 88

Anomalies at
��� � � ����� �

Isolation

• Many anomalies are impossible:
– Dirty read, dirty write, non-repeatable read, lost update

• However, schedules might not be serializable.

• Example:

– Constraint a+b≥0 violated

– Referred to as write skew

T1: r(a:10) r(b:10) w(a:-5) commit
T2: r(a:10) r(b:10) w(b:-5) commit

89

• Both transactions commit.

• All reads of a transaction are satisfied from the same version.

• Hence Audit works correctly.

NewAccnt:� �
	���
���� �
���
Accounts����������	����

123’ ‘Mary’,100 !

Audit:	��"����#$��	���%
(balance)&�
'�(%

Accounts)+*��"
,�
name = ‘Mary’

	��"����#$�
totbal&�
'�(%

Depositors)+*��"
,�
name = ‘Mary’

Phantoms at -�.0/213-�46587 Isolation

��9�:��;�"�
Depositors	����

totbal = totbal + 100)+*��"
��
name = ‘Mary’

90

Phantoms at SNAPSHOT
Isolation

• After a transaction executes <�=?>�=A@CBED a
concurrent transaction might insert a phantom
– If the FAG
H"G�IKJ is repeated, the phantom will not be

in the result set

– Therefore, apparently, phantoms cannot occur atF
LNM�OPF
Q�RSJ isolation

• But …

16

91

Phantoms at SNAPSHOT
Isolation

• Non-serializable schedules due to phantoms are
possible

• Example: concurrent transactions each execute FAG
H (P) and then insert a row satisfying P
– Neither sees the row inserted by the other.

– The schedule is not serializable.

– This would be considered a phantom if it occurred at
���9�� �;����� ���
����N:��
– Can be considered write skew

92

Correct Execution at -�.0/21 -�4�5 7
Isolation

• Many applications execute correctly at
< ���	� <�

� B isolation, even though
schedules are not serializable

• Example: reserving seats for a concert
– Integrity constraint: a seat cannot be reserved

by more than one person

93

Reserving Seats for a Concert
• A reservation transaction checks the status of two

seats and then reserves one that is free
– Schedule below is non-serializable, but is correct and

preserves the constraint

– Alternatively, if both transactions had tried to reserve the
same seat

T1: r(s1:Free) r(s2:Free) w(s1:Res) commit
T2: r(s1:Free) r(s2:Free) w(s2:Res) commit

T1: r(s1:Free) r(s2:Free) w(s1:Res) abort
T2: r(s1:Free) r(s2:Free) w(s1:Res) commit

94

Not Serializable, but Correct

• Note that the first schedule on the previous
slide has a write skew and is not serializable
– Neverthless it is correct for this application!

