Defining Functions in SML

- **Function evaluation** is the basic concept for a programming paradigm that has been implemented in such **functional programming languages** as ML.

- The language ML (“Meta Language”) was originally introduced in the 1970's as part of a theorem proving system, and was intended for describing and implementing proof strategies. Standard ML of New Jersey (SML) is an implementation of ML.

- The basic mode of computation in ML, as in other functional languages, is the use of the **definition** and **application** of functions.

- The basic cycle of ML activity has three parts:
 - *read* input from the user,
 - *evaluate* it, and
 - *print* the computed value (or an error message).
First SML example

• Here is a simple example:

 - 3;
 val it = 3 : int

• The first line contains the SML prompt, followed by an expression typed in by the user and ended by a *semicolon*.

• The second line is SML’s response, indicating the value of the input expression and its *type*.
Interacting with SML

• SML has a number of **built-in** operators and **data types**.

• SML provides the standard arithmetic operators.

 - 3+2;
 val it = 5 : int
 - sqrt(2.0);
 val it = 1.41421356237309 : real

• The Boolean values **true** and **false** are available, as are logical operators such as **not** (negation), **andalso** (conjunction), and **orelse** (disjunction).

 - not(true);
 val it = false : bool
 - true andalso false;
 val it = false : bool
Types in SML

- SML is a **strongly typed** language in that all (well-formed) expressions have a **type** that can be determined by examining the expression.

- As part of the evaluation process, SML determines the type of the output value using suitable methods of **type inference**.

- Simple types are:
 - real
 - **Examples:** 1.2 and \(1.5 \times 10^{12}\) are reals.
 - int
 - **Examples:** 12 and 14 are integers. 3 + 5 is an integer.
 - bool
 - **Examples:** true and not(true) are booleans.
 - string
 - **Examples:** "nine" and "" are strings.
In SML one can associate identifiers with values,

\[- \text{val three} = 3;\]
\[- \text{val three} = 3 : \text{int}\]

and thereby establish a new \textit{value binding},

\[- \text{three;}\]
\[- \text{val it} = 3 : \text{int}\]

More complex \textit{expressions} can also be used to bind values to names,

\[- \text{val five} = 3+2;\]
\[- \text{val five} = 5 : \text{int}\]

Names can then be used in other expressions,

\[- \text{three} + \text{five};\]
\[- \text{val it} = 8 : \text{int}\]
Defining Functions in SML

- The general form of a function definition in SML is:

 \[\text{fun} \ (\text{identifier}) \ (\text{parameters}) \ = \ \text{expression}; \]

- The corresponding function type is

 \[\text{type of parameters} \rightarrow \text{type of expression} \]

- Example:

 - \text{fun} \ \text{double}(x) \ = \ 2 \times x; \\
 \text{val} \ \text{double} = \text{fn} : \ \text{int} \ \rightarrow \ \text{int} \\

 declares \text{double} as a function from integers to integers, i.e., of type \text{int} \ \rightarrow\ \text{int}. \\

 - \text{double}(222); \\
 \text{val it} = 444 : \ \text{int} \]
• If we apply *double* to an argument of the wrong type, we get an error message:

- double(2.0);
 Error: operator and operand don’t agree [tycon mismatch]
 operator domain: int
 operand: real
 in expression:
 double 2.0

• The user may also *explicitly* specify types.

• **Example:**

- fun max(x:int,y:int,z:int) =
 = if ((x>y) andalso (x>z)) then x
 = else (if (y>z) then y else z);
val max = fn : int * int * int -> int
- max(3,2,2);
val it = 3 : int
Recursive Definitions

- The use of recursive definitions is a main characteristic of functional programming languages.

- These languages strongly encourage the use of recursion as a structuring mechanism in preference to iterative constructs such as while-loops.

- **Example:**

  ```sml
  - fun factorial(x) = if x=0 then 1 = else x*factorial(x-1);
  val factorial = fn : int -> int
  ```

 The type of the function `factorial` is:

 $$\text{int} \rightarrow \text{int}$$

 The definition is used by SML to evaluate applications of the function to specific arguments.

  ```sml
  - factorial(5);
  val it = 120 : int
  - factorial(10);
  val it = 3628800 : int
  ```
Greatest Common Divisor

- The calculation of the greatest common divisor (gcd) of two positive integers can also be done recursively based on the following observations:

 1. \(\text{gcd}(n, n) = n, \)
 2. \(\text{gcd}(m, n) = \text{gcd}(n, m), \) and
 3. \(\text{gcd}(m, n) = \text{gcd}(m - n, n), \) if \(m > n. \)

- A possible definition in SML is as follows:

  ```sml
  fun gcd(m,n):int = if m=n then n
                  =       else if m>n then gcd(m-n,n)
                  =       else gcd(m,n-m);
  val gcd = fn : int * int -> int
  - gcd(12,30); val it = 6 : int
  - gcd(1,20); val it = 1 : int
  - gcd(126,2357); val it = 1 : int
  - gcd(125,56345); val it = 5 : int
  ```
SML provides two ways of defining data types that represent sequences.

- **Tuples** are finite sequences of arbitrary but fixed length, where different components *need not be of the same type*.

- **Lists** are finite sequences of elements of the same type.

Some examples of tuples and the corresponding types are:

- val t1 = (1,2,3);

  ```
  val t1 = (1,2,3) : int * int * int
  ```

- val t2 = (4,(5.0,6));

  ```
  val t2 = (4,(5.0,6)) : int * (real * int)
  ```

- val t3 = (7,8.0,"nine");

  ```
  val t3 = (7,8.0,"nine") : int * real * string
  ```

The type of $t1$ is $\text{int} \times \text{int} \times \text{int}$. The type of $t2$ is $\text{int} \times (\text{real} \times \text{int})$. The type of $t3$ is $\text{int} \times \text{real} \times \text{string}$.
• The components of a tuple can be accessed by applying the built-in function \#i, where \(i \) is a positive number.

```plaintext
- \#1(t1);
  val it = 1 : int
- \#1(t2);
  val it = 4 : int
- \#2(t2);
  val it = (5.0, 6) : real * int
- \#2(#2(t2));
  val it = 6 : int
- \#3(t3);
  val it = "nine" : string
```

If a function \#i is applied to a tuple with fewer than \(i \) components, an error results:

```plaintext
- \#4(t3);
  ... Error: operator and operand don't agree
```
Lists in SML

- Another **built-in data structure** to represent sequences in SML are **lists**.

- A **list** in SML is essentially a **finite** sequence of objects, all of the **same type**.

- **Examples:**

 - `[1,2,3];
 val it = [1,2,3] : int list
 - `[true,false, true];
 val it = [true,false,true] : bool list
 - `[[1,2,3],[4,5],[6]];`
 val it = `[[1,2,3],[4,5],[6]] : int list list`

 The last example is a list of lists of integers, in SML notation `int list list`.

- **All objects in a list must be of the same type:**

 - `[1,[2]];
 Error: operator and operand don't agree
Empty Lists

- **Empty list** are denoted by the following symbols:
 - `[]`;
    ```ml
    val it = [] : 'a list
    ```
 - `nil`;
    ```ml
    val it = [] : 'a list
    ```

- Note that the type is described in terms of a *type variable* `'a`, as a list of objects of type `'a`. Instantiating the type variable, by types such as `int`, results in (different) empty lists of corresponding types.
Operations on Lists

- SML provides various functions for manipulating lists.

- The function `hd` returns the first element of its argument list.

 - `hd[1,2,3];`

 val `it` = 1 : int
 - `hd[[1,2],[3]];`

 val `it` = `[1,2] : int list`

 Applying this function to the empty list will result in an `exception` (error).

- The function `tl` removes the first element of its argument lists, and returns the remaining list.

 - `tl[1,2,3];`

 val `it` = `[2,3] : int list`
 - `tl[[1,2],[3]];`

 val `it` = `[[3]] : int list list`

 The application of this function to the empty list will also result in an error.
More List Operations

- Lists can be constructed by the (binary) function `::` (read `cons`) that adds its first argument to the front of the second argument.

 - `5::[]`;
 val it = `[5] : int list`
 - `1::[2,3]`;
 val it = `[1,2,3] : int list`
 - `[1,2]::[[3],[4,5,6,7]]`;
 val it = `[[1,2],[3],[4,5,6,7]] : int list list`

 Again, the arguments must be of the right type:

 - `[1]::[2,3]`;
 Error: operator and operand don’t agree

- Lists can also be compared for equality:

 - `[1,2,3]=[1,2,3]`;
 val it = `true : bool`
 - `[1,2]=[2,1]`;
 val it = `false : bool`
 - `tl[1] = []`;
 val it = `true : bool`
• **Recursion** is particularly useful for defining list processing functions.

• For example, consider the problem of defining an SML function, call it `concat`, that takes as arguments two lists of the same type and returns the concatenated list.

• For instance, the following applications of the function `concat` should yield the indicated responses.

 - `concat([1,2],[3]);`
 `val it = [1,2,3] : int list`
 - `concat([], [1,2]);`
 `val it = [1,2] : int list`
 - `concat([1,2], []);`
 `val it = [1,2] : int list`

• What is the SML type of `concat`?
• In defining such list processing functions, it is helpful to keep in mind that a list is either
 – the empty list, [], or
 – of the form \(x::y \).

• The *empty list* and \(:: \) are the constructors of the type list.
 For example,

 - \([1,2,3]=1::[2,3] \);
 val it = true : bool
Concatenation of Lists

- In **designing** a function for concatenating two lists x and y we thus distinguish two cases, depending on the form of x:

 - If x is an empty list, then concatenating x with y yields just y.

 - If x is of the form $x_1::x_2$, then concatenating x with y is a list of the form $x_1::z$, where z is the results of concatenating x_2 with y. In fact we can even be more specific by observing that $x = \text{hd}(x)::\text{tl}(x)$.

- This suggests the following recursive definition.

  ```
  fun concat(x,y) = if x=[] then y
  else hd(x)::concat(tl(x),y);
  val concat = fn : ''a list * ''a list -> ''a list
  ```

- This seems to work (**at least on some examples**):

  ```
  - concat([1,2],[3,4,5]);
    val it = [1,2,3,4,5] : int list
  - concat([], [1,2]);
    val it = [1,2] : int list
  - concat([1,2], []);
    val it = [1,2] : int list
  ```
More List Processing Functions

• **Recursion** often yields simple and natural definitions of functions on lists.

• The following function computes the *length* of its argument *list* by distinguishing between:

 - the empty list (the basis case) and

 - non-empty lists (the general case).

    ```
    fun length(L) =
    = if (L=nil) then 0
    = else 1+length(tl(L));
    ```

    ```
    val length = fn : 'a list -> int
    ```

    ```
    - length[1,2,3];
    val it = 3 : int
    - length[[5],[4],[3],[2,1]];
    val it = 4 : int
    - length[];
    val it = 0 : int
    ```
The following function has a similar recursive structure. It doubles all the elements in its argument list (of integers).

```haskell
- fun doubleall(L) =
  = if L=[] then []
  = else (2*hd(L))::doubleall(tl(L));

val doubleall = fn : int list -> int list
  - doubleall[1,3,5,7];
  val it = [2,6,10,14] : int list
```

This function is of type `int list → int list`. Why?
The Reverse of a List

- **Concatenation** of lists, for which we gave a recursive definition, is actually a built-in operator in SML, denoted by the symbol @.

- We use this operator in the following recursive definition of a function that produces the reverse of a list.

```
- fun reverse(L) = 
  =     if L = nil then nil 
  =     else reverse(tl(L)) @ [hd(L)]; 
```

val reverse = fn : ''a list -> ''a list

- reverse [1,2,3];
val it = [3,2,1] : int list
Pattern Matching

• We have previously used pattern matching when applying inference rules or logical equivalences.

• Informally, a **pattern** is an expression containing **variables**, for which other expressions may be substituted. The problem of matching a pattern against a given expression consists of finding a suitable substitution that makes the pattern identical to the expression.

• For example, we may apply De Morgan’s Law,

\[\sim(\alpha \lor \beta) \equiv (\sim\alpha \land \sim\beta), \]

to the formula

\[\sim\sim(\sim p \lor q), \]

to obtain an equivalent formula

\[\sim(\sim\sim p \land \sim q). \]

Here the “meta-variables” \(\alpha \) and \(\beta \) are replaced by the formulas \(\sim p \) and \(q \), respectively, to make the left-hand side of De Morgan’s law identical to the subformula

\[\sim(\sim p \lor q) \]

of the given formula.
Function Definition by Patterns

- In SML there is an alternative form of defining functions via patterns.

- The general form of such definitions is:

  ```ml
  fun <identifier>(<pattern1>) = <expression1>
  | <identifier>(<pattern2>) = <expression2>
  | ...
  | <identifier>(<patternK>) = <expressionK>;
  ```

 where the identifiers, which name the function, are all the same, all patterns are of the same type, and all expressions are of the same type.

- For example, an alternative definition of the reverse function is:

  ```ml
  - fun reverse(nil) = nil
  = | reverse(x::xs) = reverse(xs) @ [x];
  ```

  ```ml
  val reverse = fn : 'a list -> 'a list
  ```

- In applying such a function to specific arguments, the patterns are inspected in order and the first match determines the value of the function.
Removing Elements from Lists

- The following function removes all occurrences of its first argument from its second argument list.

```haskell
- fun remove(x,L) =
  = if (L=[]()) then []
  = else (if (x=hd(L))
  = then remove(x,tl(L))
  = else hd(L)::remove(x,tl(L)));
```

val remove = fn : 'a * 'a list -> 'a list

- remove(1,[5,3,1]);
val it = [5,3] : int list
- remove(2,[4,2,4,2,4,2,2]);
val it = [4,4,4] : int list
- remove(2,nil); val it = [] : int list

- We use it as an auxiliary function in the definition of another function that removes all duplicate occurrences of elements from its argument list.

```haskell
- fun removedupl(L) =
  = if (L=[]()) then []
  = else hd(L)::remove(hd(L),removedupl(tl(L)));
```

val removedupl = fn : 'a list -> 'a list
Constructing Sublists

- A **sublist** of a list L is any list obtained by deleting some (i.e., zero or more) elements from L.

- For example, [], [1], [2], and [1,2] are all the sublists of [1,2].

- Let us **design** an SML function that constructs all sublists of a given list L. The definition will be **recursive**, based on a case distinction as to whether L is the empty list or not.

- If L is non-empty, it has a first element x. There are two kinds of sublists: those containing x, and those not containing x.

- For instance, in the above example we have sublists [1] and [1,2] on the one hand, and [] and [2] on the other hand.

- Note that there is a one-to-one correspondence between the two kinds of sublists, and that each sublist of the latter kind is also a sublist of $\text{tl}(L)$.

These observations lead to the following definition.

```haskell
fun sublists(L) = 
  if (L=[][]) then [nil] 
  else sublists(tl(L)) 
  @ insertL(hd(L), sublists(tl(L)));
```

val sublists = fn : ''a list -> ''a list list

- sublists[];
val it = [[]] : ''a list list
- sublists[1,2];
val it = [[], [2], [1], [1,2]] : int list list
- sublists[1,2,3];
val it = [[], [3], [2], [2,3], [1], [1,3], [1,2], [1,2,3]] : int list list
- sublists[4,3,2,1];
val it = [[], [1],[2],[2,1],[3],[3,1],[3,2],[3,2,1],[4],[4,1],...]

Recall that @ denotes concatenation of lists. The function insertL inserts its first argument at the front of all elements in its second argument (which must be a list). Its definition is left as an exercise.
• If we change the expression in the else-branch to
 \[
 \text{else insertL(hd(L),sublists(tl(L)))} = @$ sublists(tl(L))
 \]
 all sublists will still be generated, but in a different order.
Higher-Order Functions

- In functional programming languages, parameters may denote functions and be used in definitions of other, so-called higher-order, functions.

- One example of a higher-order function is the function `apply` defined below, which applies its first argument (a function) to all elements in its second argument (a list of suitable type).

  ```ocaml
  - fun apply(f,L) = 
    = if (L=[]) then [] 
    = else f(hd(L))::(apply(f,tl(L))); 
  val apply = fn : ('a -> 'b) * 'a list -> 'b list
  
  We may apply apply with any function as argument.
  
  - fun square(x) = (x:int)*x; 
  val square = fn : int -> int
  - apply(square,[2,3,4]); 
  val it = [4,9,16] : int list
  ```
• The function `doubleall` we defined may be considered a special case of supplying `apply` with first argument `double` (a function we defined in a previous lecture).

  ```
  - apply(double,[1,3,5,7]);
  val it = [2,6,10,14] : int list
  ```

• The function `apply` is predefined in SML and is called `map`.
Mutual Recursion

• Sometimes the most convenient way of defining (two or more different) functions is in mutual dependence of each other.

• Consider the functions, `even` and `odd` that test if a number is even and odd. We can define them in the following way.

  ```
  fun even(0) = true 
  = | even(n) = odd(n-1) 
  = and 
  = odd(0) = false 
  = | odd(n) = even(n-1); 
  val even = fn : int -> bool 
  val odd = fn : int -> bool 
  ```

SML uses the keyword `and` (not to be confused with the logical operator `andalso`) for such mutually recursive definitions.

Neither of the two definition is acceptable by itself.

  ```
  - even(2); 
  val it = true : bool 
  - odd(3); 
  val it = true : bool 
  ```
Consider two functions, `take` and `skip`, both of which extract alternate elements from a given list, with the difference that `take` starts with the first element (and hence extracts all elements at odd-numbered positions), whereas `skip` skips the first element (and hence extracts all elements at even-numbered positions, if any).

```plaintext
- fun take(L) =
  = if L = nil then nil
  = else hd(L)::skip(tl(L))
  = and
  = skip(L) =
  = if L=nil then nil
  = else take(tl(L));
val take = fn : ''a list -> ''a list
val skip = fn : ''a list -> ''a list

- take[1,2,3];
val it = [1,3] : int list
- skip[1,2,3];
val it = [2] : int list
```
We next design a function for sorting a list of integers.

More precisely, we want to define an SML function,

\[
\text{sort} : \text{int list} \rightarrow \text{int list}
\]

such that \(\text{sort}(L)\) is a sorted version (in non-descending order) of \(L\).

Sorting is an important problem for which a large variety of different algorithms have been proposed.

The method we will explore is based on the following idea. To sort a list \(L\),

- first split \(L\) into two disjoint sublists (of about equal size),
- then (recursively) sort the sublists, and
- finally merge the (now sorted) sublists.

This recursive method is known as **Merge-Sort**.

It evidently requires us to define suitable functions for

- splitting a list into two sublists and
- merging two sorted lists into one sorted list.
Merging

- First we consider the problem of merging two sorted lists.

- A corresponding recursive definition can be easily defined by distinguishing between the different cases, as to whether one of the argument lists is empty or not.

- The following SML definition is formulated in terms of patterns (against which specific arguments in applications of the function will be matched during evaluation).

```sml
- fun merge([],M) = M
  | merge(L,[]) = L
  | merge(x::xl,y::yl) = if (x:int)<y then x::merge(xl,y::yl)
  | else y::merge(x::xl,yl);
val merge = fn : int list * int list -> int list

- merge([1,5,7,9],[2,3,5,5,10]);
val it = [1,2,3,5,5,5,7,9,10] : int list
- merge([],[1,2]);
val it = [1,2] : int list
- merge([1,2],[]);
val it = [1,2] : int list
```

- How do we split a list? Recursion seems to be of little help for this task, but fortunately we have already defined suitable functions that solve the problem.
• Using `take` and `skip` to split a list, we obtain the following function for sorting.

```haskell
- fun sort(L) = 
  = if L=[] then []
  = else merge(sort(take(L)),sort(skip(L)));
val sort = fn : int list -> int list
```

Don't run this function, though, as it doesn't quite work. Why?

• To see where the problem is, observe what the result is of applying `take` to a one-element list.

```haskell
- take[1];
val it = [1] : int list
```

Thus in this case, the first recursive call to `sort` will be applied to the same argument!

• Here is a modified version in which one-element lists are handled correctly.

```haskell
- fun sort(L) = 
  = if L=[] then []
  = else if tl(L)=[] then L
  = else merge(sort(take(L)),sort(skip(L)));
val sort = fn : int list -> int list
Finally, some examples:

- sort[];
  val it = [] : int list
- sort[1];
  val it = [1] : int list
- sort[1,2];
  val it = [1,2] : int list
- sort[2,1];
  val it = [1,2] : int list
- sort[1,2]:
  val it = [1,2] : int list
- sort[1,2,3,4,5,6,7,8,9];
  val it = [1,2,3,4,5,6,7,8,9] : int list
- sort[9,8,7,6,5,4,3,2,1];
  val it = [1,2,3,4,5,6,7,8,9] : int list
- sort[1,2,1,2,1,2,1,2,1,2,1];
  val it = [1,1,1,1,1,2,2,2,2,2,2] : int list
Tracing Mergesort

• It is important to be able to trace the execution of mergesort to convince yourself that the program works correctly.

• In the course of executing recursive function calls, the computer needs to keep track of what work still needs to be done when the evaluation requires nested recursive calls.