Part II: Event detection in dynamic graphs
Part II: Outline

Overview: Events in point sequences
- Change detection in time series
- Learning under concept drift

Events in graph sequences
- Change by graph distance
- Change by graph connectivity
Event detection

- Anomaly detection in time series of multi-dimensional data points
 - Exponentially Weighted Moving Average
 - CUmulative SUM Statistics
 - Regression-based
 - Box-Jenkins models eg. ARMA, ARIMA
 - Wavelets
 - Hidden Markov Models
 - Model-based hypothesis testing
 - ...

- This tutorial: time series of graphs
Part II: References (data series)

Part II: Outline

- Overview: Events in point sequences
 - Change detection in time series
 - Learning under concept drift

Events in graph sequences
- Change by graph distance
 - feature-based
 - structure-based
- Change by graph connectivity
Events in time-evolving graphs

Problem: **Given** a sequence of graphs,

Q1. **change detection:** find **time points** at which graph changes significantly

Q2. **attribution:** find (top k) nodes / edges / regions that change the most
Events in time-evolving graphs

- Main framework
 - Compute graph similarity/distance scores
 - Find unusual occurrences in time series

Note: scalability is a desired property
Taxonomy

Graph Anomaly Detection

Static graphs
- Plain
 - Feature based
 - Structural features
 - Recursive features
 - Community based
- Attributed
 - Structure based
 - Substructures
 - Subgraphs
 - Community based

Dynamic graphs
- Plain
 - Distance based
 - Feature-distance
 - Structure distance
 - Structure based
 - “phase transition”

Graph algorithms
- Learning models
 - RMNs
 - PRMs
 - RDNs
 - MLNs
- Inference
 - Iterative classification
 - Belief propagation
 - Relational netw. classification

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Graph distance – 10 metrics

- (1) Weight distance

\[
d(G, H) = |E_G \cup E_H|^{-1} \sum \frac{|w_E^G(u, v) - w_E^H(u, v)|}{\max\{w_E^G(u, v), w_E^H(u, v)\}}
\]

- (2) Maximum Common Subgraph (MCS) Weight distance

\[
d(G, H) = |E_G \cap E_H|^{-1} \sum \frac{|w_E^G(u, v) - w_E^H(u, v)|}{\max\{w_E^G(u, v), w_E^H(u, v)\}}
\]

- (3) MCS Edge distance

\[
d(G, H) = 1 - \frac{|\text{mcs}(E_G, E_H)|}{\max\{|E_G|, |E_H|\}}
\]

Shoubridge et al. ‘02
Dickinson et al. ‘04

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Graph distance – 10 metrics

- (4) MCS Node distance

\[d(G, H) = 1 - \frac{|\text{mcs}(V_G, V_H)|}{\max\{|V_G|, |V_H|\}} \]

- (5) Graph Edit distance

\[d(G, H) = |V_G| + |V_H| - 2|V_G \cap V_H| + |E_G| + |E_H| - 2|E_G \cap E_H| \]

- Total cost of sequence of edit operations, to make two graphs isomorphic (costs may vary)
- Unique labeling of nodes reduces computation
 - otherwise an NP-complete problem
- Alternatives for **weighted** graphs

Gao et al. ‘10 (survey)
Graph distance – 10 metrics

- (5.5) Weighted Graph Edit distance

\[d_2(G, H) = c \left[|V_G| + |V_H| - 2|V_G \cap V_H| \right] + \sum_{e \in E_G \cap E_H} |\beta_G(e) - \beta_H(e)| \]
\[+ \sum_{e \in E_G \setminus (E_G \cap E_H)} \beta_G(e) + \sum_{e \in E_H \setminus (E_G \cap E_H)} \beta_H(e) \]

Non-linear cost functions

\[d_3(G, H) = c \left[|V_G| + |V_H| - 2|V_G \cap V_H| \right] + \sum_{e \in E_G \cap E_H} \frac{|(\beta_G(e) + \epsilon) - (\beta_H(e) + \epsilon)|^2}{(\min(\beta_G(e), \beta_H(e)) + \epsilon)^2} \]
\[+ \sum_{e \in E_G \setminus (E_G \cap E_H)} (\beta_G(e) + \epsilon)^2 + \sum_{e \in E_H \setminus (E_G \cap E_H)} (\beta_H(e) + \epsilon)^2 \]

Kapsabelis et al. ’07

edge weights

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM’13)
Graph distance – 10 metrics

- **(6) Median Graph distance**
 - Median graph of sequence \((G_{n-L+1}, \ldots, G_n) \)
 - \(\tilde{G}_n = \arg \min_{G \in S} \sum_{i=n-L+1}^{n} d(G, G_i) \)
 - \(d(\tilde{G}_n, G_{n+1}) \) for each graph \(G_{n+1} \) in sequence
 - free to choose any distance function \(d \)

- **(7) Modality distance**
 - \(d(G, H) = \| \pi(G) - \pi(H) \| \)
 - \(A\pi = \rho\pi, \quad \pi > 0 \)
 - Perron vector

Dickinson et al. ‘04
Kraetzl et al. ‘06
Graph distance – 10 metrics

■ (8) Diameter distance

\[d(G, H) = \left| \sum_{v \in V_H} \maxd(H, v) - \sum_{v \in V_G} \maxd(G, v) \right| \]

Gaston et al. ’06

■ (9) Entropy distance

\[d(G, H) = - \sum_{e \in E_H} \left(\tilde{w}_e^H - \ln \tilde{w}_e^H \right) + \sum_{e \in E_G} \left(\tilde{w}_e^G - \ln \tilde{w}_e^G \right) \]

\[\tilde{w}_e^* = \frac{w_e^*}{\sum_{e \in E_*} w_e^*} \]

■ (10) Spectral distance

\[d(G, H) = \sqrt{\frac{\sum_{i=1}^{k} (\lambda_i - \mu_i)^2}{\min\left\{ \sum_{i=1}^{k} \lambda_i^2, \sum_{i=1}^{k} \mu_i^2 \right\}}} \]

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM’13)
Graph distance – 10 metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Vertices used?</th>
<th>Edges used?</th>
<th>Vertex weights used?</th>
<th>Edge weight used?</th>
<th>Range</th>
<th>Value if graphs identical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>[0,1]</td>
<td>0</td>
</tr>
<tr>
<td>MCS Weight</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>[0,1]</td>
<td>0</td>
</tr>
<tr>
<td>MCS Edge</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>[0,1]</td>
<td>0</td>
</tr>
<tr>
<td>MCS Vertex</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>[0,1]</td>
<td>0</td>
</tr>
<tr>
<td>Graph Edit</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>[0,\infty)</td>
<td>0</td>
</tr>
<tr>
<td>Median Edit</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>[0,\infty)</td>
<td>0</td>
</tr>
<tr>
<td>Modality</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>[0,1]</td>
<td>0</td>
</tr>
<tr>
<td>Diameter</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>[0,\infty)</td>
<td>0</td>
</tr>
<tr>
<td>Entropy</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>(-1,1)</td>
<td>0</td>
</tr>
<tr>
<td>Spectral</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>[0,1]</td>
<td>0</td>
</tr>
</tbody>
</table>
Graph distance to time series

- Time series of graph distances per dist. func.
- \(\text{ARMA}(p, q) \) model for each time series
 - assumes stationary series, due to construction
- Anomalous time points: where residuals exceed a threshold

\[
X_t = \alpha_1 X_{t-1} + \cdots + \alpha_p X_{t-p} + \epsilon_t + \beta_1 \epsilon_{t-1} + \cdots + \beta_q \epsilon_{t-q}
\]
Graph distance to time series

- **Minimum mean squared error**
 \[S = \{X_1, X_2, \ldots, X_M\} \]
 \[
 \text{MSE}(m) = \sum_{i=1}^{m} (X_i - \bar{X}_L)^2 + \sum_{i=m+1}^{M} (X_i - \bar{X}_R)^2
 \]
 - change point: \(m \) with minimum \(\text{MSE}(m) \)
 - randomized bootstrapping for confidence

- **CUmulative SUMmation**
 \[C = (s_0, s_1, \ldots, s_M) \]
 \[
 s_0 = 0 \\
 s_k = s_{k-1} + X_k - \bar{X}
 \]
 - bootstrap \(\Delta C' = \max_{i=1,\ldots,M} C' - \min_{i=1,\ldots,M} C' \)

Note: single feature to represent whole graphs

Pincombe '07

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Scan statistics on graphs

- For each "scan region"
 - compute **locality statistic**
- (11) Scan statistic = max of locality statistics

For graph data
- k-th order neighborhood
- scan region: induced k-th order subgraph
- locality stat.: e.g., #edges, density, domination #, ...
- scale (k)-specific scan stat. $M_k(D) = \max_{v \in V(D)} \Psi_k(v)$
Scan statistics on graphs

- Vertex-dependent normalized locality statistic

\[\widetilde{\Psi}_{k,t}(v) = \frac{(\Psi_{k,t}(v) - \widetilde{\mu}_{k,t,\tau}(v))}{\max(\widetilde{\sigma}_{k,t,\tau}(v), 1)} \]

mean and std in (t–tau) window
Graph similarity

*Note: sensitivity is a desired property
- e.g. “high/low-quality” pages in Web graph
- quality/importance: e.g., pagerank

(12) Vertex ranking

$$sim_{VR}(G, G') = 1 - \frac{2 \sum_{v \in V \cup V'} w_v \times (\pi_v - \pi'_v)^2}{D}$$

- Quality: v in both G and $G' \rightarrow$ average
- Rank: v in only V \rightarrow $\pi_v' = |V'| + 1$
 v in only V' \rightarrow $\pi_v = |V| + 1$
Graph similarity

- **(13) Sequence similarity**
 - Depth-first-like sequencing with high-quality first

Repeat
- pick unvisited node with highest quality
- visit highest quality unvisited neighbor, if any

- Apply **shingling**
 - all k-length subsequences, i.e. shingles $S(T)$

$$\text{sim}_{SS}(G, G') = \frac{S(T) \cap S(T')}{{S(T) \cup S(T')}}$$

$T = \langle F, E, D, A, C, H, B, G \rangle$

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Graph similarity

(14) Vector similarity

- Compare **weighted** edge vectors
- Relative importance of an edge:

\[
\gamma(u, v) = \frac{q_u \times \#\text{outlinks}(u, v)}{\sum \{v':(u, v') \in E \} \#\text{outlinks}(u, v')}
\]

- Similarity over union of edges in G and G’

\[
sim_{VS}(G, G') = 1 - \frac{\sum (u, v) \in E \cup E' \frac{|\gamma(u, v) - \gamma'(u, v)|}{\max(\gamma(u, v),\gamma'(u, v))}}{|E \cup E'|}
\]

note: for edges not in G’ \(\gamma'(u, v) = 0 \), and vice versa
Graph similarity

(15) Signature similarity

- Transfer graph G to a set L of weighted features

 $$ L = \{(t_i, w_i)\} $$

 e.g. $L(G) = \{(C, 0.51), (CF, 0.51), (F, 1.29), (FC, 1.29 \times 0.5), (FH, 1.29 \times 0.5), (H, 0.51), (HF, 0.51)\}$.

- Construct b-bit signature for G

 - For each t_i

 - randomly choose b entries from $\{-w_i, +w_i\}$

 - Sum all b-dimensional vectors into h

 - Set ‘+’ entries to 1 and ‘-’s to 0

- $\text{sim}(L, L') = 1 - \frac{\text{Hamming}(h, h')}{b}$
Graph similarity

- **Vertex ranking**: very good, bad, bad
- **Sequence similarity**: good, bad, very good
- **Vector similarity**: very good, good, good
- **Signature similarity**: very good, very good, very good

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13)
Part II: Outline

- Overview: Events in **point sequences**
 - Change detection in time series
 - Learning under **concept drift**

- Events in **graph sequences**
 - Change by graph **distance**
 - feature-based
 - structure-based
 - Change by graph **connectivity**
 - phase transition
Eigen-space-based events

- **Given** a time-evolving graph
- **Identify** faulty vertices

Challenges
- **Large** number of nodes, impractical to monitor each
- Edge weights are highly **dynamic**
- Anomaly defined **collectively** (different than “others”)

Event: a “phase transition” of the graph
(in overall relation between the edge weights)
“Summary feature” extraction

- Definition of “activity” vector

\[u(t) \equiv \arg \max_{\tilde{u}} \left\{ \tilde{u}^T D(t) \tilde{u} \right\} \quad \text{subject to } \tilde{u}^T \tilde{u} = 1 \]

activity vector at \(t \) \hspace{1cm} \text{adjacency matrix at } t \hspace{1cm} (\text{symmetric, non-negative})

- The above equation can be reduced to

\[D(t) \tilde{u} = \lambda \tilde{u} \quad \text{subject to } \tilde{u}^T \tilde{u} = 1 \]

\(\rightarrow \) The principal eigenvector gives the summary of node “activity”
Activity feature

Why “activity”? (intuition)

- If D_{12} is large, then u_1 and u_2 should be large because of argmax (note: D is a positive matrix).
- So, if s_1 actively links to other nodes at t, then the “activity” of s_1 should be large.

- Also interpreted as “stationary state”: probability that a node is holding the “control token”

$$u(t) \equiv \arg \max_{\tilde{u}} \left\{ \tilde{u}^T D(t) \tilde{u} \right\}$$
Anomaly detection

Problem reduced from a sequence of graphs to a sequence of (activity) vectors

adjacency matrix \[D(t) \]

activity vector \[u(t) \]

principal eigenvector

summary vector

track angle for change

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Experiment

- Time evolution of activity scores effectively visualizes malfunction
- Anomaly measure and online thresholding dynamically capture activity change
- Nodes changing most can be attributed
Feature/Eigen-space-based events

Nodes

Features (egonet)

Feature: inweight

Time

past pattern

eigen-behavior at t

eigen-behaviors
Change point detection

F: out-degree

\[W = 5 \quad \text{topT} = 11 \]

Christian New Year

F: reciprocal degree

\[W = 5 \quad \text{topT} = 10 \]

“back to work”

Hindi New Year

Event score Z over time
Time series of top 5 nodes with highest ratio index

26 DEC

#SMS received

time (days)

Time series of top 5 nodes with highest ratio index

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13)
Community-based events

- **Main idea:** monitor community structure and alert *event* when it changes

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM’13)
Community-based events

- Many graph clustering/partitioning algorithms
 - METIS Karypis et al. ’95
 - Spectral Clustering Shi & Malik ’00 Ng et al.’02
 - Girvan-Newman ’03
 - Co-clustering Dhillon et al. ’03 Chakrabarti ’04
 - …

- Challenge
 - distance measure between clusterings
Community detection

- Clustering problem as compression problem

Good Clustering

1. Similar nodes are grouped together
2. As few groups as necessary

A few, homogeneous blocks

Good Compression

- Low code cost (blocks)
- Low description cost (blocks’ model)

Chakrabarti ’04

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Community-based events

- **Goal:** partition the graph sequence into segments $G^{(1)}$ and $G^{(2)}$, where each segment exhibits a (different) clustering.

- **Q:** when does a new segment (=event) emerge?

Sun et al. ‘07

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM’13)

Sun+KDD’07 modified with permission
Change detection

- **Guiding principle:** encoding cost benefit

1: append

- yes

union $G(S')$, with cost $c(S')$

2: split (time)

c(S') - c(S) < c(t)

event?

segment $G(S)$, with cost $c(S)$

new graph $G(t)$, with cost $c(t)$

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13)

Sun+KDD'07 modified with permission
Community changes in Enron

- 34K email addresses
- 165 weeks
- ~2M emails

Key change-points correspond to key events

Bit-cost can quantify event "intensity"
Reconstruction-based events

Network forensics

- Sparsification \(\Rightarrow\) load shedding
- Matrix decomposition \(\Rightarrow\) summarization
- Error Measure \(\Rightarrow\) anomaly detection
Matrix decomposition

Goal: summarize a given graph

decompose adjacency matrix into smaller components

1. Singular Value Decomposition (SVD)
2. CUR decomposition
3. Compact Matrix Decomposition (CMD)

1800’s, PCA, LSI, ...
Drineas et al. ‘05
Sun et al. ‘07
1. Singular Value Decomposition

\[A = U\Sigma V^T \]

- Optimal low-rank approximation
- Lack of Sparsity

\[A = \begin{pmatrix} x^{(1)} & x^{(2)} & \cdots & x^{(M)} \end{pmatrix} \]

\[\begin{pmatrix} u_1 & u_2 & \cdots & u_k \end{pmatrix} \]

\[\begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{pmatrix} \]

\[\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{pmatrix} \]
2. CUR decomposition

C, U, R for small $||A-CUR||$

- Provably good approximation to SVD
- Sparse basis (A is sparse)
- Space overhead (duplicate bases)
3. Compact Matrix Decomposition

C, U, R for small $||A-CUR||$, and No duplicates in C and R

+ Sparse basis (A is sparse)
+ Efficiency in space and computation time

\[
A \sim CUR = CMD
\]

\[
A = C_d \oplus R_d \oplus C_s \oplus R_s
\]
Reconstruction-based events

General Framework

- Network forensics
 - Sparsification ➔ load shedding
 - Matrix decomposition ➔ summarization
 - Error Measure ➔ anomaly detection

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Error measure: reconstruction

- **accuracy** = 1 - Relative Sum-Square-Error

\[
RSSE = \frac{\sum_{i,j}(A(i,j) - \tilde{A}(i,j))^2}{\sum_{i,j}(A(i,j)^2)}
\]

- Monitor accuracy over time

Volume monitoring cannot detect anomaly

structural change of link patterns

- Also, high reconstruction error of rows/cols for **static** snapshot anomalies
Practical issue 1: non-linear scaling

- Issue: skewed entries in A matrix
 - Few “heavy” rows/cols dominate (CUR/CMD) decomposition
 - Poor anomaly discovery

- Solution: rescale entries x by $\log(x+1)$
Practical issue 2: fast approx. error

- **Issue:** Direct computation of SSE is costly; norm of two big matrices, A and $A - \tilde{A}$, are needed.

- **Solution:** approximated error

\[
\tilde{e} = \frac{m \cdot n}{|S|} \sum_{(i,j) \in S} (A(i, j) - C(i) U R(j))^2
\]

\[
\begin{pmatrix}
A \\
\end{pmatrix} \approx \begin{pmatrix}
C \\
\end{pmatrix} \cdot \begin{pmatrix}
U \\
R \\
\end{pmatrix}
\]
Part II: References (graph series)

Part II: References (graph series) (2)

- Sun, Jimeng and Xie, Yinglian and Zhang, Hui and Faloutsos, Christos. Less is more: Compact matrix representation of large sparse graphs. ICDM 2007.

- Sun, Jimeng and Tao, Dacheng and Faloutsos, Christos. Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

Tutorial Outline

- Motivation, applications, challenges

Part I: Anomaly detection in static data
- Overview: Outliers in clouds of points
- Anomaly detection in graph data

Part II: Event detection in dynamic data
- Overview: Change detection in time series
- Event detection in graph sequences

Part III: Graph-based algorithms and apps
- Algorithms: relational learning
- Applications: fraud and spam detection

L. Akoglu & C. Faloutsos
Anomaly detection in graph data (WSDM'13)
Coffee break...