Overview

The objects that people choose to look at while viewing a scene provide an abundance of information about how a scene is ultimately understood.

Eye fixation patterns
- "where" the important things are in an image.

Description
- "what" in an image, which parts of an image are important to the viewer.

Goal
- Conduct combined behavioral and computer vision experiments to better understand the relationships between:
 - the objects that are detected in an image,
 - the eye movements that people make while viewing that image, and
 - the words that they produce when asked to describe it.

Contribution
- Comprehension of how humans view and interpret visual imagery.
- Demonstrate prototype applications for gaze-enabled detection and annotation by integrating gaze cues with the outputs of current visual recognition systems.

Datasets

PASCAL VOC
- 1,000 images, eye movements from 3 observers, 5 natural language descriptions per image from different observers.
- Task: free-viewing for 3 seconds, memory test
- 20 object categories
- Descriptions were collected by [1].

SUN09 dataset
- 104 images, eye movements from 8 observers, each of whom provided a scene description (additional descriptions were also obtained from other observers).
- Task: free-viewing for 5 seconds, with each viewing followed by scene description.
- 8 scene categories, 22 object categories.
- Descriptions were collected by [1].

Example

Fixed objects: bottle, person.
Described objects: bottle, person

Experiments & Analyses

Do people look at objects?
- 76.3% of the objects (for which we had detectors) were fixated in PASCAL, 65.6% for SUN09.

What object categories did people tend to look at?
- People are more likely to look at people, other animals, televisions, and vehicles.
- People are less likely to look at chairs, bottles, potted plants, drawers, and rugs.
- Animate objects are much more likely to be fixated than inanimate objects.

What objects do people describe?
- Relative to the ground truth number of objects in each image, 85.4% of the PASCAL and 58.7% of the SUN09 objects were described.
- Animate objects are much more likely to be described than inanimate objects.

Applications
- Combine gaze and automated object detection methods to create a collaborative system for detection and annotation.
- This required training SVM-based classifiers to discriminate true positive from false positive errors (using the deformable part model from [2], with default thresholds), then biasing these results with the gaze inputs.

What is the relationship between gaze and description?
- What percentage of the rectangular object detection window is part of the segmented object, and what percentage of fixations in that window were on the segmented object.

What objects are detected in an image?
- 91.5% of the PASCAL and 58.7% of the SUN09 objects were described.

What objects do people describe?
- 85.4% of the PASCAL and 58.7% of the SUN09 objects were described.

Probability of being fixated when present for various object categories

| Category | P (fixated | present) |
|----------|-------------|
| Animate | 0.636 |
| Inanimate| 0.495 |

Probability of being fixated when present for Animate versus Inanimate objects

- **Animate**
 - 80% of the objects were fixated.
 - 59% of the objects were described.

- **Inanimate**
 - 49% of the objects were fixated.
 - 57% of the objects were described.

Where do people fixate on these objects?

- **All**
 - 68.4% of area
 - 69.0% of fixations
- **Person**
 - 52.7% of area
 - 58.8% of fixations
- **Chair**
 - 57.5% of area
 - 59.1% of fixations
- **Painting**
 - 91.1% of area
 - 91.5% of fixations

Probability of being fixated when present for various object categories

- **P (described | present)**
 - PASCAL: 0.866
 - SUN09: 0.737

Probability of being described when present for various object categories

- **P (described | fixated)**
 - PASCAL: 0.952
 - SUN09: 0.725

Acknowledgements

This work was supported in part by NSF Awards IIS-1161876, IIS-1054133, IIS-1111047, IIS-0959979 and the SUBSAMPLE Project of the DIGITEO Institute, France. We thank J. Maxfield and J. Weis for data preprocessing and useful discussions.

Try our SBU Gaze-Detection-Description Dataset

http://www.cs.stonybrook.edu/~jai/gaze.html