Immersion Exploration of Large Datasets

Kaloian Petkov and Arie Kaufman
Center for Visual Computing, Stony Brook University

The 5-wall Immersive Cabin (IC)
- 21x21 ft. installation
- 29” automatic door on rear projection screen

Active Stereo Projection
- 5 active synchronization systems
- 2 projectors each
- Alignment platform
- IR emitter
- Users wear wireless LCD stereo glasses

Tracking system
- Wireless optical tracking from OptiTrack
- 8 near-IR cameras with wide-angle lenses
- Synchronized with the IR emitters
- User wears:
 - Reflective markers placed on shutter glasses
 - Rigid bodies with reflective spheres
 - Active LED markers

Interaction Tools
- Logitech Rumblepad 2 wireless gamepad
- 3DConnexion SpaceNavigator 3D mouse
- Wireless gesture tracking

The Visual Computing Cluster
- 71 high-end workstations
 - InfiniBand LAN, Gigabit frontend
 - Dual Intel Xeon CPUs, 2GB RAM
 - NVidia GeForce FX 5800 / NVidia Quadro FX4500 used for GPGPU cluster computations, image rendering
 - Quad-core Intel Xeon CPUs, 8GB RAM
 - Dual NVidia Quadro FX4600 used for IC visualization

Large-Scale Rendering
- NVidia SceneX scene graph management
- Asset management using the COLLADA format
- Support for high-quality antialiasing and shaders
- Support for cluster-based rendering for IC, RealityDeck, etc.

Gesture Interface
- Physically-based interactions with visual feedback
 - Police/Disaster training
 - Exploration and organization for massive datasets
 - Managing data layers across many screens
 - Two-handed 4D space exploration

Virtual Colonoscopy in the IC
- Gesture interface for navigation
 - Grabbing and dragging colon surface
- Gesture-based tools
 - Measuring polyp size, virtual pointing
- Calculation of visibility coverage
- Augmenting the missing ceiling through conformal mapping during rendering

Reference

Future Work
- Image Rendering and Interaction
 - Immersive visualization
 - Depth perception through stereo
 - Surround rendering for immersion
 - Head tracking for accurate projections
 - Large-scale rendering
 - NVidia SceneX scene graph management
 - Asset management using the COLLADA format
 - Support for high-quality antialiasing and shaders
 - Support for cluster-based rendering for IC, RealityDeck, etc.

Architectural Pre-Visualization
- The Stony Brook Advanced Energy Research & Technology Center (AERTC)
- The Stony Brook Simon’s Center for Geometry and Physics

Applications
- Urban planning and large-scale urban visualization
- Immersive visualization of large medical datasets
 - Virtual colonoscopy
 - 3D medical scans

Training and Simulations in the IC
- Real-time disaster simulation and mitigation
 - Large-scale smoke/fluid simulations on the Visual Computing Cluster
 - Real-time feedback and response training in the IC / RealityDeck
- Military/Police/Medical/Manufacturing training
 - Dynamic scenarios with feedback in the IC / RealityDeck
- Gesture-based tools with visual feedback and haptic devices for:
 - Simulation of weapon systems and vehicles
 - Simulation of medical devices