INTRODUCTION TO TRANSACTION LOGIC

— TUTORIAL —

Michael Kifer

University at Stony Brook N.Y. 11794, U.S.A.

* Transaction Logic was developed jointly with Tony Bonner of University of Toronto

History

- 1991: decided to look into the <u>theoretical foundations</u> of logic programming with updates
- 1992: serial Transaction Logic is born
- 1994: graduates to concurrent Transaction Logic
- 1995: Transaction F-logic
- 1996: serial part of Transaction Logic implemented
- 1997: an implementation of Transaction F-logic (in Spain)
- 1998: (forthcoming) more efficient implementation of Transaction Logic

What Transaction Logic Is

- A logic designed for <u>programming</u> state-changing actions, <u>executing</u> them, and reasoning about their effects
- General logic, a conservative extension of classical predicate calculus
- Integrates <u>declarative queries</u>, <u>transactional updates</u> (abort, rollback, nested transactions), and composition thereof in one uniform, logical framework
- General Model Theory
 - Can do monotonic and non-monotonic reasoning
 - We **do not** want to commit to a particular choice of a non-monotonic theory:

 Let's first understand the <u>logic</u> behind the phenomenon of updates!

 Well-founded, stable, etc., semantics are orthogonal issues
- Proof Theory
 - Sound and complete
 - SLD-style for so-called serial-Horn programs (a generalization of the regular Horn programs)

What Transaction Logic Is (contd)

- Makes <u>no assumption</u> about the nature of the database states being updated. A database state can be:
 - relational databases
 - disjunctive databases
 - logic programs
 - classical first-order theories
 - non-logical entities
- Makes no assumptions about the nature of elementary updates, which can be:
 - simple tuple insertion/deletions
 - relational SQL-style bulk updates
 - updates/revisions of logical theories
 - non-logical state changes done by an algorithm
- **But**: if assumptions <u>are</u> made, Transaction Logic can be used to <u>reason</u> about the effects of actions

What Transaction Logic Is Not

- Not another theory of updates for another logical theory
 - not an attempt to explain what "update ϕ with χ " means
 - but such theories can be adapted/developed/used
- Not another variation on the theme of the situation calculus
- Not of Datalog-With-A-State-Argument variety

Why Transaction Logic?

- No acceptable logical language where <u>transactional updates</u> are integrated with queries *and* have a clean, logical semantics.
- No acceptable logical account for methods with <u>side effects</u> in object-oriented languages.
- No logic of action became the basis for updates in databases or logic programming.

Contrast with:

Classical logic is a basis for queries in logic programming and databases.

What Transaction Logic Does

Logic:

- <u>transactional</u> assert/retract
- methods in object-oriented DBMS
- integration of declarative and "procedural" knowledge

$Transactional\ features:$

- nested transactions
- atomicity
- isolation
- triggers
- deterministic <u>and</u> non-deterministic transactions
- dynamic constraints

What Transaction Logic Does (contd)

Control:

- subroutines
- serial and parallel composition of processes
- recursion, loops, conditionals
- communication and synchronization between concurrent processes

AI:

- logic for specifying and reasoning about actions
- language for specifying <u>and</u> generating plans
- frame problem:
 - not an issue for action execution
 - much smaller issue for reasoning about actions

The Whole Thing in One Slide

- Path: $\pi = \langle s_1, s_2, s_3, s_4, s_5, s_6 \rangle$
- ullet Real world and semantics: ϕ **executes** along $\pi \equiv \phi$ is **true** on π
- ullet Proof theory: **executes** ϕ along π as it **proves** ϕ

Syntax

- \land, \lor, \neg "classical" connectives $\otimes, \mid, \odot, \diamond$ new connectives
 - $\alpha \wedge \beta$ execute α so that it would also be a valid execution of β . (Usually used in the context where β is a constraint on the execution of α .)
 - $\alpha \vee \beta$ execute α or execute β (non-determinism).
 - $\neg \alpha$ execute in any way, provided that the resulting execution is <u>not</u> a valid execution of α .
 - $\alpha \otimes \beta$ Execute α then execute β (serial conjunction).
 - $\alpha \mid \beta$ Execute α and β in parallel (parallel conjunction).
 - $\odot \alpha$ Execute α in *isolation* (like in the database theory).
 - $\Diamond \alpha$ Check if execution of α is possible.
 - $\exists X \alpha(X)$ Execute α for some X.

Syntax: examples

Rules:

• $a \leftarrow b \ (\equiv a \lor \neg b)$ means: one way to execute a is to execute b. Operationally: subroutine definition. E.g.,

$$a \leftarrow b \otimes (c \mid d) \otimes e$$

$$a \leftarrow f \otimes ((g \otimes h) \mid \odot(k \otimes f))$$

$$a \leftarrow \Diamond p \otimes q \otimes r$$

Read: a is a subroutine, which can be executed in one of the following three ways:

- 1. execute b, then c and d concurrently, then e; or
- 2. execute f, then execute g followed by h concurrently with an isolated execution of k followed by f; or
- 3. check if executing p is possible; if so, execute q then r

Constraints:

- $p \land (path \otimes a \otimes path)$, where $path \equiv \phi \lor \neg \phi$ Transaction Logic's "true", means: execute p in such a way that action a is executed at some point during the process
- $p \land \neg (path \otimes a \otimes path)$, means: execute p in such a way that action a is never executed in the process
- $p \land \neg (path \otimes a \otimes \neg b \otimes path)$, means: execute p so that if a is executed at some point, then b is executed right after that

Overview of the Semantics

Any formula in Transaction Logic is a transaction/action/updating program/... (formulas with high degree of indeterminacy are better thought of as dynamic constraints, though).

- Formulas (i.e., transactions) have truth values and execution paths.
- Truth (or falsehood) is always over *paths*, <u>not over states</u>.
 - A **path** is a sequence of states.
 - Transaction ϕ being **true** on path $\pi = \langle s_1, s_2, s_3, ..., s_n \rangle$ means: ϕ can execute at state s_1 , changing it to state s_2 , ..., to s_n , terminating at s_n .
 - \Rightarrow Truth over a path \equiv execution over that path.
 - There is more to it with parallel execution. Basic idea: execution happens over multi-paths paths with "pauses"; other transactions can execute during those pauses.

Queries are transactions that execute over <u>1-paths</u> (length-1; have the form $\langle s \rangle$). \Rightarrow queries are transactions that do not change state.

- When execution is restricted to 1-paths, Transaction Logic reduces to classical logic
- The three conjunctions, \wedge , \otimes , |, then <u>all</u> reduce to the classical \wedge ,
- but they are distinct notions over n-paths (n > 1).

Examples of Execution

• Let $\phi_1 = a.del \otimes b.ins \otimes d \otimes c.ins$

(a.del, b.ins, d, etc., are propositions for now, will explain later) ϕ_1 started at state $\{d, a\}$ can pass through states $\{d\}, \{d, b\}$; verifies that d is true at the latter state; then goes to state $\{d, b, c\}$, and terminates.

- \Rightarrow ϕ_1 is true over path $\pi = \langle \{d, a\}, \{d\}, \{d, b\}, \{d, b, c\} \rangle$.
- Let $\phi_2 = \phi_1 \otimes e$

Works like ϕ_1 , but at the end (at $\{d, b, c\}$) checks if e is true.

Finds out that e is false, so π is not an execution path of ϕ_2 .

 $\Rightarrow \phi_2$ is false over π .

(In fact, it happens to be false over every path that starts at $\{d, a\}$ in some model.)

What is the nature of states?

And what are these strange-looking symbols: a.del, b.ins, etc.?

States

- Can think of the states as sets of atoms.
- Or formulas.
- But this is inadequate, in general:

 $p \leftarrow q$ means one thing in classical semantics, another in logic programming. Throw in the stable-model vs. well-founded semantics, add some spice (disjunctive programs, stationary semantics), and you get the idea.

- Transaction logic <u>isolates</u> the details of state semantics from the rest through <u>data oracles</u>:
 - A data oracle is simply a mapping $\mathcal{O}^d: States \longrightarrow Sets \ of \ First-order \ Formulas$
 - $-\mathcal{O}^d(s)$ tells the logic what's true at state s.

Elementary Updates

- The strange-looking a.del, b.ins, etc., are just some ordinary propositions that happen to denote elementary updates (merely our notational convention).
- The semantics of elementary updates is specified via <u>transition oracles</u>.
- Transaction Logic is parameterized by data oracles and transition oracles.
- Each incarnation of the logic has its own data oracle (determines the set of allowed states and their semantics) and transition oracle (determines the set of allowed elementary transitions).
- The rest of the logic is independent of this choice: once the oracles are specified, the machinery cranks up and begins to run.

Transition Oracles

• <u>Transition oracles</u> are mappings of the form:

 $\mathcal{O}^t: States \times States \longrightarrow SetsOfGroundAtoms$

• $b \in \mathcal{O}^t(\mathbf{D}_1, \mathbf{D}_2)$ means, executing b causes state transition from state \mathbf{D}_1 to \mathbf{D}_2 .

<u>In this tutorial</u>: <u>States</u> are relational databases (sets of atoms). <u>State transitions</u> can be of only these kinds:

- Insert: $p.ins(t_1,...,t_n) \in \mathcal{O}^t(\mathbf{D}_1,\mathbf{D}_2)$ iff $\mathbf{D}_2 = \mathbf{D}_1 \cup \{p(t_1,...,t_n)\}.$
- Delete: $p.del(t_1,...,t_n) \in \mathcal{O}^t(\mathbf{D}_1,\mathbf{D}_2)$ iff $\mathbf{D}_2 = \mathbf{D}_1 \{p(t_1,...,t_n)\}.$

Can have more complex elementary updates: theory revision/update a la Katsuno-Mendelzon, rule insertion/deletion to/from logic programs, stack operations, etc.

A Database Example: Financial Transactions

 $transfer(Amt, Acct1, Acct2) \leftarrow withdraw(Amt, Acct1) \mid deposit(Amt, Acct2)$ $withdraw(Amt, Acct) \leftarrow \odot (balance(Acct, Bal) \otimes Bal \geq Amt$ $\otimes changeBalance(Acct, Bal, Bal - Amt))$ $deposit(Amt, Acct) \leftarrow \odot (balance(Acct, Bal) \otimes changeBalance(Acct, Bal, Bal + Amt))$ $changeBalance(Acct, Bal1, Bal2) \leftarrow balance.del(Acct, Bal1)$ $\otimes balance.ins(Acct, Bal2)$

All variables are implicitly universally quantified (as usual in LP).

Query:

 $?-transfer(Fee,Client,Broker) \mid transfer(Cost,Client,Seller)$

• Note: Prolog will **not** execute correctly anything analogous to this (because actions in Prolog lack transactional features).

Semantics — Path Structures

A *path structure* is a creature that assigns <u>ordinary</u> first-order semantic structures to paths (more precisely, multi-paths, but we will not press this issue here):

 $\mathbf{M}: Paths \longrightarrow FirstOrderSemanticStructures.$

Two conditions tie in the oracles:

- Data oracle compliance: if **D** is a state, ϕ is a first-order formula, and $\mathcal{O}^d(\mathbf{D}) \models^c \phi$ (\models^c means classical logical entailment), then $M(\langle \mathbf{D} \rangle) \models^c \phi$.
- Transition oracle compliance: If $\mathcal{O}^t(\mathbf{D}_1,\mathbf{D}_2) \models^c \psi$ then $M(\langle \mathbf{D}_1,\mathbf{D}_2 \rangle) \models^c \psi$.

Omitting some gory details:

- 1. Base Case: $\mathbf{M}, \pi \models p(t_1, \ldots, t_n)$ iff $\mathbf{M}(\pi) \models^c p(t_1, \ldots, t_n)$, for any atomic formula $p(t_1, \ldots, t_n)$. (Read: $p(t_1, \ldots, t_n)$ is a query or a transaction invocation; π is its execution path)
- 2. **Negation:** $\mathbf{M}, \pi \models \neg \phi \text{ iff } \mathbf{not}(\mathbf{M}, \pi \models \phi).$ (Read: cannot execute ϕ along the path π .)

Transaction Logic Tutorial

Semantics — Path Structures (contd.)

- 3. "Classical" Conjunction: $\mathbf{M}, \pi \models \phi \land \psi$ iff $\mathbf{M}, \pi \models \phi$ and $\mathbf{M}, \pi \models \psi$. (Read: can exec ϕ and ψ along the same path—dynamic constraints.)
- 4. **Serial Conjunction:** $\mathbf{M}, \pi \models \phi \otimes \psi$ iff $\mathbf{M}, \pi_1 \models \phi$ and $\mathbf{M}, \pi_2 \models \psi$ for *some* paths π_1, π_2 such that $\pi = \pi_1 \circ \pi_2$. (Read: do ϕ then ψ .)

Semantics — Path Structures (contd.)

5. Concurrent Conjunction: $\mathbf{M}, \pi \models \phi \mid \psi$ iff $\mathbf{M}, \pi_1 \models \phi$ and $\mathbf{M}, \pi_2 \models \psi$ for *some* paths π_1, π_2 such that $\pi \in \pi_1 || \pi_2$. (Read: do ϕ and ψ concurrently.)

- 6. **Possibility:** $M, \langle s_1 \rangle \models \Diamond \phi$ iff there is a path $\pi = \langle s_1, ..., s_n \rangle$ such that $M, \pi \models \phi$. Note: $\Diamond \phi$ is always a query (is true at states, even if ϕ executes over a sequence of states longer than 1).
- Will not properly define \odot , |, \exists in this tutorial (so read!)

Semantics – Example

So, why is $\phi_1 = a.del \otimes b.ins \otimes d \otimes c.ins$ true (executes) over the path $\pi = \langle \{d, a\}, \{d\}, \{d, b\}, \{d, b, c\} \rangle$?

Let M be a path structure. By the definitions of our oracle and path structures:

- $\mathcal{O}^t(\{d,a\},\{d\}) \models a.del$, hence $M, \langle \{d,a\},\{d\} \rangle \models a.del$ $\{d,a\} \longrightarrow \{d\}$
- $\mathcal{O}^t(\{d\},\{d,b\}) \models b.ins$, hence $M, \langle \{d\},\{d,b\} \rangle \models b.ins$ $\{d\} \longrightarrow b.ins \longrightarrow \{d,b\}$
- $\mathcal{O}^d(\{d,b\}) \models d$, hence $M, \langle \{d,b\} \rangle \models d$
- $\begin{array}{c} \bullet \ \mathcal{O}^t(\{d,b\},\{d,b,c\}) \models c.ins, \ \text{hence} \ M, \langle \{d,b\},\{d,b,c\} \rangle \models c.ins \\ \{d,b\} \ \longrightarrow \ c.ins \ \longrightarrow \ \{d,b,c\} \end{array}$
- \Rightarrow the definition of \otimes implies that then $M, \pi \models \phi_1$

Semantics — Example (contd.)

More generally, let $\mathbf{P} = \{p \leftarrow a.del \otimes b.ins \otimes d \otimes c.ins\}$ (a transaction program). As before: $\pi = \langle \{d, a\}, \{d\}, \{d, b\}, \{d, b, c\} \rangle$).

We can show that if M is a path structure where \mathbf{P} is true over every path, then also

$$M,\pi \models p$$

In fact, $M, \pi \models a.del \otimes b.ins \otimes d \otimes c.ins$ implies $M, \pi \models p$ in such path structures. Read: **P** defines the subroutine p.

Are there M's where the above is not true? — No!

In contrast, in some path structures $M_1, \pi \not\models a.del \otimes b.ins \otimes d \otimes c.ins \otimes e$ and in some $M_2, \pi \models a.del \otimes b.ins \otimes d \otimes c.ins \otimes e$

• This leads to the notion of <u>executional entailment</u>.

Execution as Logical Entailment

Let \mathbf{P} be a transaction program — a bunch of formulas (transaction definitions).

- **M** is a *model* of **P** iff $\mathbf{M}, \pi \models \phi$ for every path π and every $\phi \in \mathbf{P}$.
- If ϕ is a formula, and $\mathbf{D}_0, \mathbf{D}_1, \ldots, \mathbf{D}_n$ is a sequence of database state ids, then <u>executional entailment</u> is a statement of the form:

$$\mathbf{P},\mathbf{D}_0,\mathbf{D}_1,\ldots,\mathbf{D}_n \models \phi$$

It means:

$$\mathbf{M}, \langle \mathbf{D}_0, \mathbf{D}_1, \ldots, \mathbf{D}_n \rangle \models \phi$$

for every model M of P.

Proof Theory

A simple SLD-style procedure for Concurrent Horn Clauses.

Just 4 inference rules:

- An SLD-like rule.
- A rule for dealing with queries to states.
- A rule for executing state transitions.
- A rule for isolated execution.

Concurrent Horn Clauses:

- Rules of the form: $atom \leftarrow ConcurrentSerialGoal$
- Concurrent Serial Goal:
 - An atomic formula; or
 - $-(\phi_1 \otimes ... \otimes \phi_k)$, where each ϕ_i is a concurrent serial goal; or
 - $-(\phi_1 \mid ... \mid \phi_k)$, where each ϕ_i is a concurrent serial goal; or
 - $-\odot \phi$, where ϕ is a concurrent serial goal.

Proof Theory (contd.)

- Uses **sequents** of the form: $\mathbf{P}, \mathbf{D} - \phi$ meaning: ϕ can execute starting from state \mathbf{D} , given the transaction definitions in \mathbf{P} .
- Inference rules are of the form: Condition, $\frac{\text{sequent}_1}{\text{sequent}_2}$ meaning: if Condition is true and sequent₁ has been proven then derive sequent₂.
- Proves statements of the form: $\mathbf{P}, \mathbf{D} - \phi$ and finds the execution path along the way.

Axiom: $P, D --- \vdash ()$ where () is the *empty* concurrent serial goal.

Proof Theory — Example

A top-down proof of \mathbf{P} , $\{c,d\} - p \mid (a \otimes c.del \otimes d.del)$ where $\mathbf{P} = \{p \leftarrow a.ins \otimes b.ins\}$.

$$\mathbf{P}, \, \{c,d\} - \vdash (a.ins \otimes b.ins) \mid (a \otimes c.del \otimes d.del)$$

$$\mathbf{P}, \{c,d,a\} - \vdash b.ins \mid (a \otimes c.del \otimes d.del)$$

$$\mathbf{P}, \{c,d,a\} --- \vdash b.ins \mid (c.del \otimes d.del)$$

$$\mathbf{P}, \{d, a\} - \vdash b.ins \mid d.del$$

$$\mathbf{P}, \{a\} --- \vdash b.ins$$

$$P, \{a,b\} - - ()$$

Ended up with an axiom \Rightarrow done!

Extract execution path from the proof:

$$\{c,d\},\ \{c,d,a\},\ \{d,a\},\ \{a\},\ \{a,b\}$$

Final state: $\{a, b\}$.

unfold with $p \leftarrow a.ins \otimes b.ins$ executed a.ins; changed state tested and discarded a; same state executed c.del; changed state executed d.del; removed the empty conjunction () executed b.ins; changed state

Proof Theory—Inference rules

- No variables, to simplify exposition.
- **1.** Applying transaction definitions: Let $b \leftarrow \beta \in \mathbf{P}$.

$$\frac{\mathbf{P}, \mathbf{D} - \vdash (\beta \otimes \alpha) \mid \gamma}{\mathbf{P}, \mathbf{D} - \vdash (b \otimes \alpha) \mid \gamma}$$

2. Querying the database: If $\mathcal{O}^d(\mathbf{D}) \models^c d$:

$$\frac{\mathbf{P},\mathbf{D} - - \vdash \alpha \mid \beta}{\mathbf{P},\mathbf{D} - - \vdash (d \otimes \alpha) \mid \beta}$$

3. Executing elementary updates: If $\mathcal{O}^t(\mathbf{D}_1, \mathbf{D}_2) \models^c u$:

$$\frac{\mathbf{P}, \mathbf{D}_2 - \cdots \vdash \alpha \mid \beta}{\mathbf{P}, \mathbf{D}_1 - \cdots \vdash (u \otimes \alpha) \mid \beta}$$

4. Isolated execution of transactions:

$$\frac{\mathbf{P}, \mathbf{D} - \cdots \vdash \alpha \otimes (\beta \mid \gamma)}{\mathbf{P}, \mathbf{D} - \cdots \vdash (\odot (\alpha) \otimes \beta) \mid \gamma}$$

More Examples: Blocks World

$$stack(N, X) \leftarrow N > 0 \otimes move(Y, X) \otimes stack(N - 1, Y)$$

 $stack(0, X) \leftarrow$
 $move(X, Y) \leftarrow pickup(X) \otimes putdown(X, Y)$

$$pickup(X) \leftarrow clear(X) \otimes on(X,Y) \otimes on.del(X,Y) \otimes clear.ins(Y)$$
$$putdown(X,Y) \leftarrow wider(Y,X) \otimes clear(Y) \otimes on.ins(X,Y) \otimes clear.del(Y)$$

Note: *stack* is non-deterministic.

Can go beyond specification of actions: it is easy to declaratively specify a planning strategy (e.g., STRIPS), crank the proof theory — and out comes a plan!

Summary

- A logic for specifying, executing, and reasoning about transactions.
- Syntax:
 - Serial logic: first-order plus ⊗, ⋄
 - Concurrent logic: serial plus $|, \odot|$.
- Parameterized by data and transition oracles

Can "plug in" different oracles and get different logics, tailored to specific applications.

- Model theory, proof theory.
- Uniformly integrates queries, updates, and transactions.

Applications

- 1. Transactional updates in logic programming and deductive databases.
- 2. Active databases.
- 3. Consistency maintenance.
- 4. Hypothetical reasoning.
- 5. Planning.
- 6. Object-oriented databases.
- 7. Workflow management systems.

All for the price of (1)!

Transaction Logic Tutorial

Further Info

One implementation of the serial part of Transition Logic, one more forthcoming. Tony Bonner maintains a page at

http://www.cs.toronto.edu/~bonner/transaction-logic.html

I also maintain related info at

http://www.cs.sunysb.edu/~kifer/dood/

(will put this tutorial there soon).