INTRODUCTION TO TRANSACTION LOGIC

— TUTORIAL —

Michael Kifer

University at Stony Brook
N.Y. 11794, U.S.A.

* Transaction Logic was developed jointly with Tony Bonner of University of Toronto

e 1991: decided to look into the theoretical foundations of logic programming with

Transaction Logic Tutorial

Historyl

updates

e 1992:
e 1994:
e 1995:
e 1996:
e 1997:

e 1998

serial Transaction Logic is born

graduates to concurrent Transaction Logic
Transaction F-logic

serial part of Transaction Logic implemented

an implementation of Transaction F-logic (in Spain)

. (forthcoming) more efficient implementation of Transaction Logic

Michael Kifer — University at Stony Brook

Transaction Logic Tutorial \

What Transaction Logic Isl

e A logic designed for programming state-changing actions, executing them, and

reasoning about their effects
e General logic, a conservative extension of classical predicate calculus

e Integrates declarative queries, transactional updates (abort, rollback, nested

transactions), and composition thereof in one uniform, logical framework

e General Model Theory

— Can do monotonic and non-monotonic reasoning

— We do not want to commit to a particular choice of a non-monotonic theory:
Let’s first understand the logic behind the phenomenon of updates!
Well-founded, stable, etc., semantics are orthogonal issues

e Proof Theory

— Sound and complete

— SLD-style for so-called serial-Horn programs (a generalization of the regular Horn
programs)

Michael Kifer — University at Stony Brook y

Transaction Logic Tutorial

What Transaction Logic Is (contd)l

e Makes no assumption about the nature of the database states being updated.

A database state can be:

— relational databases

— disjunctive databases

— logic programs

— classical first-order theories

— non-logical entities

e Makes no assumptions about the nature of elementary updates, which can be:

— simple tuple insertion /deletions
— relational SQL-style bulk updates
— updates/revisions of logical theories

— non-logical state changes done by an algorithm

e But: if assumptions are made, Transaction Logic can be used to reason about the
effects of actions

Michael Kifer — University at Stony Brook

Transaction Logic Tutorial

What Transaction Logic Is Notl

e Not another theory of updates for another logical theory

— not an attempt to explain what “update ¢ with x” means

— but such theories can be adapted/developed /used
e Not another variation on the theme of the situation calculus

e Not of Datalog-With-A-State-Argument variety

Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Why Transaction Logic? I

e No acceptable logical language where transactional updates are

integrated with queries and have a clean, logical semantics.

e No acceptable logical account for methods with side effects
in object-oriented languages.

e No logic of action became the basis for updates in databases or
logic programming.

Contrast with:

Classical logic s a basis for queries in logic programming and databases.

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

What Transaction Logic Doesl

Logic:

e transactional assert/retract
e methods in object-oriented DBMS

e integration of declarative and “procedural” knowledge

Transactional features:
e nested transactions
e atomicity
e isolation
e triggers
e deterministic and non-deterministic transactions

e dynamic constraints

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

What Transaction Logic Does (Contd)l

Control:
e subroutines
e serial and parallel composition of processes
e recursion, loops, conditionals

e communication and synchronization between concurrent processes

Al:
e logic for specifying and reasoning about actions
e language for specifying and generating plans
e frame problem:

— not an issue for action execution

— much smaller issue for reasoning about actions

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

The Whole Thing in One Slidel

¢ ¢ ¢ ¢ ¢

O O O O O O

Se
A i

initial state final state
states

e Path: m = (s1, s9, 53, S4, S5, Sg)
e Real world and semantics: ¢ executes along® = ¢ is trueon 7

e Proof theory: executes ¢ along 7 as it proves ¢

K Michael Kifer — University at Stony Brook

m, the execution

path of ¢

Transaction Logic Tutorial

Syntax I

A, V, — “classical” connectives
®, |, ®, & — new connectives
eaANf — execute a so that it would also be a valid execution of 3.
(Usually used in the context where 3 is a constraint
on the execution of a.)
eaVf - execute a or execute 3 (non-determinism).
e ~a — execute in any way, provided that the resulting execution is
not a valid execution of a.
ea®pF — Execute a then execute 8 (serial conjunction).
ea|f — Execute @ and g in parallel (parallel conjunction).
e ®a — Execute « in isolation (like in the database theory).
o OCa — Check if execution of « is possible.
e I Xa(X) - Execute a for some X.

Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial \

Syntax: examples |

Rules:
® ¢ + b (= aV —b) means: one way to execute a is to execute b.
Operationally: subroutine definition. F.g.,
a+bR(c|d)®e
afO((g®h) | OkS f))
a+—pRR T

Read: a is a subroutine, which can be executed in one of the following three ways:

1. execute b, then ¢ and d concurrently, then e; or

2. execute f, then execute g followed by h concurrently with an isolated execution of

k followed by f; or

3. check if executing p is possible; if so, execute g then r

Constraints:
e p A (path ® a ® path), where path = ¢ V —¢ — Transaction Logic’s “true”, means:

execute p in such a way that action a is executed at some point during the process

e pA —l(path ®a @ path), means: execute p in such a way that action a is never
executed in the process

e p A —(path ® a ® —b ® path), means: execute p so that if a is executed at some
point, then b is executed right after that

K Michael Kifer — University at Stony Brook y

/ Transaction Logic Tutorial

Overview of the Semantics]|

Any formula in Transaction Logic is a transaction/action/updating program/...
(formulas with high degree of indeterminacy are better thought of as dynamic
constraints, though).

— Formulas (i.e., transactions) have truth values and ezecution paths.

— Truth (or falsehood) is always over paths, not over states.

e A path is a sequence of states.
e Transaction ¢ being true on path 7 = (sy, s9, s3, ..., S,) means:
¢ can execute at state sq, changing it to state s9, ..., to s,, terminating at s,.
= Truth over a path = ezecution over that path.

e There is more to it with parallel execution. Basic idea: execution happens over
multi-paths — paths with “pauses”; other transactions can execute during those

pauses.

Queries are transactions that execute over 1-paths (length-1; have the form (s)).
=> queries are transactions that do not change state.
e When execution is restricted to 1-paths, Transaction Logic reduces to classical logic

e The three conjunctions, A, ®, |, then all reduce to the classical A,
e but they are distinct notions over n-paths (n > 1).

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Examples of Execution |

o let 9y = a.delRb.ins®dR c.ins

(a.del, b.ins, d, etc., are propositions for now, will explain later)
¢1 started at state {d,a} can pass through states {d}, {d,b}; verifies that d is true at
the latter state; then goes to state {d, b, c}, and terminates.

= ¢ Is true over path 7 = ({d,a}, {d},{d,b},{d,b,c}).

o Let qbg = qbl X e
Works like ¢1, but at the end (at {d, b, c}) checks if e is true.

Finds out that e is false, so 7 is not an execution path of ¢s.

= @9 is false over 7.
(In fact, it happens to be false over every path that starts at {d,a} in some model.)

What is the nature of states?
And what are these strange-looking symbols: a.del, b.ins, etc.?

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

States |

e Can think of the states as sets of atoms.
e Or formulas.

e But this is inadequate, in general:

p + q means one thing in classical semantics, another in logic programming.

Throw in the stable-model vs. well-founded semantics, add some spice
(disjunctive programs, stationary semantics), and you get the idea.

e Transaction logic isolates the details of state semantics from the rest through
data oracles:

— A data oracle is simply a mapping
O : States — Sets of First-order Formulas

— O4(s) tells the logic what’s true at state s.

K Michael Kifer — University at Stony Brook

Transaction Logic Tutorial

Elementary Updates |

e The strange-looking a.del, b.ins, etc., are just some ordinary propositions that
happen to denote elementary updates (merely our notational convention).

e The semantics of elementary updates is specified via transition oracles.

e Transaction Logic is parameterized by data oracles and transition oracles.

e Each incarnation of the logic has its own data oracle (determines the set of allowed
states and their semantics) and transition oracle (determines the set of allowed
elementary transitions).

e The rest of the logic is independent of this choice: once the oracles are specified, the
machinery cranks up and begins to run.

Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Transition Oracles]|

e Transition oracles are mappings of the form:
O . States x States — SetsO fGroundAtoms

¢ b € O'(Dy,D,) means, executing b causes state transition from state D; to Ds.

In this tutorial: States are relational databases (Sets of atoms).

State transitions can be of only these kinds:
o Insert: p.ins(ty,...,t,) € OY(Dy,Dy) iff Do =D U {p(ts,....t)}
o Delete: p.del(ty,...,t,) € O(Dy,Ds) iff Dy =D; — {p(ts, ..., ta)}

Can have more complex elementary updates: theory revision/update a la
Katsuno-Mendelzon, rule insertion/deletion to/from logic programs, stack operations,

etc.

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

A Database Example: Financial Transactionsl

transfer(Amt, Acctl, Acct2) < withdraw(Amt, Acctl) | deposit(Amt, Acct2)

withdraw(Amt, Acct) < © (balance(Acct, Bal) ® Bal > Amt
®change Balance(Acct, Bal, Bal — Amt))

deposit(Amt, Acct) < © (balance(Acct, Bal) ® change Balance(Acct, Bal, Bal + Amt)

changeBalance(Acct, Ball, Bal2) < balance.del (Acct, Ball)
®Rbalance.ins(Acct, Bal2)

e All variables are implicitly universally quantified (as usual in LP).

Query:

?— transfer(Fee,Client, Broker) | transfer(Cost,Client, Seller)

e Note: Prolog will not execute correctly anything analogous to this
(because actions in Prolog lack transactional features).

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Semantics — Path Structures|

A path structure is a creature that assigns ordinary first-order semantic structures
to paths (more precisely, multi-paths, but we will not press this issue here):

M : Paths — FirstOrderSemanticStructures.

T'wo conditions tie in the oracles:

e Data oracle compliance: if D is a state, ¢ is a first-order formula, and O¢(D) |°

(|=¢ means classical logical entailment), then M ({D)) E° ¢.
e Transition oracle compliance: If O*(Dy,Dy) =° ¢ then M({Dy, Dg)) E° 1.

Omitting some gory details:
1. Base Case: M, 7 Ep(ty, ..., t,) iff M(7w)Ep(ty, ..., ta),
for any atomic formula p(ty, ..., t,).

(Read: p(t1, ..., t,) is a query or a transaction invocation;
T is its execution path)

2. Negation: M7 | —¢ iff not(M, 7 | ¢).
(Read: cannot execute ¢ along the path =.)

K Michael Kifer — University at Stony Brook

¢

Transaction Logic Tutorial

Semantics — Path Structures (Contd.)l

3. “Classical” Conjunction: M7 ¢ Ay iff M7 E¢ and M, 7 | 9.
(Read: can exec ¢ and % along the same path—dynamic constraints.)

4. Serial Conjunction: M7 E ¢ Q¢ iff M,m ¢ and M, m | ¢
for some paths 7y, my such that 7 = m o m9. (Read: do ¢ then ¢.)

T T2

Michael Kifer — University at Stony Brook

o

Transaction Logic Tutorial

Semantics — Path Structures (Contd.)l

5. Concurrent Conjunction: M7 ¢ | ¢ iff M7 E ¢ and M, m E ¥
for some paths 7y, my such that = € mq||me.

(Read: do ¢ and 9 concurrently.)

¢ ¢ ¢
k¢
(] (
2 b
¢ Y ¢ (] ¢
! ! ! ! TE¢|Y
Tl T2 gl T2 Tl

6. Possibility: M, (s1) E O¢ iff there is a path @ = (s1, ..., s,,) such that M, 7 |= ¢.
Note: ¢ is always a query (is true at states, even if ¢ executes over a sequence of

states longer than 1).
e Will not properly define ®, |, 3 in this tutorial (so read!)

Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Semantics — Example I

So, why is ¢1 = a.del ® b.ins ® d ® c.ins true (executes) over the path

= <{d7 a},{d},{d,b},{d,b, C}>?

Let M be a path structure. By the definitions of our oracle and path structures:

e 0'({d,a},{d}) E a.del, hence M, {{d,a},{d}) E a.del
{d,a} — a.del — {d}

e 0'({d},{d,b}) [b.ins, hence M, ({d}, {d,b}) = b.ins
{d} — b.ins — {d,b}

o 0%{d,b}) |= d, hence M, ({d,b}) = d

e O'({d,b},{d,b,c}) = c.ins, hence M, {({d,b},{d,b,c}) = c.ins
{d,b} — c.ins — {d,b,c}

= the definition of ® implies that then M, 7 = ¢,

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Semantics — Example (Contd.)l

More generally, let P = {p + a.del ® b.ins ® d ® c.ins} (a transaction program).
As before: 7 = ({d,a},{d}, {d,b},{d,b,c})).

We can show that if M is a path structure where P is true over every path, then also
M,m |=p

In fact, M, 7 |= a.del ® b.ins ® d ® c.ins implies M, w |= p in such path structures.
Read: P defines the subroutine p.

Are there M’s where the above is not true? — No!

In contrast, in some path structures My, 7 [~ a.del ® b.ins ® d ® c.ins ® e
and in some My, 7 = a.del ® b.ins d ® c.ins ® e

e This leads to the notion of executional entailment.

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Execution as Logical Entailmentl

Let P be a transaction program — a bunch of formulas (transaction definitions).
e M is a model of P iff M, 7 |=¢ for every path 7 and every ¢ € P.

o If ¢ is a formula, and Dy, Dy, ..., D, is a sequence of database state ids, then
executional entailment is a statement of the form:

P7D07D17 cee Dn |: ¢

It means:

M, (Dy,Dy, ..., D,) E ¢
for every model M of P.

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Proof Theory I

A simple SLD-style procedure for Concurrent Horn Clauses.

Just 4 inference rules:
e An SLD-like rule.
e A rule for dealing with queries to states.
e A rule for executing state transitions.

e A rule for isolated execution.

Concurrent Horn Clauses:

e Rules of the form: atom « ConcurrentSerialGoal
e Concurrent Serial Goal:

— An atomic formula; or
— (91 ® ... ® @), where each ¢; is a concurrent serial goal; or
— (@1 | ... | Pr), where each ¢; is a concurrent serial goal; or

— ® ¢, where ¢ is a concurrent serial goal.

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial \

Proof Theory (contd.) I

e Uses sequents of the form: P,D--—-F¢
meaning: ¢ can execute starting from state D, given the transaction definitions in P.

sequent
sequento

meaning: if Condition is true and sequent; has been proven then derive sequent,.

e Inference rules are of the form: Condition,

e Proves statements of the form: P, D -—-F¢
and finds the execution path along the way.

Axiom: P ,D-- ()

where () is the empty concurrent serial goal.

K Michael Kifer — University at Stony Brook y

/ Transaction Logic Tutorial

Proof Theory — Examplel

A top-down proof of P, {c,d}-—- F p|(a® c.del ® d.del)

where P = {p + a.ins ® b.ins}.

P, {c,d} - F (a.ins®b.ins) | (a ® c.del ® d.del)
P, {c,d,a}-—- F b.ins| (a® c.del ® d.del)
P, {c,d,a}-—- F b.ins| (c.del ® d.del)

P, {d,a}-—- F b.ns | d.del
P, {a}--—- F b.uns

P7 {avb}"' - ()

Ended up with an axiom =- done!

Extract execution path from the proof:

{c,d}, {c,d,a}, {d,a}, {a}, {a,b}

Final state: {a,b}.

K Michael Kifer — University at Stony Brook

unfold with p «+ a.ins ® b.ins

executed a.ins; changed state

tested and discarded a;

same state

executed c.del; changed state
executed d.del; removed

the empty conjunction ()
executed b.2ns; changed state

Transaction Logic Tutorial

Proof Theory—Inference rulesl

No variables, to simplify exposition.

Applying transaction definitions: Let b« (3 € P.

P.D—F (B®a)|~y
P.D—F (b®a)|y

Querying the database: If O4(D) € d:

P,D-—F alf
PD - (d®a)l|p

Ezecuting elementary updates: If O(D1,Dy) =° u:

PDy—F al|p
PD—F (u®Ra)l|pg

Isolated execution of transactions:

P,D—-Fa®(8|7)
P.D—F (0(a)®0) |7

Michael Kifer — University at Stony Brook

Transaction Logic Tutorial

More Examples: Blocks Worldl

stack(N,X) < N >0 ® move(Y, X) ® stack(N — 1,Y)
stack(0, X) «
move(X,Y) + pickup(X) ® putdown(X,Y)

pickup(X) < clear(X) ® on(X,Y) ® on.del(X,Y) ® clear.ins(Y)
putdown(X,Y) < wider(Y, X) ® clear(Y) ® on.ins(X,Y) ® clear.del (Y)

Note: stack is non-deterministic.

Can go beyond specification of actions: it is easy to declaratively specify a planning
strategy (e.g., STRIPS), crank the proof theory — and out comes a plan!

K Michael Kifer — University at Stony Brook

Transaction Logic Tutorial

Summary |

e A logic for specifying, executing, and reasoning about transactions.
e Syntax:

— Serial logic: first-order plus ®, <

— Concurrent logic: serial plus |, ®.
e Parameterized by data and transition oracles

Can “plug in” different oracles and get different logics, tailored to specific
applications.

e Model theory, proof theory.

e Uniformly integrates queries, updates, and transactions.

Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Applications |

1. Transactional updates in logic programming and deductive databases.
Active databases.

Consistency maintenance.

Hypothetical reasoning.

Planning.

Object-oriented databases.

A o B

Workflow management systems.

All for the price of (1)!

K Michael Kifer — University at Stony Brook

/ Transaction Logic Tutorial

Further Infol

One implementation of the serial part of Transition Logic, one more forthcoming.
Tony Bonner maintains a page at

http://www.cs.toronto.edu/ bonner/transaction-logic.html
[also maintain related info at

http://www.cs.sunysb.edu/ kifer/dood/

(will put this tutorial there soon).

K Michael Kifer — University at Stony Brook

