Inheritance in Rule-Based Frame Systems:
Semantics and Inference

Guizhen Yang! and Michael Kifer?

1 Artificial Intelligence Center
SRI International, Menlo Park, CA 94025, USA
yang@ai.sri.com
2 Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794, USA

kifer@cs.stonybrook.edu

Abstract. Knowledge representation languages that combine rules with
object-oriented features akin to frame systems have recently attracted a
lot of research interest, and F-logic is widely seen as a basis to achieve this
integration. In this paper we extend the original F-logic formalism with
an array of salient features that are essential for representing and reason-
ing with commonsense knowledge. In particular, we extend the syntax
and semantics of F-logic to incorporate nonmonotonic multiple inheri-
tance of class and instance methods in the presentence of class hierarchies
defined via rules. The new semantics is completely model-theoretic and is
free of the defects that caused the original F-logic to produce unintuitive
results due to the unusual interaction between default inheritance and
inference via rules. Moreover, we provide a computational framework
for the new F-logic semantics which can be implemented by inference
engines using either forward or backward chaining mechanisms.

1 Introduction

With computer systems getting more powerful and once esoteric information
management problems becoming commonplace, attention is again shifting to
knowledge representation languages that combine rules with object-oriented fea-
tures akin to frame systems. Recently, W3C created a new working group, which
is chartered with producing a recommendation for a standardized rule language
that could serve as an interchange format for various rule-based systems [38§].
According to the charter, the future language will support features inspired by
object-oriented and frame-based languages.

As a prominent formalism in applications where both rules and frame-based
representation are highly desired, F-logic has found its success in many areas, in-
cluding Semantic Web [IT0I38], intelligent networking [24], software engineering
[I7U13], and industrial knowledge management [239]. F-logic based systems are
available both commercially [33] and from the academia [T4/46/40/30]. These sys-
tems were built for different purposes and offer different degrees of completeness
with respect to the original specification.

S. Spaccapietra (Ed.): Journal on Data Semantics VII, LNCS 4244, pp. 79-{I35] 2006.
© Springer-Verlag Berlin Heidelberg 2006

80 G. Yang and M. Kifer

One major technical difficulty in this field is inheritance semantics, especially
the issues related to overriding and conflict resolution [22J45]. A recent study [29]
shows that inheritance — especially multiple inheritance — permeates RDF
schemas developed by various communities over the past few years. Multiple
inheritance is therefore likely to arise in Semantic Web applications as they
grow in complexity and as rule engines start playing a more prominent role in
such applications. However, current Semantic Web standards do not support
multiple inheritance. Some of the F-logic based systems mentioned earlier do
not support it either. Support provided by other systems is either incomplete or
problematic in various ways.

The difficulty in defining a semantics for inheritance is due to the intricate
interaction between inference by default inheritance and inference via rules. We
illustrate this problem in Section [Bl Although this problem was known at the
time of the original publication on F-logic [22], no satisfactory solution was
found then. Subsequent works either tried to rationalize the original solution or
to impose unreasonable restrictions on the language [32/T9/31]. We discuss these
limitations of the related work in Section [l

Our earlier work [45] proposed a solution to the above problem by develop-
ing a semantics that is both theoretically sound and computationally feasible.
However, this semantics (like the one in [22] and most other related works) is
restricted to the so called class methods [36)] (or static methods in Java terminol-
ogy) and to a particular type of inheritance, known as value inheritance, which
is more common in Artificial Intelligence. The notion of instance methods — a
much more important object-oriented modeling tool — was not supported in the
language or its semantics. In this paper we extend F-logic to include instance
methods and a new kind of inheritance, called code inheritance, which is analo-
gous to inheritance used in programming languages like C** and Java (and is
different from inheritance typically found in AI systems).

Of course, neither instance method nor code inheritance is new by itself.
Our contribution is in porting these notions to a logic-based language and the
development of a complete model theory and inference procedure for this new
class of methods and inheritance. Furthermore, these concepts are defined for
vastly more general frameworks than what is found in programming languages
or in the literature on logic-based inheritance. This includes systems with class
hierarchies defined via rules (intensional class hierarchies), multiple inheritance
with overriding, deductive systems with inheritance, both instance and class
methods, and both value and code inheritance.

This paper is organized as follows. Section 2] introduces the basic F-logic syn-
tax that is used throughout the paper. Section[3 motivates the research problems
concerning inheritance and rules by presenting several motivating examples. The
new three-valued semantics for F-logic is introduced in Section @l Section [0l de-
fines inheritance postulates, which bridge the formal semantics and its “real
world” interpretation, and Section [0] formalizes the associated notion of ob-
ject models. The computational framework is presented in Section [1l Section [J]
introduces the notion of stable object models. Section [further develops the

Inheritance in Rule-Based Frame Systems: Semantics and Inference 81

cautious object model semantics and discusses its properties. It is shown that
every F-logic knowledge base has a unique cautious object model. Implementa-
tion of the cautious object model semantics and its computational complexity is
described in Section[I0l This implementation can be realized using any deductive
engine that supports the well-founded semantics for negation [I5] and therefore
can be done using either forward or backward chaining mechanisms. Related
work is discussed in Section [I1] and Section [[2] concludes the paper. Since some
of the proofs are rather subtle and lengthy, we relegate them to the Appendix
in the hope that this will help the reader focus on the main story line. Shorter
proofs appear directly in the main text.

2 Preliminaries

F-logic provides frame-based syntax and semantics. It treats instances, classes,
properties, and methods as objects in a uniform way. For instance, in one context,
the object ostrich can be viewed as a class by itself (with members such as tweety
and fred); in a different context, this object can be a member of another class
(e.g., species). Whether an object functions as an instance or a class depends on
its syntactic position in a logical statement. F-logic does not require instances
and classes to be disjoint

To focus the discussion, we will use a subset of the F-logic syntax and include
only three kinds of atomic formulas. A formula of the form o: c says that object
o is a member of class c; s:: ¢ says that class s is a (not necessarily immediate)
subclass of class ¢; and e[m — v] says that object e has an inheritable method,
m, whose result is a set that contains object vl The symbols o, c, s, e, m, and
v here are the usual first-order terms

Traditional object-oriented languages distinguish between two different kinds
of methods: instance methods and class methods (also known as “static” meth-
ods in Java). The former apply to all instances of a class while the latter to
classes themselves. In object-oriented data modeling, especially in the case of
semistructured objects, it is useful to be able to define object methods, which
are explicitly attached to individual objects. These explicitly attached methods
override the methods inherited from superclasses. Object methods are similar to
class methods except that they are not intended to be inherited. In F-logic both
instance and class/object methods are specified using rules.

Let A be an atom. A literal of the form A is called a positive literal and
— A is called a negative literal. An F-logic knowledge base (abbr. KB) is a finite

! The same idea is adopted in RDF and OWL-Full.

? The syntax for inheritable methods in [22] and in systems like FLORA-2 is e[m x— v],
while atoms of the form e[m — v] are used for noninheritable methods. However,
noninheritable methods are of no interest here, so we opted for a simpler notation.

3 Recall that a first-order term is a constant, a variable, or a structure of the
form f(ti,...,tn), where f is an n-ary function symbol and ti,...,t. are first-order
terms.

82 G. Yang and M. Kifer

set of rules where all variables are universally quantified at the front of a rule.
There are two kinds of rules: regular rules and template rules. Regular rules
were introduced in the original F-logic [22] while the concept of template rules is
one of the new contributions of this paper. Generally, regular rules define class
membership, subclass relationship, and class/object methods. Template rules
represent pieces of code that define instance methods.

A regular rule has the form H :— Ly,...,L,, where n >0, H is a positive
literal, called the rule head, and each L; is either a positive or a negative literal.
The conjunction of L;’s is called the rule body. A template rule for class c has the
form code(c) @Qthisim — v] :— Ly,...,L,. It is similar to a regular rule except
that: (i) it is prefixed with the special notation code(c); (ii) its head must
specify a method (i.e., it cannot be o:c or s::¢); and (iii) the object-position in
the head literal is occupied by the template term @this (which can also appear in
other parts of the rule). We will also assume that c is ground (i.e., variable-free)
and will say that such a template rule defines instance method m for class c.

In the rest of this paper, we will use uppercase names to denote variables
and lowercase names to denote constants. A rule with an empty body is called
a fact. When a regular rule or a template rule has an empty body, we will call it
a regular fact or a template fact, respectively. For facts, the symbol “ :— 7 will
be omitted.

3 DMotivating Examples

We will now illustrate some of the problems that arise from unusual interaction
among inference via rules, default inheritance, and intensional class hierarchies
(i-e., class hierarchies that are defined using rules). In the following examples, a
solid arrow from a node x to another node y indicates that x is either an instance
or a subclass of y. All examples in this section are discussed informally. The
formal treatment is given in Sections [, Bl [7, and

3.1 Interaction Between Default Inheritance and Rules

Inheritance Triggering Further Inheritance. Consider the KB in Figure[ll With-
out inheritance, this KB has a unique model, which consists of the first two
facts. With inheritance, however, the common intuition tells us that o ought to
inherit m — a from c. But if we only add o[m — a], the new set of facts would
not be a model, since the last rule is no longer satisfied: with the inherited fact

c[m->a]
o:c.
cm — al.
o c[m — b] :— o[m — al.

Fig. 1. Inheritance Leading to More Inheritance

Inheritance in Rule-Based Frame Systems: Semantics and Inference 83

included, the least model must also contain c[m — b]. However, this begs the
question as to whether o should inherit m — b from ¢ as well. The intuition
suggests that the intended model should be “stable” with respect to not only
inference via rules but default inheritance as well. Therefore ojm — b] should
also be in that model. This problem was recognized in [22], but the proposed
solution was not stable in the above sense — it was based on plausible, ad hoc
fixpoint computations rather than semantic principles.

c[m->a]
o:c.
c[m — al.
o o[m — b] :— o[m — al.

Fig. 2. Interaction between Derived and Inherited Facts

Derived vs. Inherited Information. Now consider Figure 2] which has the same
KB as in Figure [Tl except for the head of the last rule. Again, the intuition sug-
gests that o[m — a] ought to be inherited, and o[m — b] be derived to make
the resulting set of facts into a model in the conventional sense. This, however,
leads to the following observation. The method m of o now has one value, a,
which is inherited, and another, b, which is derived via a rule. Although the tra-
ditional frameworks for inheritance were developed without deduction in mind,
it is clear that derived facts like o[m — b] in this example are akin to “explicit”
method definitions and should be treated differently. Typically, explicit defini-
tions should override inheritance. Thus our conclusion is that although deriva-
tion is done “after” inheritance, this derivation undermines the original reason
for inheritance. Again, the framework presented in this paper, which is based
on semantic principles, differs from the ad hoc computation in [22] (which keeps
both derived and inherited facts).

cl[m->a] 0:cy
C2::Cq.
c2 [m->b] c[m — al.
V. C2[m — b]
o o0:c2 :— o[m — al.

Fig. 3. Inheritance and Intensional Class Hierarchy

Intensionally Defined Class Hierarchy. Figure[Blis an example of an intensional
class hierarchy. Initially, o is not known to be an instance of c;. So, it seems
that o can inherit m — a from c;. However, this makes the fact ojm — a] true,
which in turn causes o:cy to be derived by the last rule of the KB. Since this
makes c; a more specific superclass of o than c¢; is, it appears that o ought

84 G. Yang and M. Kifer

to inherit m — b from c; rather than m — a from c;. However, this would
make the fact o:cy unsupported. Either way, the deductive inference enabled
by the original inheritance undermines the support for the inheritance itself.
Unlike [22], a logically correct solution in this case would be to leave both o: ¢,
and o[m — a] underdefined. The dashed arrow from o to c; in FigureBlrepresents
the underdefinedness of o:cy.

cl[m->a] c2 [m->b]
alm — al.
s c2[m — bl.
’ .
, 0:Ci1.
o 0:¢c; :— o[m — al.

Fig. 4. Derivation Causing Multiple Inheritance Conflicts

Derivation and Multiple Inheritance Conflicts. The example in Figure @ illus-
trates a similar problem, but this time it occurs in the context of nonmonotonic
multiple inheritance. Initially cy is not known to be a superclass of o. So there
is no multiple inheritance conflict and the intuition suggests that o should in-
herit m — a from c;. But then o:cy has to be added to the model in order to
satisfy the last rule. This makes ¢ a superclass of o and introduces a multiple
inheritance conflict. As in the previous example, although this conflict became
apparent only after inheritance took place, it undermines the original reason
for inheritance (which was based on the assumption that ¢;[m — a] is the only
source of inheritance for o). Therefore, both o[m — a] and o:cp should be left
underdefined. Again, this conclusion differs from [22].

3.2 Inheritance of Code

The inheritance shown in the previous examples is called value inheritance. It
is called so because what gets inherited are the individual values that methods
have in particular classes rather than the definitions of those methods.

We should note that value inheritance is data-dependent. Consider the exam-
ple in Figure Bl At first glance, it appears that there is a multiple inheritance
conflict for object o, with respect to method m from class ¢; and c,. Indeed,
in a traditional programming language like C**, the first two rules in Figure
would be considered as part of the code that defines method m in class ¢; and
o, respectively. Since o, is an instance of both classes, we have a multiple inheri-
tance conflict. In contrast, value inheritance takes into account what holds in the
model of the KB. Clearly, in the example of Figure[] the premise of the first rule
is true whereas the second is false. This means that the model makes ¢;[m — a]
true but ca[m — b] false] Therefore, if we only look at the values of method m
that actually hold in the model of the KB, then no conflict exists and m — a
can be readily inherited from c; by 0, (and o1) through value inheritance.

4 QOur claims here rely on the closed world assumption.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 85

ol 2 a[m — a] :— p[f — d].
c2[m — b] :— p[f — €.
O1:C1.
02:C1.
02:C2.
ol 02 plf — d].

Fig. 5. Value Inheritance vs. Code Inheritance

Code inheritance, in contrast, behaves like in traditional programming lan-
guages and the above example would require conflict resolution. In this paper,
we resolve multiple inheritance conflicts cautiously — whenever a conflict arises,
nothing is inherited. To appreciate the difference between value and code in-
heritance, let us revisit the example of Figure [J] using code inheritance. Now
suppose the first two regular rules in Figure il are replaced by the following two
template rules (introduced in Section 2):

code(cy) @thism — a] :— p[f — d|.
code(cy) @thisim — b] :— p[f — e].

Note that template rules are prefixed with the notation code(c), for some class
¢, to indicate that they make up the code that defines the instance methods for
a particular class.

We call the above rules template rules because they are not the actual rules
that we require to hold true in the model of the KB. Instead, once inherited,
they will be “instantiated” to the actual regular rules that are required to hold
true. In the case of 0z, no code is inherited due to multiple inheritance conflict,
as we just explained above. However, 0; can inherit the first template rule from
c1, since there is no conflict. Inheritance of such a template rule is achieved
by substituting the template term Qthis with o; in the rule. This results in a
regular rule of the form oi[m — a] :— p[f — d]. This rule and the fact p[f — d]
together enable the derivation of a new fact, oj[m — aJ.

The above example illustrates the intended use of template rules. The tem-
plate term in a template rule acts as a placeholder for instances of that class.
When the rule is inherited by an instance, the template term is replaced by that
instance and the result is a regular rule. This is akin to late binding in traditional
object-oriented languages.

The treatment of template rules should make it clear that the method m in
our example above behaves like an instance method in a language like Java:
the template rule does not define anything for class ¢; as an object; instead, it
defines the method m for all instances of c;. This is because template rules are
not meant to be true in the model of the KB — but those regular rules resulting
from code inheritance are.

The above example also alludes to the fact that value inheritance is a more
“model-theoretic” notion than code inheritance, and that developing a model

86 G. Yang and M. Kifer

theory for code inheritance is not straightforward. We develop a suitable model
theory in Section

cl c2 [m->Db] code(cy) @Qthisim — a] :— @this[f — b].
/. 0:Ci1.
7 off — b].
’
, o:c; :— om — al.
o[f->Db] c2[m — bl.

Fig. 6. Interaction between Template Rules and Regular Rules

Subtle interaction may arise between template rules and regular rules. To il-
lustrate the issue, Figure [0l shows a template rule that defines instance method
m for class c;. On the surface, it seems that o should inherit this piece of code
from ¢; and thus acquire the regular rule o[m — a] :— off — b]. (Recall that
the template term in the rule is replaced with the inheriting instance). This in-
heritance seems to be possible because o is a member of ¢; and at this moment
we cannot conclude that o also belongs to ca.

A more careful look indicates, however, that there is a multiple inheritance
conflict. If o inherits the above rule, then we can derive o[m — a]. But then
we can also derive o:cy using the fourth rule in Figure [0 (which is a regular
rule). Now, since co[m — b] is also true, we have a multiple inheritance conflict
analogous to the example of Figure[dl As in the example of Figure[d the logically
correct solution here is to leave both o[m — a] and o: ¢, underdefined.

We thus see that template rules can interact with regular rules in subtle ways
and cause inheritance to be canceled out. In other cases, such interaction might
enable more inheritance. For instance, if instead of c;[m — b] we had ca[n — b],
then inheritance of the template rule by o would not be blocked. Furthermore,
o would inherit n — b from c, by value inheritance.

3.3 Observations

Nonmonotonic Inheritance. Overriding of inheritance leads to nonmonotonic
reasoning, since more specific definitions take precedence over more general ones.
However, overriding is not the only source of nonmonotonicity here. When an
object belongs to multiple incomparable classes, inheritance conflicts can arise
and their “canceling” effects can also lead to nonmonotonic inheritance.

Intensional Class Hierarchies. A class hierarchy becomes intensional when class
membership and/or subclass relationship is defined using rules. In such cases, the
inheritance hierarchy can be decided only at runtime, as complex interactions
may come into play between inference via default inheritance and inference via
rules. In this interaction, an earlier inference by inheritance may trigger a chain
of deductions via rules which can result in violation of the assumptions that led
to the original inheritance.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 87

Value Inheritance vs. Code Inheritance. Inheritance of values is fundamentally
different from inheritance of code. Value inheritance is data-dependent — it
depends on the set of assertions in the current KB. Code inheritance is not
dependent on data. Recall that in the example of Figure Bl we derived the fact
o2[m — a] via value inheritance because the premise of the second rule was false
and therefore inheritance was conflict-free from the perspective of value inheri-
tance. If we add the fact p[f — €], then the second rule will derive ca[m — b]
and create a multiple inheritance conflict. In this case, 0, may inherit nothing.

In contrast, if we turn the rules in Figure[Blinto template rules, then a multiple
inheritance conflict would always exist regardless of whether the premise of either
rule can be satisfied. As a result, o, would inherit nothing — whether p[f — d]
and p[f — €] hold true or not.

4 Three-Valued Semantics

The examples in Section B]illustrate the complex interactions between inference
via default inheritance and inference via rules. These interactions cause infer-
ence to behave nonmonotonically and in many ways like default negation. This
suggests that stable models [16] or well-founded models [I5] could be adopted
as a basis for our semantics. Since default negation is part of our language any-
way, adoption of one of these two approaches is fairly natural. In this paper
we base the semantics on well-founded models. Since well-founded models are
three-valued and the original F-logic models were two-valued [22], we first need
to define a suitable three-valued semantics for F-logic KBs. We also need to ex-
tend this semantics to accommodate template rules and to make it possible to
distinguish facts derived by default inheritance from facts derived via rules.

Let P be an F-logic KB. The Herbrand universe of P, denoted HUp, con-
sists of all the ground (i.e., variable-free) terms constructed using the function
symbols and constants found in the KB. The Herbrand instantiation of P, de-
noted ground(P), is the set of rules obtained by consistently substituting all
the terms in HUp for all variables in every rule of P. The Herbrand base of P,
denoted HBp, consists of the following sorts of atoms: o:c, s::c, s[m — V]ex,
olm — v|¢,,, and o[m — V| 4., where o, ¢, s, m, and v are terms from HlUp.

An atom of the form o: ¢ is intended to represent the fact that o is an instance
of class c; s::c states that s is a subclass of c. An atom of the form s[m — v]ex
states that m — v is explicitly defined at s via a regular rule. Atoms of the
forms o[m — v|$,; and ojm — Vv]¢_4,, where o # c, imply that object o inherits
m — v from class ¢ by value and code inheritance, respectively.

A three-valued interpretation Z of an F-logic KB P is a pair (T;U), where
T and U are disjoint subsets of HBp. The set T contains all atoms that are
true whereas U contains all atoms that are underdefined. Underdefined atoms
are called this way because there is insufficient evidence to establish their truth
or falsehood. The set F of the false atoms in Z is defined as F = HBp — (T U U).
It is easy to see that the usual two-valued interpretations are a special case of
three-valued interpretations of the form (T;0).

88 G. Yang and M. Kifer

Following [34], we will define the truth valuation functions for atoms, literals,
and regular rules. The atoms in HBp can have one of the following three truth
values: t, £, and u. Intuitively, u (underdefined) means possibly true or possible
false. Underdefined atoms are viewed as being “more true” than false atoms,
but “less true” than true atoms. This is captured by the following truth ordering
among the truth values: f <u < t. Given an interpretation Z = (T; U) of an
F-logic KB P, for any atom A from HBp we can define the corresponding truth
valuation function 7 as follows:

t, if Ae T,

Z(A) =< u,if Ae T,
f, otherwise.

Truth valuations are extended to conjunctions of atoms in HBp as follows:
Z(A1 A ..o A A =min{Z(A)|1 <i<n}

The intuitive reading of a regular rule is as follows: its rule head acts as an
explicit definition while its rule body as a query. In particular, if sfm — v] is in
the head of a regular rule and the body of this rule is satisfied, then m — v is
explicitly defined for s. In the body of a regular rule, the literal sjm — v] is true
if s has either an explicit definition of m — v, or s inherits m — v from one of
its superclasses by value or code inheritance. Therefore, the truth valuation of a
ground F-logic literal depends on whether it appears in a rule head or in a rule
body. This is formally defined as follows.

Definition 1 (Truth Valuation of Literals). Let 7 be an interpretation of
an F-logic KB P. The truth valuation functions, V® and V2 (h and b stand for
head and body, respectively), on ground F-logic literals are defined as follows:

VB(o:c) =V2(0o:c) =Z(o:c) VR(suc)=V2(s:c)=Z(s::c)
VE(sm — v]) = Z(s[m — v]ex)
V2(olm — v))=mazceru{Z(olm — Viex), Z(o[m — v]$y), Z(o[m — v]oq0)}

val code

Let L and L; (1 <i<n) be ground literals. Then:
VR(-L) ==VR(L) VR AL A L) =min{VR(L)[1<i<n}

For completeness, we define the negation of a truth value as follows: —f = t,
-t=f, and —u=u.

The following two lemmas follow directly from the above definitions.

Lemma 1. LetZ = (T;U) be an interpretation of an F-logic KBP, L a ground
literal in ground(P), J = (T;0), and K = (TUU;0). Then:

(1) IfL is a positive literal, then V2(L) =t iff V5(L) = t.

(2) If L is a negative literal, then VR(L) = t iff V(L) = t.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 89

(3) If L is a positive literal, then V2(L) > u iff VR(L) = t.
(4) If L is a negative literal, then V2(L) > u iff V5(L) =t.

Lemma 2. Let T = (A;0) and J = (B;0) be two-valued interpretations of
an F-logic KB P such that A C B, and let L be a ground literal in ground(P).
Then:

(1) If L is a positive literal and V2(L) = t, then V5 (L) = t.

(2) If L is a negative literal and V(L) = t, then V2(L) = t.

Having defined the truth valuation functions V2 and V2 for ground literals, we
now extend the truth valuation function Z to ground regular rules. Intuitively,
a ground regular rule is true if and only if the truth value of its head is at least
as high as truth value of the rule body (according to the truth ordering). Note
that the truth valuation of either the head or the body is three-valued, but the
truth valuation of a rule is always two-valued.

Definition 2 (Truth Valuation of Regular Rules). Given an interpretation
T of an F-logic KB P, the truth valuation function T on a ground regqular rule,
H :— B € ground(P), is defined as follows:

t, if VB(H) > VB(B);
f, otherwise.

I(H - B):{

Given a ground regular fact, H € ground(P):

_ [t i VEH) =t
I(H) = {f7 otherwise.
Satisfaction of nonground regular rules in an interpretation is defined via instan-
tiation, as usual.

Definition 3 (Regular Rule Satisfaction). A three-valued interpretation T
satisfies the regular rules of an F-logic KB P if Z(R) =t for every regular rule
R in ground(P).

5 Inheritance Postulates

Even if an interpretation Z satisfies all the regular rules of an F-logic KB P,
it does not necessarily mean that Z is an intended model of P. An intended
model must also include facts that are derived via inheritance and must not
include unsupported facts. As we saw in Section [3] defining what should be
inherited exactly is a subtle issue. The main purpose of this section is to formalize
the common intuition behind default inheritance using what we call inheritance
postulates.

90 G. Yang and M. Kifer

5.1 Basic Concepts

Intuitively, c[m] is an inheritance context for object o, if o is an instance of
class c, and either c[m — v] is defined as a regular fact or is derived via a
regular rule (in this case we say that m — v is explicitly defined at c); or if
there is a template rule which specifies the instance method m for class c. Inher-
itance context is necessary for inheritance to take place, but it is not sufficient:
inheritance of m from ¢ might be overridden by a more specific inheritance con-
text that sits below c along the inheritance path. If an inheritance context is
not overridden by any other inheritance context, then we call it an inheritance
candidate. Inheritance candidates represent potential sources for inheritance.
But there must be exactly one inheritance candidate for inheritance to take
place — having more than one leads to a multiple inheritance conflict, which
blocks inheritance.

The concepts to be defined in this section come in two flavors: strong or weak.
The “strong” flavor of a concept requires that all relevant facts be positively
established while the “weak” flavor allows some or all facts to be underdefined.

Definition 4 (Explicit Definition). Let P be an F-logic KB and Z an in-
terpretation of P. We say that s[m] has a strong explicit definition in T, if
maz{Z(s[m — v]ex)|v € HUp} = t. We say that sim] has a weak explicit de-
finition in T if max{Z(s[m — v]ex)|v € HUP} = u.

Definition 5 (Value Inheritance Context). Given an interpretation T of an
F-logic KB P, c[m] is a strong value inheritance context for o inZ, if c # o (i.e.,
¢ and o are distinct terms) and min{Z(o:c), maz{c[m — v]ex|v € HUp}} =t.
We say that c[m] is a weak value inheritance context for o in I, if ¢ £ o and
min{Z(o:c),max{c[m — V]x|v € HUp}} = u.

Definition 6 (Code Inheritance Context). Given an interpretation I of an
F-logic KB P, c[m] is a strong (respectively, weak) code inheritance context for o
inZ,ifc#o0,Z(o:c) =t (respectively, T(o:c) = u), and there is a template rule
in P of the form code(c) Qthisim — ...] :— ..., i.e., there is a template rule
that defines instance method m for class c.

When the specific type of an inheritance context is immaterial as, for example,
in the following definitions, we will use the term inheritance context without
indicating whether a value or a code inheritance context is meant.

Definition 7 (Overriding). Let Z be an interpretation of an F-logic KB P.
We will say that class s strongly overrides inheritance context c[m] for o, if s # ¢,
I(s::c) =t, and s[m] is a strong (value or code) inheritance context for o.

We will say class s weakly overrides c[m] for o, if either

(1) Z(s::c) =t and s[m] is a weak inheritance context for o; or
(2) Z(s::c) =u and s[m] is a weak or a strong inheritance context for o.

Definition 8 (Value Inheritance Candidate). Given an interpretation I of
an F-logic KB P, c[m] is a strong value inheritance candidate for o, denoted

Inheritance in Rule-Based Frame Systems: Semantics and Inference 91

s.val

c[m]~>zo, if c[m] is a strong value inheritance context for o and there is no
class s that strongly or weakly overrides c[m] for o.

c[m] is a weak value inheritance candidate for o, denoted c[m] %'z o, if the
above conditions are relazed by allowing c[m] to be a weak value inheritance
context and/or allowing weak overriding. Formally, this means that there is no
class s that strongly overrides c[m| for o and either

(1) c[m] is a weak value inheritance context for o; or
(2) c[m] is a strong value inheritance context for o and there is some class

s that weakly overrides c[m] for o.

Definition 9 (Code Inheritance Candidate). Let Z be an interpretation for
an F-logic KB P. c[m] is called a strong code inheritance candidate for o, denoted

s.code

c[m] ~>'z o, if c[m] is a strong code inheritance context for o and there is no s
that strongly or weakly overrides c[m] for o.

c[m] is a weak code inheritance candidate for o, denoted c[m] "5 zo, if the
above conditions are relazed by allowing c[m] to be a weak code inheritance con-
text and/or allowing weak overriding. Formally, this means that there is no class
s that strongly overrides c[m] for o and either

(1) ¢[m] is a weak code inheritance context for o; or
(2) c[m] is a strong code inheritance context for o and there is some class
s that weakly overrides c[m] for o.

cd [m->c] c5
C1:Co. C1 :Cs.

Co:iCa. C3::Cs.
c3 [m->b]
c2[m — a]. c3m — b]. c[m — .

code(cs) @thisjm — v] :— @this[f — x].

Fig. 7. Inheritance Context, Overriding, and Inheritance Candidate

Ezample 1. Consider an interpretation Z = (T; U) of an F-logic KB P, where

T = {c1:¢c2,C1:€4,C1:C5,C2::Cq,C3::C5 1 U
{CZ[m - a]eX7c3[m — b]exac4[m - C}ex}

U= {C12C3}

7 and P are shown in Figure [, where solid and dashed arrows represent true
and underdefined values, respectively.

In the interpretation Z, ca[m] and c4[m] are strong value inheritance contexts
for ci. cs[m] is a strong code inheritance context for ci. c3[m] is a weak value
inheritance context for c;. The class ¢ strongly overrides c4[m] for c¢;, while
c3 weakly overrides cs[m] for ci. cp[m] is a strong value inheritance candidate
for c;. c3[m] is a weak value inheritance candidate for ¢;. cs[m] is a weak code
inheritance candidate for c;. Finally, c4[m] is neither a strong nor a weak value
inheritance candidate for c;.

92 G. Yang and M. Kifer

For convenience, we will simply write c[m]~»70 when it does not matter
whether c[m] is a strong or a weak value/code inheritance candidate. Now we
are ready to introduce the postulates for nonmonotonic multiple value and code
inheritance. The inheritance postulates consist of two parts: core inheritance
postulates and cautious inheritance postulates. We formalize the core inheritance
postulates first.

5.2 Core Inheritance Postulates

The following definition says that class membership and subclass relationship
must satisfy the usual transitive closure property.

Definition 10 (Positive ISA Transitivity). An interpretation T of an
F-logic KB P satisfies the positive ISA transitivity constraint if the set of true
class membership and subclass relationship atoms is transitively closed. Formally
this means that the following two conditions hold:

(1) for all s and c: if there is x such that Z(s::x) = t and I(x:c) = t,
then I(s::c) =t;

(2) for all o and c: if there is x such that T(o:x) = t and I(x::c) = t,
then Z(o:c) = t.

The context consistency constraint below captures the idea that only explicit
definitions are inherited and that explicit definitions override inheritance.

Definition 11 (Context Consistency). An interpretation T of an F-logic
KB P satisfies the context consistency constraint, if the following conditions
hold:

(1) for allo,m,v: Z(o[m — v|2,) =f and Z(o[m — v]° 4.) =f

code ’
(2) forallc,m,v:ifZ(c[m — v]ex) = £, thenZ(o[m — v]$,)) =1 forall o;
(3) for all c,m: if ground(P) has no template rule that defines instance
method m for class c, then Z(o[m — V]S, 4,) = £ for all o,v;
(4) for all o,m: if o[m] has a strong explicit definition, then for all v, c,

Z(olm — v]S,) =f and Z(o[m — v]S 4.) =f.

val code

The first condition in the above definition rules out self inheritance. The second
condition states that if m — v is not explicitly defined at c, then no one can
inherit m — v from c by value inheritance. The third condition says that if a
class ¢ does not explicitly specify an instance method m, then no object should
inherit m — v from ¢ by code inheritance, for any v. The fourth condition states
that if o has an explicit definition for method m, then this definition should
prevent o from inheriting m — v from any other class for any v (either by value
or by code inheritance).

Intuitively, we want our semantics to have the property that if inheritance is
allowed, then it should take place from a unique source. This is captured by the
following definition.

Definition 12 (Unique Source Inheritance). An interpretation T of an
F-logic KB P satisfies the unique source inheritance constraint, if the follow-
ing three conditions hold:

Inheritance in Rule-Based Frame Systems: Semantics and Inference 93

(1) for all o,m,v,c: if Z(o[m — v]S,)) =t or Z(o[m — v|S 4.) =t, then
Z(olm — z]%,)) = f and Z(o[m — 2|3 4,) = £ for all z,x such that
X # C.

(2) for all c,m,o: if c[m]*&z0 or c[m] &'z o, then Z(o[m — v]%,,) = f
and Z(o[m — v]%_ 4.) = £ for all v, x such that x # c.

code
(3) for allo,m,v,c: Z(o[m — v|S,)) =t iff
(i) o[m] has neither strong nor weak explicit definitions; and
(ii) c[m]*&'70; and
(111) Z(c[m — V]ex) = t; and
(iv) there is no x such that x # ¢ and x[m]~+z 0.

Uniqueness of an inheritance source is captured via three conditions. The first
condition above says that an object can inherit from a class only if it does not
already inherit from another class. The second condition states that if a strong
inheritance candidate, c[m], exists, then inheritance of method m cannot take
place from any other sources (because there would then be a multiple inheritance
conflict). The third condition specifies when value inheritance takes place. An
object o inherits m — v from class ¢ by value inheritance iff: (i) o has no explicit
definition for method m; (ii) c[m] is a strong value inheritance candidate for o;
(iii) ¢[m — v] is explicitly defined; and (iv) there are no other inheritance
candidates — weak or strong — from which o could inherit method m.

5.3 Cautious Inheritance Postulates

The core postulates introduced so far impose restrictions only on the part of
an interpretation that contains the facts known to be true. For three-valued
interpretations, we still need to describe the underdefined part more tightly.
Since “underdefined” means possibly true or possibly false, it is natural to expect
that the conclusions drawn from underdefined facts remain underdefined. As is
typical for three-valued semantics, such as the well-founded semantics, we do
not jump to negative conclusions from underdefined facts. This is why we call
our semantics “cautious”.

Definition 13 (Cautious ISA Transitivity). We will say that an interpre-
tation T of an F-logic KB P satisfies the cautious ISA transitivity constraint if
the underdefined part of the class hierarchy is transitively closed; i.e.,
(1) for alls, c: if there is x such that Z(s::x Ax::c) =u and Z(s::c) # t,
then I(s::c) = u;
(2) for all o, c: if there is x such that Z(o:x Ax::c) =u and Z(o:c) # t,
then Z(o:c) = u.

Definition 14 (Cautious Inheritance). We will say that an interpretation T
of an F-logic KB P satisfies the cautious inheritance constraint, if for all o, m,
v.c: Z(om — v]S,) = u iff

(1) o[m] does not have a strong explicit definition; and

(2) c[m]=&'70 or c[m] “5'z0; and

94 G. Yang and M. Kifer

(3) Z(c[m — V]ex) > u; and
(4) there is no x # c such that x[m] 5z 0 or x[m] *&°z 0; and
(5) Zlolm — v]5,) £ t.

The cautious inheritance constraint captures the intuition behind multiple in-
heritance based on underdefined knowledge. The conditions above state when
cautious value inheritance takes place. An object o cautiously inherits m — v
from class ¢ by value inheritance if and only if: (i) there is no strong evidence
that method m has an explicitly defined value at o; (ii) c[m] is either a strong
or a weak value inheritance candidate for o; (iii) m — v is explicitly defined
at ¢; (iv) there are no other strong inheritance candidates that can block value
inheritance from ¢ (by the unique source inheritance constraint); and (v) o does
not already inherit m — v from c by value inheritance.

6 Object Models

A model of an F-logic KB should satisfy all the rules in it. In Section @ we
formalized the notion of regular rule satisfaction. Here we will extend this notion
to template rules. Recall that when an object inherits a template rule, the rule
is evaluated in the context of that object.

Definition 15 (Binding). Let R be the following template rule which defines
instance method m for class c: code(c) @Qthisim — v] :— B. The binding of R
with respect to object o, denoted R, is obtained from R by substituting o for
every occurrence of Qthis in R. In general, we will use X, to represent the term
that is obtained from X by substituting o for every occurrence of @Qthis in X.

We call the above process “binding” because it is akin to late binding in tra-
ditional programming languages like CTT. Recall from Section [B] that template
rules are just templates for the regular rules that are obtained via binding when
template rules are inherited. Therefore, satisfaction of template rules in a model
will have to be defined via satisfaction of their bindings. When an object inherits
template rules from a class, the bindings of these template rules with respect to
this object should be satisfied similarly to regular rules. However, because only
those template rules that are actually inherited need to be satisfied, satisfaction
of template rules depends on how they are inherited: strongly or weakly.

Definition 16 (Strong Code Inheritance). Let 7 be an interpretation of an
F-logic KB P and R=code(c) Qthisim — v| :— B a template rule in ground(P).
An object o strongly inherits R, if the following conditions hold:

s.code

(1) ¢[m] =5z 0;
(2) o[m] has neither strong nor weak explicit definitions;
(3) there is no x # ¢ such that x[m]~>7 o.

In other words, strong code inheritance happens when there is a strong code
inheritance candidate, which is not overwritten and which does not have a rival
inheritance candidate of any kind.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 95

Definition 17 (Weak Code Inheritance). Let T be an interpretation of an
F-logic KB P and R=code(c) @thisim — v] :— B a template rule in ground(P).
An object o weakly inherits R, if all of the following holds:

s.code w.code

(1) ¢[m] ~5°z0 or c[m] ~5"1o;
(2) o[m] has no strong explicit definitions;

(3) there is no x # ¢ such that xm] "3z 0 or x[m] "%z o;
(4) o does not strongly inherit R.

In other words, o weakly inherits R, if: c[m] is a code inheritance candidate for
o (strong or weak); o[m] has no strong explicit definitions; there are no other
strong conflicting inheritance candidates; and, of course, o does not strongly
inherit R.

For convenience, we define a function, imodez, on the bindings of ground
template rules, which returns the “inheritance mode” of a binding:

t, if o strongly inherits R;
imoder(R|) = { u, if o weakly inherits R;
f, otherwise.

When imodez(R|,) = t, we will say that R, is in strong code inheritance mode.
Similarly, we will say R|, is in weak code inheritance mode if imodez(R,) = u.
Now we can extend the truth valuation function to template rules as follows.

Definition 18 (Truth Valuation of Template Rules). Let T be an inter-
pretation and R = code(c) @Qthisim — v] :— B a ground template rule. The truth
valuation function T on R, is defined as follows:

t, if imodez(R)o) > u and
Z(o[m — V]S 40) = min{V%(BHOLimodeI(RHO)};

t, if imodez(Ro) = f and Z(o[m — V]S ,.) = f;
f, otherwise.

I(RHO) =

For ground template facts of the form F = code(c) @this[m — v], their truth val-
uation is defined similarly:

t, if imodez (F|o) > u and Z(o[m — v]$ 4.) > imodez(F);
Z(Fjo) = 3 ¢, if imodez(F|o) = f and Z(o[m — V]S 4.) = f;
f, otherwise.

Recall that atoms of the form o[m — v|¢_,, represent those facts that are derived
via code inheritance. Note that when imodez(R|,) = f, i.e., o does not inherit
R, it is required that Z(o[m — v]¢ 4.) = f in order for Rj, to be satisfied. This
means that if an object, o, does not inherit a template rule, then the binding of
that rule with respect to o should not be used to make inference.

Now the idea of template rule satisfaction and the notion of an object model

can be formalized as follows.

96 G. Yang and M. Kifer

Definition 19 (Template Rule Satisfaction). An interpretation T satisfies
the template rules of an F-logic KB P, if Z(R|,) = t for all template rule
R € ground(P) and all o € HUp.

Observe that in the event of strong code inheritance, imoder(R|,) = t and so
the truth valuation function on template rules reduces to that on regular rules.
Indeed, for template rules, we have from Definition that Z(Ry,) = t iff
Z(o[m — V]Soqe) = min{V2(By,), imodez(Rjo)} = V2(By,). A similar conclu-
sion can be drawn for template facts.

Definition 20 (Object Model). An interpretation Z is called an object model
of an F-logic KB P if T satisfies:

— all the regular rules in P,

— all the template rules in P, and

— all the core inheritance postulates (including the positive ISA transitivity con-
straint, the context consistency constraint, and the unique source inheritance
constraint).

7 Computation

In this section we will define a series of operators, which will form the basis for
a bottom-up procedure for computing object models of F-logic KBs.

First we need to extend the definition of an interpretation in Section @ to
include book-keeping information used by the computation. This book-keeping
information is cast out at the last stage when the final object model is produced.
The extended Herbrand base of an F-logic KB P, denoted HBp, consists of atoms
from HBp and auziliary atoms of the forms c[m]~% o and c[m] < o, where ¢, m,
and o are terms from HUp. During the computation, these auxiliary atoms
will be used to approximate value and code inheritance candidates (with which
they should not be confused). An extended atom set is a subset of HBp. In the
sequel, we will use symbols with a hat (e.g., T) to denote extended atom sets.
The projection of an extended atom set I, denoted m(T), is T with the auxiliary
atoms removed.

We will often need to compare a normal atom set with the projection of an
extended atom set. In such cases, when confusion does not arise, we will omit
the projection operator .

It is easy to generalize the definitions of the truth valuation functions in
Section M to extended atom sets, since the auxiliary atoms do not occur in

F-logic KBs. Formally, given an extended atom set 1, let 7 = (W(T);@). We

define: (i) val®(H) L' Vh(H), for a ground rule head H; (ii) val® (B) ECRVUIEEN)

for a ground rule body B; (iii) val;(R) def Z(R), for a ground regular rule R;
and (iv) vals (R)0) def Z(R|j), for a binding of a ground template rule R.

The computation model for F-logic KBs with regular and template rules was
inspired by the alternating fixpoint operator [42] and extends it. The new element

Inheritance in Rule-Based Frame Systems: Semantics and Inference 97

here is the book-keeping mechanism, which is necessary for recording inheritance
information.

Definition 21. Given a ground literal L of an F-logic KB P and an atom
A € HBp, we say that L matches A, if one of the following conditions is true:
(i)L=o:cand A=o:c; or (ii) L=s:cand A=s:c; or (ii) L=sm — V]
and A =sm — V]ex.

Definition 22 (Regular Rule Consequence). The regular rule consequence
operator, RCy, 1, is defined for an F-logic KB P and an extended atom set 1.

It takes as input an extended atom set, j, and generates a new extended atom
set, RC (J), as follows:

ground(P) has a regular rule, H :— Ly,...,L,, such that H matches
A | A and for every literal L; (1 <i<n): (i) if Li is positive, then
Ual‘% (L)) =t; and (i) if L; is negative, then Ual‘f)(Li) = t.

The regular rule consequence operator is adopted from the usual alternating
fixpoint computation. It derives new facts, including class membership, subclass
relationship, and explicit method definitions for classes and objects, from the
regular rules in an F-logic KB.

Definition 23 (Inheritance Blocking). The inheritance blocking operator,
IBp, is defined for an F-logic KB P. It takes as input an extended atom set, 1,

'~

and generates the set, IBp (1), which is the union of the following sets of atoms.

Explicit inheritance conflicts:
{ec(o,m) | v such that olm — V]ex € T}
Multiple inheritance conflicts:
{mc(c7 m, o) ‘ Ix # ¢ such that x[m]% o e T orx[m<oe T}
Overriding inheritance conflicts:

Ix such that: (i) x#c, x#o0, xuc € T,
o:x € 1; and (ii) 3v such that xjm — V]ex € T
ov(c,m,0) | or there is a template rule in ground(P) of the
form code(x) Q@thisim — ...] :— ..., which
specifies the instance method m for class x.

The inheritance blocking operator is an auxiliary operator used in defining the
template rule consequence operator and the inheritance consequence operator
below. It returns book-keeping information that is needed to determine inheri-
tance candidates.

Intuitively, ec(o, m) means method m is explicitly defined at o; mc(c, m,0)
means inheritance of method m from c to o is not possible due to a multiple

98 G. Yang and M. Kifer

inheritance conflict (because there is a value or a code inheritance candidate
other than c); ov(c, m,0) means inheritance of method m from c by o would be
overridden by another class that stands between o and c in the class hierarchy.
From Definition [Z3 we can see that a class must have a explicitly defined value
for a method or have an instance method definition to be able to override in-
heritance from its superclasses. The following lemmas follow directly from the
above definitions.

Lemma 3. Given an interpretation T = (T;U) of an F-logic KB P:

(1) for all c,m,o0: there is x such that x strongly overrides c[m] for o iff
ov(c,m,0) € IBp(T).

(2) for all c,m,o0: there is x such that x strongly or weakly overrides c[m]
for o iff ov(c,m,0) € IBp(T UTU).

Lemma 4. Given an interpretation T = (T;U) of an F-logic KB P:

(1) for all c,m,o0: c[m]*S'z0 iff (i)c#o0,0:c€T; (ii)c[m — V]jey €T
for some v; and (iii) ov(c,m,0) ¢ IBp(T U U).

(2) for all c,m,0: c[m] & 70 iff (i) c#o0, o:c € T; (i) there is a
template rule in ground(P) which specifies the instance method m for
class c; and (i) ov(c,m,0) ¢ IBp(T U U).

(3) for all c,m,o0: c[m]*&'70 or c[m]"&'70 iff (i) c#0, 0:c € TUU;
(i1) c[m — v]ex € TUU for some v; and (iii) ov(c,m,o0) ¢ IBp(T).

(4) for all c,m,o0: c[m] 570 or c[m] “Sz0 iff (i) c#o0, 0:c € TUU;
(ii) there is a template rule in ground(P) which specifies the instance
method m for class c; and (iii) ov(c,m,0) ¢ IBp(T).

(5) for all c,m,o0: c[m]~zo0 iff (i) c#o0, 0:c € TUU; (ii) there is a
template rule in ground(P) which specifies the instance method m for
class c orclm — v]ex € TUU for some v; and (iii) ov(c,m,0) ¢ IBp(T).

Definition 24 (Template Rule Consequence). The template rule conse-
quence operator, TCy, 1, is defined for an F-logic KB P and an extended atom

set 1. It takes as input an extended atom set, j, and generates a new extended
atom set, TCp 1(J), as follows:

cm]%¥o € J, eclo,m) ¢ IBp(1), me(c,m,0) ¢ IBp(1);
ground(P) has a template rule code(c) @thisim — v] :— B
olm — V]S e and for every literal L € B”O:
(i) if L is positive, then val%(L) =t, and
(i) if L is negative, then Ual‘f”(L) =t.

The template rule consequence operator is used to derive new facts as a re-
sult of code inheritance. It is similar to the regular rule consequence operator
except that the regular rule consequence operator is applied to all regular rules
whereas the template rule consequence operator is applied only to those selected
template rules that could be inherited according to our inheritance semantics.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 99

Given an object o and a template rule, code(c) @thisim — v] :— B, which
defines instance method m for class c, we first need to decide whether o can
inherit this instance method definition from c. If so, then we will bind this
instance method definition for o and evaluate it (note that By, is obtained from
B by substituting o for every occurrence of @this in B). If the rule body is
satisfied in the context of o, we will derive o[m — V|4, to represent the fact
that m — v is established for o by inheritance of an instance method definition
from c.

We can decide whether object o can inherit the definitions of instance method
m from class ¢ by looking up the two sets J and IBp(I). In particular, such code
inheritance can happen only if the following conditions are true: (i) c[m] is a
code inheritance candidate for o (c[m]“% o € J); (ii) method m is not explicitly
defined at o (ec(o,m) ¢ IBp(T)); and (iii) there is no multiple inheritance
conflict (me(c, m,0) ¢ IBp(1)).

Definition 25 (Inheritance Consequence). The inheritance consequence
operator, ICy 3, where P is an F-logic KB and 1 is an ertended atom set,

takes as input an extended atom set, j, and generates a new extended atom set
as follows:

IC, (1) ' 10'(J)uIC; +(3)UIC] 1(T), where

ICt(j) = {o:c ‘Elx such that o:x € J,xzce J }U
{s c ’Elxsuchthats X € J,x ce j}
ICp {c o |oic € J, c#o, cm — v]ex € 7T, cmd}U
ov(c,m7o) ¢ IBp(1)
o:c € j, c#o, there is a template rule in
%% o | ground(P) which specifies the instance method m
for class ¢, and ov(c,m,0) ¢ IBp(I)
val =
16, 1(3) = {olm — g, [B o€ T cln = vluc€ . -
ec(o,m) ¢ IBp(I), and me(c,m,o0) ¢ IBp(I)

The inheritance consequence operator, ICy 1, is the union of three operators:
ICY, IC; 5, and IC; 7 The operator IC! is used to perform transitive closure of
the class hlerarchy7 including class membership and subclass relationship. Value

and code inheritance candidates are computed by the operator ICP ¢, which

relies on the overriding information provided by IBp(1). Finally, the operator
IC; ;+ derives new facts by value inheritance. This operator also relies on the

information provided by IBp(T).

100 G. Yang and M. Kifer

Definition 26 (KB Completion). The KB completion operator, Ty, 3, where

P is an F-logic KB and T an extended atom set, takes as input an extended atom
set, J, and generates a new extended atom set as follows:

Ty def >
TP,T(J) RCPI()UTCPI()UIC, 3(J)

The KB completion operator is the union of the regular rule consequence oper-
ator, the template rule consequence operator, and the inheritance consequence
operator. It derives new “explicit” method definitions (via regular rules in the
KB), new inherited facts (by value and code inheritance), plus inheritance can-
didacy information that is used to decide which facts to inherit in the future.

We have the following lemma regarding the monotonicity property of the
operators that we have defined so far.

Lemma 5. Suppose P and T are fizxed. Then the followmg operators are mono-

tonic: RCy, 7, IBp, TCy, 7, IC", IC} 1, IC}, 1, IC

P, T’ P, T’ P, T’ P’f'

Given an F-logic KB P, the set of all subsets of the extended Herbrand base
‘HBp constitutes a complete lattice where the partial ordering is defined by set
inclusion. Therefore, any monotonic operator, @, defined on this lattice has a

unique least fixpoint Ifp(P) [28].

Definition 27 (Alternating Fixpoint). The alternating fixpoint operator, ¥p,

for an F-logic KB P takes as input an extended atom set, 1, and generates a new

extended atom set as follows: Wp(/\) def lfp(Tp 7).

Definition 28 (F-logic Fixpoint). The F-logic fizpoint operator, Fp, where

P is an F-logic KB, takes as input an extended atom set, T, and generates a new

extended atom set as follows: FP(T) def LDP(LDP(I))

Lemma 6. Let 1 be an extended atom set of an F-logic KB P, J = wp(1).
Then:

val

1) for all c,m,o0: if c[m]~> 0 € J then c # o.

[
2) for all c,m,o0: if c[m]Soec J thenc;«éo
3) for allo,m,v,c:olm — V]S, € J iff om — v| <, EIC;T(E).
4) for all o,m,v,c: o[m — V]S 4. € J iff olm — V] . € TCPT(j).

5) for all o,m,v,c: if o[m — V]S, € J thenc#o.

(
(
(
(
(~
(€ J thenc#o.

)
)
)
)
)
6) for all o,m,v,c: if olm — V]S 4,

Lemma 7. Up is antimonotonic when P is fized.

Lemma 8. Fp is monotonic when P is fized.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 101

8 Stable Object Models

Although the inheritance postulates rule out a large number of unintended inter-
pretations of F-logic KBs, they still do not restrict object models tightly enough.
There can be unfounded object models that do not match the common intuition
behind inference. This problem is illustrated with the following example.

cl[m->a] o:Cy.
C2:iiC1.
c2 [m->b] ca[m — al.
, Cz[m — b]
o o:c; :— o[m — b].

Fig. 8. Unfounded Inference

Ezample 2. Consider the KB in Figure [and the following two-valued object
model Z = (T; (), where

C2
valJ "

T ={o:¢1,c0::¢1,0:Cp,Cc1[M — Ao, C2[M — blex, 0[m — b]

Clearly, Z satisfies the regular rules of the KB in Figure[8 and all the inheritance
postulates introduced in Section Bl However, we should note that in Z the truth
of 0:cy and o[m — b] 2 is not well-founded. Indeed, the truth of o:c, depends
ono[m — b] being satisfied in the body of the last rule. Since o[m — b] does not
appear in the head of any rule, there is no way for m — b to be explicitly defined
for o. So the satisfaction of o[m — b] depends on o inheriting m — b from cj,
since ¢y is the only class that has an explicit definition for m — b. However, o can
inherit m — b from c, only if the truth of o:c; can be established first. We see
that the inferences of o:c, and o[m — b] 2, depend on each other like chicken
and egg. Therefore, we should not conclude that both o:c; and ojm — b] 2 are
true as implied by the KB and our semantics for inheritance.

To overcome the problem, we will introduce a special class of stable object mod-
els, which do not exhibit the aforementioned anomaly.

Definition 29. Given an interpretation T = (T;U) of an F-logic KB P, let Tr
be the extended atom set constructed by augmenting T with the set of auziliary
atoms corresponding to the strong inheritance candidates in Z. Let Uz be the
extended atom set constructed by augmenting T U U with the set of auxiliary

atoms corresponding to the strong and weak inheritance candidates in Z. More

precisely, we define T‘I ey A, ﬁz “ryvu B, where

val s.val code s.code

A = {c[m]~>o|c[m]~>7 0} U{c[m]~> o] c[m] ~57 0}

val

B = {c[m]& 0| c[m] 470 or c[m] "4z 0} U

{clm] < o]

w.code

c[m] &z 0 or c[m] &7 o}

102 G. Yang and M. Kifer

Definition 30 (Stable Interpretation). Let Z = ('T; U) be an interpretation
of an F-logic KB P. T is called a stable interpretation of P, if Tz = ¥p(Uz) and
Uz =¥p(T1).

Our definition of stable interpretations is closely related to that of stable models
introduced in [T635]. The idea is that given an interpretation Z of an F-logic KB
P, we first resolve all negative premises using the information in Z. The result is
a residual positive KB without negation. Then Z is said to be stable if and only
if 7 can reproduce itself via the least fixpoint computation over the residual KB.
This is how stable interpretations can prevent the kind of unfounded inference
illustrated in Example

We should note that Definition [30] only requires that a stable interpretation
7 = (T;U) satisfy a certain computational property with respect to ¥p, i.e.,
T‘I =Up (ﬁz) and ﬁz =Up (TI) In fact, it turns out that a stable interpretation
of an F-logic KB P satisfies all the regular rules and template rules in P as well
as all the core and cautious inheritance postulates.

Theorem 1. Let T = (T;U) be a stable interpretation of an F-logic KB P.
Then T is an object model of P. Moreover, T satisfies the cautious ISA transitivity
constraint and the cautious inheritance constraint.

Proof. By Definition 20, and by Propositions[I 2, B, @ Bl 6, and [

Since, by Theorem[I] stable interpretations satisfy all the requirements for object
models, we will start referring to stable interpretations as stable object models.

There is an interesting correspondence between stable object models and fix-
points of Fp. On one hand, it can be easily seen that stable object models are
essentially fixpoints of Fp. Let Z = (T; U) be a stable object model of an F-logic
KB P. Then T = Wp(ﬁz) and Uz = !I/p(TI) by Definition B0l It follows that
TI =Up ([AJI) = Up(Pp (’TI)) Fp (TI) and so TI is a fixpoint of Fp. Similarly,
IAJI is also a fixpoint of Fp. Moreover, TI C UI by Definition

The following theorem shows that stable object models can be constructed
using certain fixpoints of Fp.

Theorem 2. Let P be an F- logzc KB, J a fixzpoint of Fp, K = LDP(J), and
J C K. Then T = (m (J);?T(K) - 7r(J)>, where 7 is the projection function
defined in Section[7, is a stable object model of P.

Proof. Let T = 77() and U= m(K) = m(J). Thus T = ('T;U). Since JCK,
it follows that 7(J) C 7(K), and so TUU = (K K). To show that T is a stable
object model of P, we need to establish that TI = !l'/p(UI) and UI = !I/p(TI)
Since J is a ﬁxpomt of Fp and K = Wp(J)7 it follows that J !l'/p(), by
Definition Therefore, if we can show that TI — J and UI = K then it
follows that Z is a stable object model of P.

Since J = Up(K) = lfp(T) and K = LDP(J) = 1fp(Tp 5), we can derive
the following equations, by Deﬁnltlons 6 and

J =RC,, ¢ (J)UTC,, ¢ (J)UICHT)UICE ¢ (J)UIC], (T)

Inheritance in Rule-Based Frame Systems: Semantics and Inference 103

K =RC, ;(K)UTC, 5(K)UIC (K) UICS, 5 (K)uIC;, 5(K)

s.val

First we will show that for all ¢,m,o: c[m]"%0 € J iff c[m]*$'70. Indeed,

val val

cm]&o e T, iff cm]So e IC & (j)7 iff c£0,0:c€ J,c[m — Vex € J
for some v, and ov(c,m,0) ¢ IBp(K), by Definition 23] iff ¢ # 0, 0:c € 7r(:]\)7
c[m — v]ex € m(J) for some v, and ov(c,m,0) ¢ IBp(m(K)),iff c #0,0:c € T,
c[m — v]ex € T for some v, and ov(c,m,0) ¢ IBp(TUU), iff c[m]s«lf;lzo by

code

Lemma [l Similarly, we can also show that () for all ¢, m,o: c[%50 e T iff

s.code val code

c[m] ~>°z 05 and (ii) for all ¢, m, o: c[m]voeKorc[]MOEKIHC[|~zo.

Therefore, it follows that TI = 7 and UI =K by Definition 29l This completes
the proof.

It is worth pointing out that the condition J C K in Theorem[is not necessary
for constructing a stable object model out of the extended sets J and K. In
fact, the following example shows that there is an F-logic KB P such that T is
a fixpoint of Fp, K = Wp(J), and J ¢ K,but Z=(n(J);x(K)—7(J))is a
stable object model of P.

c2 [m->Db] 0:C1.
alm — al.
c1:c2 :— c[m — bl.
cllm->a] c2m — b] :— —c e,
e :— om — al.
c2[m — b] :— o[m — al.

Fig. 9. Constructive Fixpoints

Ezample 3. Consider the F-logic KB P in Figure @ and the following two ex-
tended sets J and K:

J = {o:c1,c1[m — a]ex,0[m — a] L, c1icp, cm — blext U

val’

{c1[m] <% o, co[m] <% o}
val

K = {o:c1,c1[m — alex} U {c1[m]~% o}

One can verify that J = !I/p(IA(), K = Wp(j), and so J is a fixpoint of
Wp. Moreover, w(J) = {o:c1,c1fm — alex,0[m — a] Val,cl :C2,C2[m — blex},
m(K)=n(J) = 0. We can also verify that Z = (m(J);7(K)=n(J)) is a stable

object model of P. But clearly J — K # (). Thus J ¢ K.

Another interesting question is whether we can always construct stable object
models of an F-logic KB P from fixpoints of ¥p. The answer turns out to be no.
The following example shows that some F-logic KBs may have fixpoints from
which we cannot even construct an object model for that KB.

104 G. Yang and M. Kifer

01 :Ci1.
cl c2 07 :Co.
cifm — a] :— —oim — al.
c2[m — b] :— —oz2[m — b].
c[m — ¢] :— oi[m — a],02[m — b].

ol o2

Fig. 10. Nonconstructive Fixpoints

Ezample 4. Consider the F-logic KB P in Figure [Il] and the following two ex-
tended sets J and K:

01:€1,02:C2,c1[m — alex,01[m — a] &} U {ea[m] < 01}

={
{or:€1,02:€2,colm — blex, 02[m — b] %} U {calm] < 02}

One can verify that J = Wp(fi), K = Wp(j) and so J is a fixpoint of Wp.

However,
C1
val

w(jA) ={01:¢1,02:C2,€1[M — a]ex,01[m — 3

o~

7(K)—m(J) ={ca[m — blex,02[m — b] 3

val

~

It is easy to check that the interpretation 7 = <7r(j), (K)—m(J)) is not even
an object model of P, because Z does not satisfy the KB in Figure [0, namely,
the last rule of the KB in Figure [Tl But if we remove the last rule from the KB
in Figure [I0 then Z would be an object model of this new KB, but not a stable
object model.

9 Cautious Object Models

Here we introduce a special class of stable object models, called cautious object
model. These models have an important property that every F-logic KB has a
unique cautious object model. This notion relates stable object models and the

fixpoint computation of Fp. Recall that Fp def Up - ¥p is monotonic and hence
has a unique least fixpoint, denoted lfp(Fp).

Definition 31 (Cautious Object Model). The cautious object model, M, of
an F-logic KB P is defined as follows: M = (T;U), where

T = m(lfp(Fp))
U = n(p(lfp(Fp))) — n(Ifp(Fp))

and m is the projection function defined in Section [}

Next we will list several important properties of cautious object models. First
we need to introduce the notations used for representing the intermediate results
of the least fixpoint computation of ¥p and Fp.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 105

Definition 32. Let a range over all countable ordinals. We define the following
extended atom sets for an F-logic KB P:

—~~
(=]
~

for limit ordinal O

o
I
o
I

for successor ordinal o

for limit ordinal o # 0

= = =
Q
Il
PS; =
D QC}) D
Il
) QH))

p(Ua1)
Ty

—~
Q
~

Q

>
@)
=)

Ta 0o ZWP(oo)

0o =

PC‘R

Lemma 9. Let o and B range over all countable ordinals. Then:
(1) for all o, B: if a < B then Ta QTB
(2) Too = Up(Fr)
(3) for all a: Ty C Too
(4) Uss = gfp(Fp)
(5) for all a: Uy 2 Us
(6) for all «, ﬂ zfa < f3 then U, 2 Gg
(7) for all a: Ty C Uq
(8) for all a, (: T, C U,g

From Definition 31l Lemma [0 and from the definition of the projection function
7 in Section [1 we obtain a new characterization of the cautious object model.

Lemma 10. If M is the cautious object model of an F-logic KB P then

~ ~ ~ ~ ~

M = (7(To);7(Uoe) = (Too)) = (7(Too);m(Uoe — Tox))

Let a be a countable ordinal. Given a pair of extended atom sets Ta and ﬁa, we
know that T, C U, and so 7(T,) C (U,) by Lemma[@l We can construct an in-
terpretation Z,, as follows: Z, = (7(T4); 7(Us) — 7(T4)). Then the set of atoms

val code

c[m]*% o (c[m]“¥0) in T, constitutes a subset of the set of strong value (code)
inheritance candidates in Z,, whereas the set of atoms c[m]<% o (c[m] <% o) in
U, constitutes a superset of the set of strong and weak value (code) inheritance
candidates in Z,. In other words, Ta underestimates inheritance information
whereas U, overestimates inheritance information. The following lemma illus-

trates this book-keeping mechanism of the alternating fixpoint computation.

Lemma 11. Let T, = (7(To); 7(Us) — m(Ta)) where o ranges over all count-
able ordinals. Then the following statements are true:

(1) for all c,m,o: if c[m]% 0 € Ty then c[m]*8'z, o

(2) for all c,m,o: if c[m] fﬁfo € Ty then c[m]“5°z. o

(3) for all c,m,o: if c[m]* «»1 o or c[m] %42 o then c[m]<% o € U,

(4) for all c,m,o: if c[m] “3°z_ o or c[m] &2 o then c[m]“5 o € U,

106 G. Yang and M. Kifer

Lemma 12. Let M be the cautious object model of an F-logic KB P. Then the
following statements are true:

s.val val

(1) for all c,m,o0: c[m]vMozﬁc[}MOET

(2) for all c,m,o: [m}«»Mo iff c[m]«ozdfoeT

(3) forallc,m,o:c[m]«»Mo or c[m] %5 0 zﬁc[m]«lﬁer
[m] "

(4) for all c,m,o: c[m] “%“yq0 or c[m] “E“rg0 iff c[m] o € Uny

The lemma above says that To includes exactly all the strong inheritance candi-
dates while U, includes exactly all the strong and weak inheritance candidates
in M. This essentially implies that the cautious object model is indeed a stable
object model.

Theorem 3. The cautious object model M of an F-logic KB P is a stable object
model of P.

Proof. Let M = (T, U> be the cautious obJect model of P. Then T = 7T(T)
and U = W(ﬁoo) 7r(00)- S0 by Definition 29 and Lemma [T2] Ta = Too and
Ut = Use. Moreover, Uy, = LDP(TOO) and Too = WP(U) by Definition B2 and
Lemma [@ It follows that ’TM =Up (UM) and UM = Wp(’TM). Therefore, M is
a stable interpretation and thus a stable object model of P.

cl[m->a] 0:c1.
C2::C1.
o:c :— o[m — al.
c2 off — x].
/ alm — al.
o[f->x] code(cz) @thisim — b] :— @this[f — x].

Fig. 11. Computation of Cautious Object Models

Ezxample 5. We illustrate the computation of cautious object models using the
F-logic KB P in Figure[[Il First let T and U denote the following sets of atoms:

T ={o:¢c1,c0::¢1,0[f — X|ox, C1[m — alex}

U= {OZC27 [m - a] Val7o[m - b] code}

Then the computation process of ¥p is as follows:

To =0

T1 = ¥p(To) = TUU U {c1[m] % o, co[m] %5 o}
Ty =0p(T)) =T

Ty = ¥p(Ty) =Ty

Ty = Up(Ts) = Ty

Therefore, lfp(Fp) = T, and Up(lfp(Fp)) = T1, and so the cautious object
model of the KB in Figure[IIlis (T;U).

Inheritance in Rule-Based Frame Systems: Semantics and Inference 107

Theorem [3] gives a procedural characterization of the cautious object model,

e., it is essentially defined as the least fixpoint of the extended alternating

fixpoint computation. Next we will present two additional characterizations of
the cautious object model semantics.

First, by comparing the amount of “definite” information, i.e., truth and false-
hood, that is contained in different stable object models of an F-logic KB P,
we can define a partial order, called information ordering, among stable object
models.

Definition 33 (Information Ordering). Let 73 = (P1;Q1), Zo = (P2;Q2)
be two stable object models of an F-logic KB P, Ry = HBp — (P1 U Q1),

=HBp — (P2 U Q2). The information ordering on object models is defined
as follows: Ty =X Iy iff P1 C Py and Ry C Ro.

Intuitively, a stable object model is “smaller” in the information ordering, if it
contains fewer true facts and fewer false facts. Therefore, the least stable object
model contains the smallest set of true atoms and the smallest set of false atoms
among all stable object models.

Definition 34 (Least Stable Object Model). Let Z be a stable object model
of an F-logic KB P. T is the least stable object model of P, if T <X J for any
stable object model J of P.

Theorem 4. The cautious object model M of an F-logic KB P is the least
stable object model of P.

Proof. Let T = (T;U) be any stable object model of P. We need to show that
M < T. Recall that M = (7(Tso);7(Uso) — m(Too)). Therefore, to show that
M = Z, it suffices to show that W(TOO) C T and 71'(600) D TUU. Since Z
is a stable object model of P, it follows that TI = !l'/p([AJI) and [AJI = !I/p(TI)
Therefore, TI =Up (GI) lpp(@p (TI)) Fp (TI) and so TI is a fixpoint of Fp.
Similarly, UI is also a ﬁxpomt of Fp But TOO = lfp(Fp) and UOO = gfp(Fp) by
Lemma [It follows that T € Tz and Us 2 UI Thus m(Te) € 7(Tz) and
7(Uso) 2 m(Ug). Moreover, 7(Tz) = T and n(Uz) = T U U, by Definition
So 7(Tw) C T and 7(Ua) 2 TUT.

Besides comparing different models of a KB with respect to information ordering,
it is also common to compare different models based on the amount of “truth”
contained in the models. Typically, the true component of a model is minimized
and the false component maximized. However, in F-logic we also need to deal
with inheritance, which complicates the matters a bit, because some facts may
be derived via inheritance. As a consequence, there are object models that look
similar but are actually incomparable. This leads to the following definition
of truth ordering among object models, which minimizes not only the set of
true atoms of an object model, but also the amount of positive inheritance
information implied by the object model.

108 G. Yang and M. Kifer

Definition 35 (Truth Ordering). Let 7; = (P1;Q1) and Zo = (P2; Q2) be
two object models of an F-logic KB P. We write I < Zs iff

(1) Py C Py; and

(2) P1 U Ql g P2 @] QQ,’ and

(3) for all c,m,o0: c[m] <87, o implies c[m] <5z, o; and

s.code

(4) for all c,m,o0: c[m] “&°z, o implies c[m] “S°z, o.

Definition 36 (Minimal Object Model). An object model T is minimal iff
there exists no object model J such that J <7 and J # 1.

The above definitions minimize the number of strong inheritance candidates
implied by an object model in addition to the usual minimization of truth and
maximization of falsehood. This is needed because increasing the number of false
facts might inflate the number of strong inheritance candidates, which in turn
might unjustifiably inflate the number of facts that are derived by inheritance.

cl[m->a] c3[m->b] 0:C1.
0:Co.
C2::C3.
c2 cifm — aJ.
c3[m — bl.
c2[m — c] :— o[m — al.

Fig. 12. Minimal Object Model

Example 6. Consider the KB in Figure [[2] and the following two object models
of the KB: 77 = (P1;Q1), where

Py ={o:cy,0:c0,c0::¢3,¢1[m — aex, C3[M — blex}
Q=10
and Zy = (P2; Q2), where
Po=Py
Qz = {o[m — a]{jp co[m — cfex}

7, and Z both agree on the atoms that are true. But in Z; both olm — a] !, and
co[m — clex are false, whereas in 7, they are both underdefined. Clearly, Z; has
more false atoms than 7 and so with the usual notion of minimality we would say
71 < I,. However, 7; is not as “tight” as it appears, because the additional false
atoms in Z; are not automatically implied by the KB under our cautious object
model semantics. Indeed, although c3[m] is a strong value inheritance candidate
for o in 73, it is only a weak value inheritance candidate in 7. We can see that
it is due to this spurious positive information about inheritance candidates that
77 can have additional false atoms (compared to Zz) while the sets of the true
atoms in these interpretations can remain the same. This anomaly is eliminated
by the inheritance minimization built into Definition [38], which renders the two
models incomparable, i.e., 7y £ Ts.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 109

Theorem 5. The cautious object model M of an F-logic KB P is minimal
among those object models of P that satisfy the cautious ISA transitivity con-
straint and the cautious inheritance constraint.

Proof. This proof is long and is relegated to Section of the Appendix.

10 Implementation

It turns out that the (unique) cautious object model of an F-logic KB P can
be computed as the well-founded model of a certain general logic program with
negation, which is obtained from P via rewriting. Before describing the rewriting
procedure we first define a rewriting function that applies to all regular rules and
template rules.

Definition 37. Given an F-logic KB P and a literal L in P, the functions p"
and p® that rewrite head and body literals in P are defined as follows:

isa(o,¢), ifL=o0:c
sub(s,c), ifL=s:c
muv(o,m,v), if L =o[m — V]

= (p"(G)), ifL=-6G

sub(s, c), ifL=s:c p'(L) =
exmu(s,m,v), if L =s[m — v|

isa(o, c), ifL=o:c
p"(L) = {

The rewriting function p on regular rules and template rules in P is defined as
follows:

p(H . L17'--7Ln) :ph(H) . pb(L1)7"-7pb(L")
p(code(c) @this[m — v] :— Li,...,Ly) = ins(0,m,v,c) :— p"(B1),...,p"(Bn)

where O is a new variable that does not appear in P and, each B; = (Li)”O, i.e.,
B; is obtained from L; by substituting O for all occurrences of the template term
@this. The predicates, isa, sub, exmv, mv, and ins, are auxiliary predicates
introduced by the rewriting.

Note that since literals in rule heads and bodies have different meanings, they
are rewritten differently. Moreover, literals in the heads of regular rules and
template rules are also rewritten differently. The rewriting procedure that trans-
forms F-logic KBs into general logic programs is defined next.

Definition 38 (Well-Founded Rewriting). The well-founded rewriting of an
F-logic KB P, denoted P, is a general logic program constructed by the fol-
lowing steps:

(1) For every regular rule R in P, add its rewriting p(R) into P*f;

(2) For every template rule R in P, which specifies an instance method m
for a class c, add its rewriting p(R) into P*f. Moreover, add a fact
codedef(c,m) into P*f;

(3) Include the trailer rules shown in Figure[I3to P® (note that uppercase
letters denote variables in these trailer rules).

110 G. Yang and M. Kifer

mv(0,M,V) :— exmv(O,M, V).
mv(0,M,V) :— vamv(0,M,V, C).
mv(0,M,V) :— comv(O,M,V, C).
sub(S, C) :— sub(S,X), sub(X, C)
15a(0, C) :— isa(0,S), sub(S, C).
vamv(0,M,V, C) : — vacan(C,M, 0), exmv(C,M, V), =ex(0,M), =multi(C,M, O).
comv(0,M,V, C) :— cocan(C,M, 0), ins(0O,M,V, C), mex(0, M), ~multi(C, M, O).
vacan(C,M,0) :— isa(O,C), exmv(C,M,V), C # O, = override(C,M, O).
cocan(C, M, 0) :— isa(0O, C), codedef(C,M), C # O, = override(C,M, O).
ex(0O,M) :— exmv(0, M, V).
multi(C, M, O) : — vacan(X,M,0), X # C.
multi(C, M, 0) :— cocan(X, M, 0), X # C.
override(C,M,0) :— sub(X, C), isa(0,X), exmv(X,M, V), X £ C, X # O.
override(C,M,0) :— sub(X, C), isa(0,X), codedef(X,M), X # C, X # O.

Fig. 13. Trailer Rules for Well-Founded Rewriting

Note that while rewriting an F-logic KB into a general logic program, we
need to output facts of the form codedef(c,m) to remember that there is a
template rule specifying instance method m for class c. Such facts are used to
derive overriding and code inheritance candidacy information.

There is a unique well-founded model for any general logic program [15].
Next we will present a characterization of well-founded models based on the
alternating fixpoint computation introduced in [42]. Given any general logic
program P, we will use HBp to denote the Herbrand base of P, which consists of
all possible atoms constructed using the predicate symbols and function symbols
in P.

Definition 39. Let P be a general logic program and 1 a subset of HBp. The
operator Cp 1 takes as input a set of atoms, J, and generates another set of
atoms, Cp 1(J) C HBp, as follows:

There is H:— Aq,...,An,—B1,...,— B, € ground(P), m >0,
H{n>0, A (1<i<m) andBj (1<j<n) are positive literals, and
AieJ foralll1<i<m,Bj¢l foralll<j<n.

Lemma 13. Cp 1 is monotonic when P and 1 are fized.

It follows that Cp 1 has a unique least fixpoint. Having defined Cp 1 we can
introduce two more operators, Sp and Ap, as follows.

Definition 40. Let P be a general logic program and 1 be a subset of HBp.
def def

Then: Sp(I) = Ifp(Cp;1), Ap(I) = Sp(Sp(D)).

Lemma 14. Sp is antimonotonic and Ap is monotonic when P is fized.

It follows that Ap has a unique least fixpoint, denoted lIfp(Ap). The following
lemma from [42] explains how well-founded models can be defined in terms of
alternating fixpoints.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 111

Lemma 15. The well-founded model, (T;U), of a general logic program P,
where T is the set of atoms that are true and U is the set of atoms that are under-
defined, can be computed as follows: T = lfp(Ap), U = Sp(lfp(Ap)) — Ifp(Ap).

Given the well-founded rewriting, P*/, of an F-logic KB P, the Herbrand base
of P%'| denoted HBpus, consists of atoms of the following forms: isa/2, sub/2,
exmv /3, vamv/4, ins/4, codedef /2, comv/4, mv/3, vacan/3, cocan/3, ex/2,
multi/3, and override/3. We can establish an isomorphism between interpreta-
tions of P*f and P as follows.

Definition 41 (Isomorphism). Let P be the well-founded rewriting of an
F-logic KB P, HBpuw the Herbrand base of P/, %p the extended Herbrand
base of P, I a subset of HBpuwr, and T a subset of ’f[?)’p. We will say that 1*f
is isomorphic to T, if all of the following conditions hold:
(1) for all o,c: isa(o,c) € I*/ iffo:cel
2) for all s,c: sub(s,c) € 1" iffsucel
) for all s,m,v: exmu(s,m,v) € I/ iff sfm — v]ex €1
) for all o,m,v,c: vamv(o,m,v,c) € I*f iff olm — v]¢, €1
) for all o,m,v,c: comv(o,m,v,c) € I/ iff o[m — V]S 4, €1
6) for all c,m,o: vacan(c, m,0) € I iff cm]Soe T
7) for all c,m,o: cocan(c, m,0) € I/ iff c[m]*50 e T
8) for all o,m: ex(o,m) € I iff ec(o,m) € IBP(T)
(9) for all ¢, m,o0: multi(c,m,o0) € I iff me(c,m,o0) € IBp(1)
(10) for all c,m,o0: override(c,m,o0) € I/ iff ov(c, m,0) € IBp(1)
Let M™ be the well-founded model of P*f and M the cautious object model of
P, MY = (T%;U%) M = (7(Too); m(Une — Too)). We will say that M/
is isomorphic to M, if T% and U are isomorphic to TDO and [AJOO — TDO,
respectively.

(
(
(
(
(
(
(

Note that the definition above includes atoms which are not in any interpreta-
tion of an F-logic KB P. However, if we can show that the well-founded model
of P%' is isomorphic (according to the above definition) to the cautious ob-
ject model M of P, we can then establish a one-to-one correspondence between
isa(o,c) € M™ and o:c € M, between sub(s,c) € M* ands::c € M, between
exmu(s,m,v) € M and sm — v]ex € M, between comv(o,m,v,c) € M™/
and o[m — V| ;. € M, and between vamv(o,m,v,c) € M and o[m — v]<,
€ M, taking into account the truth values of atoms. Thus the cautious object
model of P can be effectively computed by the well-founded model of P*f.

Definition 42. Let P* be the well-founded rewriting of an F-logic KB P and
I a subset of HBpur. We will say that 1% is in normal form, if for all o,m, v:
mv(o,m,v) € 1% iff exmv(o,m,v) € 1% or there is some class c such that
vamv(o,m,v,c) € I or comv(o,m,v,c) € I*.

In the following we introduce notations to represent the intermediate results
during the computation of the well-founded model of a general logic program.
These notations are used in the proof of the main theorem of this section.

112 G. Yang and M. Kifer

Definition 43. Let P be the well-founded rewriting of an F-logic KB P. De-
fine:

Tg’f =0 Ug’f = Spur (Tg’f) for limit ordinal O

T = Spu (U)) U =Spu(TY) for successor ordinal o

TV = U T;}”f UY = Spu (T for limit ordinal o # 0
B<a
T =T UY = Spu (TY)

Now we are ready to present the main theorem of this section. This theorem
relies on a number of lemmas and propositions whose proofs are quite long; they
can be found in Section [A3] of the Appendix.

Theorem 6. Given the well-founded rewriting P of an F-logic KB P, the
well-founded model of P is isomorphic to the cautious object model of P.

Proof. Let M™ = (T%;U") be the well-founded model of P*f. Then by
Lemmal[[5 T* = T% and U = U —T4/. Let M = (T;U) be the cautious
object model of P. Then by Lemma [0, T = n(Ts) and U = 7(Uso — Too).
Therefore, by Definition B} to show that M is isomorphic to M, it suffices
to show that T% is isomorphic to TOO and UY is isomorphic to U

First note that T% and U% are in normal form for any ordmal o, by
Proposition [l Now we will prove by transfinite induction that T is isomorphic
to ’Ta and U¥f is isomorphic to 6a, for any ordinal a. There are three cases to
consider:

(1) a=0.

The claim is vacuously true for Tg? and To. Ug/ = Spu (TY) = ip(Cpuy o),
Lo

by Definitions and @0, and Up = ¥p(To) = Up(Tp 5), by Definitions

and It follows that Ué”f is isomorphic to Uy, by Proposition B

(2) « is a successor ordinal.
Then TY = Spu(UY)) = Up(Cpus yor), by Definitions H3 and AT, and

a—1

T, = Wp(ﬁa,l) =1fp(Tp 5, _,), by Definitions B2 and Moreover, U wf T, s
isomorphic to U,_; by the induction hypothesis. It follows that U%f is isomor-
phic to U,, by Proposition B Similarly to (1), we can also show that U%/ is
isomorphic to Uy,.

(3) a # 0 is a limit ordinal.

Then TY = Us<a Tgf and To = Uz, Tg. Clearly, T¥f is isomorphic to Ty,
because Tgf is isomorphic to Tg for all 8 < «, by the induction hypothesis.

Similarly to (1), we can also show that U%/ is isomorphic to U..

Inheritance in Rule-Based Frame Systems: Semantics and Inference 113

Note that T2 = {J, T#/ and Tos = U, Ta. Therefore, it follows that T/
is isomorphic to Ts, because T® is isomorphic to T,, for any ordinal a.
Moreover, U¥ = Spuw (T%) = 1fp(Cpus qur), by Definitions B3| and H0, and

Uso = @p(’/foo) =1fp(Tp 7_), by Definitions 32 and 271 Thus UY is isomorphic
to [AJOO, by Proposition [8

It is easy to see that P® can be computed in time linear in the size of the
original F-logic KB P. Also, the trailer rules in Figure [[3 are fixed and do not
depend on P. Therefore, the size of P*f is also linear relative to the size of the
original F-logic KB P. This observation, combined with Theorem[@] leads to the
following claim about the data complexity [43] of our inheritance semantics.

Theorem 7. The data complexity of the cautious object model semantics for
function-free F-logic KBs is polynomial-time.

11 Related Work

Inheritance is one of the key aspects in frame-based knowledge representation.
This problem has been studied quite extensively in the AI and database lit-
erature. To make our comparison with the related work concrete, we first list
the main features of inheritance that we view should be supported by a general
frame-based knowledge system:

— Inference by default inheritance and inference via rules.

— Intentional class hierarchies, i.e., the ability to define both class membership
and subclass relationship via rules.

— Data-dependent and data-independent inheritance. As we have shown, value
inheritance is data-dependent, and this is the type of inheritance generally
considered in Al. Code inheritance is data-independent and is of the kind
that is common in imperative programming languages like C* and Java.

— Overriding of inheritance from more general classes by more specific classes.
Note that this also needs to take into account the interactions between
data-dependent and data-independent inheritance.

— Nonmonotonic inheritance from multiple superclasses. Some proposals avoid
this problem by imposing syntactic restrictions on rules. To this end, these
proposals do not support nonmonotonic multiple inheritance.

— Introspection, by which variables can range over both class and method
names.

— Late binding. This feature is common in imperative object-oriented lan-
guages such as C*+ and Java. Supporting late binding requires resolving
method names at runtime, when the class from which the instance method
definitions are inherited is decided.

There is a large body of work based on Touretzky’s framework of Inheritance
Nets [41]. On one hand, the overriding mechanism in this framework is more

114 G. Yang and M. Kifer

sophisticated than what is typically considered in the knowledge base context.
On the other hand, this framework supports neither deductive inference via rules
nor intensional class hierarchies, which makes it too weak for many applications
of knowledge bases. A survey on several different approaches to computing in-
heritance semantics based on Inheritance Nets can be found in [26].

There is also vast literature on extending traditional relational database sys-
tems with object-oriented features. However, these proposals do not support
deduction via inference rules, which makes them mostly orthogonal to the prob-
lems addressed in this paper. For a comprehensive survey on this subject we
refer the readers to [23].

The original F-logic [2T22] resolved many semantic and proof-theoretic issues
in rule-based frame systems. However, the original semantics for inheritance in
F-logic was problematic. It was defined through a nondeterministic inflationary
fixpoint and was not backed by a corresponding model theory. This semantics
was known to produce questionable results (cf. Section [B]) when default inher-
itance and inference via rules interact. In addition, only value inheritance was
considered in the original F-logic.

Ordered Logic [25] incorporates some aspects of the object-oriented paradigm.
In this framework, both positive and negative literals are allowed in rule heads,
and inference rules are grouped into a set of modules that collectively form a
static class hierarchy. Although Ordered Logic supports overriding and prop-
agation of rules among different modules, the idea of late binding is not built
into the logic. Since it is primarily committed to resolving inconsistency between
positive and negative literals, its semantics has a strong value-based value in-
heritance flavor. Furthermore, this approach permits only fixed class hierarchies
and it does not support introspection.

Abiteboul et al. proposed a framework for implementing inheritance that is
based on program rewriting using Datalog with negation [I]. Our implementa-
tion of the new F-logic semantics is close in spirit to their approach. However,
their proposal is not backed by an independent model-theoretic formalization.
Their framework further excludes nonmonotonic multiple inheritance and makes
a very strong assumption that the rewritten knowledge base must have a total
(two-valued) well-founded model. This latter assumption does not generally hold
without strong syntactic restrictions that force stratification of the knowledge
base. The framework is also limited to value inheritance.

In [I2], Dobbie and Topor developed a model theory for monotonic code in-
heritance in their object-oriented deductive language Gulog. A special feature of
their language is that all the variables in a rule must be explicitly typed according
to a separate signature declaration. However, this language does not support any
kind of nonmonotonic, data-dependent, or multiple inheritance. In [I1], Dobbie
further extends this approach to allow nonmonotonic inheritance. However, even
this extension disallows interaction between inheritance and deduction and does
not support multiple inheritance (the user must disambiguate inheritance con-
flicts manually).

Inheritance in Rule-Based Frame Systems: Semantics and Inference 115

Liu et. al. [27] modified the original F-logic to support code inheritance. How-
ever, to achieve that they had to throw out data-dependent inheritance, much
of introspection, and intensional class hierarchies.

Bugliesi and Jamil proposed a model-theoretic semantics for value and code
inheritance with overriding [5], which bears close resemblance to two-valued sta-
ble models [I6]. However, their semantics applies only to negation-free knowledge
bases (a severe limitation) and does not handle multiple inheritance conflicts.
Instead, it makes multiple inheritance behave additively. (Such behavior can
be easily simulated via rules.) In addition, their framework does not support
data-dependent value inheritance, intensional class hierarchies, and more impor-
tantly, it does not provide an algorithm to compute a canonical model under
their semantics.

May et al. [32] applied the ideas behind the well-founded semantics to F-logic.
However, inheritance is still dealt with in the same way as in the original F-logic.
Deduction and inheritance are computed in two separate stages and so the com-
putation process has an inflationary fixpoint flavor. As mentioned in Section [3]
this semantics is known to produce counter-intuitive results when intensional
class hierarchies interact with overriding and multiple inheritance. Code inheri-
tance is also not handled by this semantics.

In [19020], Jamil introduced a series of techniques to tackle the inheritance
problem. Among these, the ideas of locality and context, which were proposed
to resolve code inheritance and encapsulation in the language Datalog™ ™, have
influenced our approach the most. However, this work does not come with a
model-theoretic inheritance semantics and supports neither intensional class hi-
erarchies nor introspection. The inheritance semantics in [19] is defined by pro-
gram rewriting while in [20] the approach is proof-theoretic.

Finally, May and Kandzia [3T] showed that the original F-logic semantics can
be described using the inflationary extension of Reiter’s Default Logic [37]. In
their framework, inheritance semantics is encoded using defaults. However, their
inheritance strategy is inflationary — once a fact is derived through inheritance,
it is never undone. Therefore, a later inference might invalidate the original
conditions (encoded as justifications of defaults) for inheritance (cf. Section [B]).
Moreover, nonmonotonic multiple inheritance is handled in such a way that
when multiple incomparable inheritance sources exist, one of them is randomly
selected for inheritance instead of none (as in our framework). Code inheritance
is not considered in [31].

12 Conclusion and Future Work

We have developed a novel model theory and a computational framework for
nonmonotonic multiple inheritance of value and code in rule-based frame sys-
tems. We have shown that this semantics is implementable using a deductive
engine, such as XSB [7], that supports well-founded semantics [15]. The value
inheritance part of this semantics has been implemented in FLORA-2 [44/40], a
knowledge representation system, which is built around F-logic, HiLog [6], and

116 G. Yang and M. Kifer

Transaction Logic [4]F Adding code inheritance to FLORA-2 is planned for the
near future.

The semantics proposed in this paper can be extended — without adding to
the syntax — to allow a new kind of inheritable methods in addition to the
traditional instance methods. The idea is to allow the template term @this in a
template rule to be instantiated not only with instances of the class for which
the template rule is defined, but also with that class itself and its subclasses
as well. Effectively this turns template rules into pieces of code that also define
class methods and that are inheritable by subclasses. For instance, with such a
modification, the template rule

code(employee) @this[avgSalary — A] :— A = avg{S|E: Qthis, E[salary — S]}.

where avg{...} is the averaging aggregate function, could be instantiated with
class employee itself to

employee[avgSalary — A] :— A = avg{S|E :employee, E[salary — S]}.
and instantiated with one of employee’s subclasses, secretary, to
secretary[avgSalary — A] :— A = avg{S|E : secretary, E[salary — S]}.

Similar rules could be obtained for other subclasses of employee, such as engineer
and faculty. The last two rules above define the class method, avgSalary, for
classes employee and secretary. It returns the average salary of an employee and
a secretary, respectively. This kind of methods is not possible using the earlier
machinery of class and instance methods.

Our model-theoretic approach points to several future research directions.
First, the proposed semantics for inheritance here can be viewed as source-based.
This means that in determining whether a multiple inheritance conflict exists
the semantics takes into account only whether the same method is defined at
different inheritance sources. A conflict is declared even if they all return exactly
the same set of values. A content-based inheritance policy would not view this
as a conflict. Such content-based inheritance seems harder computationally, but
is worth further investigation. Second, it has been observed that inheritance-like
phenomena arise in many domains, such as discretionary access control and trust
management [I8], but they cannot be formalized using a single semantics. We
are considering extensions to our framework to allow users to specify their own
ad hoc inheritance policies in a programmable, yet declarative, way.

Acknowledgment

This work was supported in part by NSF grants I1S-0072927 and CCR-0311512.
The authors would like to thank the anonymous referees for their helpful com-
ments and suggestions.

® FLORA-2 is freely available from http://flora.sourceforge.net

Inheritance in Rule-Based Frame Systems: Semantics and Inference 117

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

S. Abiteboul, G. Lausen, H. Uphoff, and E. Waller. Methods and rules. In ACM
International Conference on Management of Data (SIGMOD), 1993.

J. Angele, E. Monch, H. Oppermann, S. Staab, and D. Wenke. Ontology-based
query and answering in chemistry: OntoNova @ Project Halo. In International
Semantic Web Conference (ISWC), pages 913-928, 2003.

. D. Berardi, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Mar-

tin, S. Mcllraith, J. Su, and S. Tabet. SWSL: Semantic Web Services
Language. Technical report, Semantic Web Services Initiative, April 2005.
http://www.w3.org/Submission/SWSF-SWSL/.

. A.J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer

Science, 133(2):205-265, 1994.

. M. Bugliesi and H. M. Jamil. A stable model semantics for behavioral inheritance

in deductive object oriented languages. In International Conference on Database
Theory (ICDT), pages 222-237, 1995.

. W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order logic

programming. Journal of Logic Programming (JLP), 15(3):187-230, 1993.

. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic

programs. Journal of the ACM (JACM), 43(1):20-74, 1996.

. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, and D. Fensel.

The WSML family of representation languages. Technical report, DERI, March
2005. http://www.w3.org/Submission/ WSML/.

. S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for

RDF. In QL’98 - The Query Languages Workshop, December 1998.

S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based ac-
cess to distributed and semi-structured information. In R. Meersman, editor, Data-
base Semantics, Semantic Issues in Multimedia Systems, pages 351-369. Kluwer
Academic Publisher, Boston, 1999.

G. Dobbie. Foundations of deductive object-oriented database systems. Technical
Report CS-TR-96/13, Department of Computer Science, Victoria University, 1996.
http://citeseer.ist.psu.edu/dobbie96foundations.html.

G. Dobbie and R. Topor. Resolving ambiguities caused by multiple inheritance. In
International Conference on Deductive and Object-Oriented Databases (DOOD),
pages 265280, 1995.

DSTC, IBM, and CBOP. MOF Query/Views/Transformations. Technical
report, Object Management Group (OMG), 2003. http://www.dstc.edu.au/
Research/Projects/Pegamento/publications/ad-03-08-03.pdf.

J. Frohn, R. Himmerdder, G. Lausen, W. May, and C. Schlepphorst. Managing
semistructured data with FLORID: A deductive object-oriented perspective. In-
formation Systems, 23(8):589-613, 1998.

A. V. Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM (JACM), 38(3):620-650, 1991.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In International Conference on Logic Programming (ICLP), 1988.

A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation:
The missing link of MDA. In Graph Transformation: First International Confer-
ence (ICGT), volume 2505 of Lecture Notes in Computer Science, pages 90-105.
Springer Verlag, October 2002.

118

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

G. Yang and M. Kifer

S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible sup-
port for multiple access control policies. ACM Transactions on Database Systems
(TODS), 26(2):214-260, June 2001.

H. M. Jamil. Implementing abstract objects with inheritance in Datalog"®®. In
International Conference on Very Large Data Bases (VLDB), pages 46-65. Morgan
Kaufmann, 1997.

H. M. Jamil. A logic-based language for parametric inheritance. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), 2000.
M. Kifer and G. Lausen. F-Logic: A higher-order language for reasoning about ob-
jects, inheritance and schema. In ACM International Conference on Management
of Data (SIGMOD), pages 134-146, New York, 1989. ACM.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM (JACM), 42(4):741-843, 1995.

W. Kim and F. H. Lochovsky, editors. Object-Oriented Concepts, Databases, and
Applications. ACM Press and Addison-Wesley, 1989.

R. Krishnan. Disruption tolerant networking: SPINDLE project. Technical report,
The Internet Engineering Task Force, 2006.

E. Laenens and D. Vermeir. A fixpoint semantics for Ordered Logic. Journal of
Logic and Computation, 1(2):159-185, 1990.

L. V. S. Lakshmanan and K. Thirunarayan. Declarative frameworks for inheri-
tance. In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, pages 357-388. Kluwer Academic Publishers, 1998.

M. Liu, G. Dobbie, and T. Ling. A logical foundation for deductive object-oriented
databases. ACM Transactions on Database Systems (TODS), 27(1):117-151, 2002.
J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1984.

A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking
RDF Schemas for the Semantic Web. In International Semantic Web Conference
(ISWC), pages 132-146, London, UK, 2002. Springer Verlag.

W. May. A rule-based querying and updating language for XML. In Interna-
tional Workshop on Database Programming Languages (DBPL), Lecture Notes in
Computer Science, pages 165-181. Springer Verlag, 2001.

W. May and P.-T. Kandzia. Nonmonotonic inheritance in object-oriented deductive
database languages. Journal of Logic and Computation, 11(4):499-525, 2001.

W. May, B. Ludéscher, and G. Lausen. Well-founded semantics for deductive
object-oriented database languages. In International Conference on Deductive and
Object-Oriented Databases (DOOD), Lecture Notes in Computer Science, pages
320-336. Springer Verlag, 1997.

Ontoprise, GmbH. Ontobroker. http://www.ontoprise.com/.

T. C. Przymusinski. Every logic program has a natural stratification and an iter-
ated least fixed point model. In ACM International Symposium on Principles of
Database Systems (PODS), pages 11-21, New York, 1989. ACM.

T. C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13(4):445-464, 1990.

F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-
generation database systems. ACM Transactions on Database Systems (TODS),
16(1):88-131, 1991.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132,
1980.

Rule Interchange Format. W3C Working Group, 2005. http://www.w3.0rg/2005/
rules/wg.html.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 119

39. H.-P. Schnurr and J. Angele. Do not use this gear with a switching lever! Auto-
motive industry experience with Semantic Guides. In International Semantic Web
Conference (ISWC), pages 1029-1040, 2005.

40. M. Sintek and S. Decker. TRIPLE — A query, inference, and transformation lan-
guage for the semantic Web. In International Semantic Web Conference (ISWC),
pages 364—378. Springer Verlag, 2002.

41. D. S. Touretzky. The Mathematics of Inheritance. Morgan-Kaufmann, 1986.

42. A. Van Gelder. The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences, 47(1):185-221, 1993.

43. M. Vardi. The complexity of relational query languages. In ACM Symposium on
Theory of Computing (STOC), pages 137-146, New York, 1982. ACM.

44. G. Yang and M. Kifer. Implementing an efficient DOOD system using a
tabling logic engine. In First International Conference on Computational Logic,
DOOD’2000 Stream, volume 1861 of Lecture Notes in Artificial Intelligence, pages
1078-1083. Springer Verlag, 2000.

45. G. Yang and M. Kifer. Well-founded optimism: Inheritance in frame-based knowl-
edge bases. In International Conference on Ontologies, Databases, and Applications
of Semantics (ODBASE), pages 1013-1032. Springer Verlag, 2002.

46. G. Yang, M. Kifer, and C. Zhao. Flora-2: User’s Manual. http://flora.sourceforge.
net/, June 2005.

A Appendix: Proofs

This appendix includes the proofs of all the main theorems, their supporting
lemmas, and propositions found in the main body of the paper.

A.1 Lemmas and Propositions Supporting Theorem [I] in Section [B]

Lemma 16. Let P be an F-logic KB and T = (T;U) a stable interpretation of
P, then:

Tz = RCy, g, (T1) UTCy, g, (T7) UICH(T7) U ICI‘;’GI(TI) U 10;’61(@,)
Uz = RC;p, 5, (U) UTCy, 5, (Uz) UIC! (Ug) UICE, 5 (Ur) UIC, 5 (Ux)

Proposition 1. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the regular rules of P.

Proof. By contradiction.

Suppose, to the contrary, that Z does not satisfy the regular rules of P.
Then by Definitions Bl and [2 there is a ground regular rule, H : — Ly,..., Ly,
in ground(P), such that VB(H) < VB(L; A ... AL,). Thus it must be the case
that VE(Ly A ... AL,) = t and VB(H) # t, or VB(LyA ... AL,) = u and
VB(H) =f.

(1) VR(LiA ... ALy) =t and VR(H) £t
It follows that VR(L;) = t for all L;,1 <i < n, by Definition [l So by Lemma [It
(i) if L; is a positive literal then vall%I(Li) =t; and (ii) if Lj is a negative literal

120 G. Yang and M. Kifer

then val%I(L;) = t. Therefore, for the atom A € HBp such that H matches A,
it follows that A € RCy, 5_(Tz) € Tz, by Definition 22 and Lemma Thus
Z(A) = t, and so V2(H) = Z(A) = t by Definitions 2Tl and [T a contradiction.
(2) VR(LiA ... ALy) =uand VR(H) =f

It follows that V2(L;) > u for all L;,1 <i < n, by Definition [l So by Lemma [It
(i) if L; is a positive literal then val%I(Li) =t; and (2) if L; is a negative literal
then vall%z(L;) = t. Therefore, for the atom A € HBp such that H matches A,
it follows that A € RCP,TI (Uz) € Uz, by Definition and Lemma Thus
Z(A) > u, and so V2(H) = Z(A) > u by Definitions 2Tl and [} a contradiction.

Proposition 2. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the positive ISA transitivity constraint.

Proof. By Definition[I0, we need to show that the following conditions hold:
(1) for all s, c: if there is x such that Z(s::x) = t and Z(x::c) = t, then

I(s::c) =t;
(2) for all o, c: if there is x such that Z(o:x) = t and Z(x::c) = t, then
Z(o:c) =t.

Note that for all s,c: Z(s::c) =t iff s:ce T C Tz and, for all o, c: Z(o:c) =t
iff o:c € TC Ty Let six €T C Ty andx:ic € T C Tz Then s:ic € IC*(Ty)
by Definition It follows that s::c € ICt(TI) - TI, by Lemma [T@ Similarly,
if 0:x € Tz and x::c € Tz, then o:c € IC*(Tz) C Ts.

Proposition 3. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the context consistency constraint.

Proof. By Definition[I1] we need to show that the following conditions hold:

(1) forall o, m, v: Z(o[m — v|2,,) =f and Z(o[m — v]2 ,.) =f.

Note that I(om — v|]¢) =fiffolm — v|%, ¢ TUU iff olm — v|2, ¢ Uz by
Definition 29 Similarly, Z(o[m — V] Code) = f iff o[m — v]°,. ¢ Uz. Since T
is a stable interpretation of P, we have UI = WP(TI) by Definition It then

follows from Lemma [that o[m — v]°,, ¢ Uz and o[m — v]° .. ¢ Uz, for all
o, m, V.

val code

(2) forall ¢, m, v: if Z(c[m — vl]ex) = f, then Z(o[m — v|S,,) = £ for all o.

Let Z(c[m — v]ex) = £. It follows that c[m — v]ex ¢ Uz. We need to show that
olm — V]S, ¢ Uz for all o. Suppose, to the contrary, that there exists o such
that ojm — v]S, € Uz. Because T is a stable interpretation of P, Uz = ¥p(T7).
It follows that olm — v|¢,, € IC;,TI([/EI) by Lemma B So c[m]%o € Uz,
by Definition Thus c[m]&o € IC;TI([AJI) by Lemma It follows that

cm — V]ex € 61 by Definition 25, which contradicts the premise.

Inheritance in Rule-Based Frame Systems: Semantics and Inference 121

(3) for all ¢, m: if there is no template rule in ground(P) which specifies the
instance method m for class c, then Z(o[m — v|¢_,,) =f for all o,v.
Suppose, to the contrary, that there exist o, v such that Z(o[m — v]¢,q4.) 7 I

Sode € TUU C Uz. Tt follows that o[m — v]¢_,. € IC, (UI)

by LemmalBl Thus c[m] 5 o € Uz by Definition 25 and so c[m] %% ocICy TI(UI)
by Lemma Hence, by Definition 25, there must exist a template rule in
ground(P) which specifies the instance method m for the class c, a contradiction.

Then o[m — v]|¢ Code

(4) for all o, m: if o[m] is a strong explicit definition, then Z(o[m — v]|<,,) =f
and Z(o[m — v|¢, ,4,) =1 for all v, c.

Let o[m] be a strong explicit definition. Then there must exist v such that
o[m — V]ex € T C Tz by Definition @l So ec(o, m) € IBp(Tz) by Definition
Suppose, to the contrary, that there exist v,c such that Z(o[m — v] val) # f
Then ojm — v]S, € TUU C Uz. It follows that o[m — S IC (UI) by
Lemmal[6l Thus ec(o,m) ¢ IBp (TI) by Definition P8 a contradlctlon. Slmilarly,
we can show that Z(o[m — v]¢ 4.) = f for all v, c.

Proposition 4. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the unique source inheritance constraint.

Proof. By Definition[T2 we need to show that the following conditions hold:

(1) for all o,m,v,c: if Z(o[m — v]|S,) =t or Z(o[m — v|S 4.) = t, then for all
z,x such that x # ¢, Z(o[m — z]%,) = f and Z(o[m — z] Xode) = .

Because 7 is a stable interpretation of P, ’TI = WP(UI) and ﬁz = @p(’TIL
by Definition If Z(o[m — v|S,,) = t, then ojm — v]S, € T C Tz by
Definition So o[m — V|, € IC;,GI(T\I) by Lemma [6l It follows that

c[m]% 0 € Tz by Definition On the other hand, if Z(o[m — V]S, 4.) = t,
then o[m — v]S 4. €T C Tz by Definition B9 So o[m — v|¢ code € TCp 5, (Tz7)

code

by Lemmalﬂ Thus c[m] “% o € Tz by Definition [Z5l Therefore, c[m] <% o € Tz or
c[m]%¥o0 e Tz
Suppose, to the contrary, that there are z, x such that x#c, Z(o[m — z] > u.

Theno[m — 2|}, € TUU C Uz by Definition 29 So o[m — VX, € IC (61)

by Lemmalfl Therefore, me(x, m,0) ¢ IBP(TI) by Definition Smce X 75 c, it

follows that c[m]~% o ¢ Ty by Definition 3, which is a contradiction. Therefore,
Z(o[m — z]%,)) =f for all z,x such that x # c. Similarly, we can also show that
Z(olm — Z] Code) = f for all z,x such that x # c.

(2) for all ¢, m, o: if c[m]*&'7 0 or c[m] *%‘7 0, then Z(o[m — v]%,) = f and
Z(olm — v] Code) =f, for all v, x such that x # c.

Let c[m] =5’z 0 or c[m] 5“7 0. Suppose, to the contrary, that there exist v, x such
that x # ¢, olm — V|3, # f. Then olm — v]%,, € TUU C UI by Definition 291
Because 7 is a stable 1nterpretat10n of P, therefore UI =Up (TI) by Definition B0l
Thus olm — v|%,, € ICP’TI (Uz) by Lemma [6 and so me(x,m,0) ¢ IBp(T7)

122 G. Yang and M. Kifer

by Definition However, by Definition 23, c[m]<% o0 € Tz or c[m]*50 € Ty.
Note that x # c. It follows that mc(x, m,0) € IBp(Tz) by Definition P33, which
is a contradiction. Therefore, Z(o[m — v|%,) = f for all v,x such that x # c.
Similarly, we can also show that Z(o[m — v] *.q0) = f for all v,x such that

X # c.
(3) for all o, m, v, c: Z(o[m — V]S) =t iff
(i) o[m] is neither a strong nor a weak explicit definition; and
(ii) c[m] =57 0; and
(i) Z(c[m — v]ex) = t; and
(iv) there is no x such that x # ¢ and x[m]| ~z o.

“=>7_Since 7 is a stable interpretation of P, TI = !I/p(IAJI) by Deﬁnition
Because Z(o[m — v] Val) t,olm — v|[S, € T C Tz by Definition Thus
olm — V]S, € IC (TI) by Lemma [, and c[m]<% 0 € Tz, c[m — v]ex €Ty,

ec(o,m) ¢ IBp(UI), and me(c,m,0) ¢ IBp(Uz), by Definition Note that
ec(o,m) ¢ IBp(Uz). It follows that o[m — X]ex ¢ Uz for all x, by Definition
Thus Z(o[m — x]ex) = f for all x and so o[m] is neither a strong nor a weak

val

explicit definition, by Deﬁnition Al Note that c[m]<%o0 € Ty. It follows that
c[m] %47 0 by Definition Z c[m — v]ex € Tz implies Z(c[m — v]ey) = t. Be-
cause mc(c, m,0) ¢ IBP(UI), therefore there is no x # ¢ such that x[m]*% o € Uz
or xjm|*%o € Uz, by Definition So there is no x such that x # ¢ and
x[m]~»7 0, by Definition

“<=7. Since o[m] is neither a strong nor a weak explicit definition, it follows
that Z(o[m — X]ex) = f for all x, by Definition dl So o[m — x]ex ¢ T U U for
all x, and ec(o,m) ¢ IBp(UI) by Deﬁnitionb 9 and Because c[m] <570,
therefore c[m] <%0 € Ty by Definition Since Z(c[m — vl]ex) = t, it follows
that cfm — v]ex € T C TI Because 7 is a stable interpretation of P, therefore
Tr = Wp(ﬁz) by Definition So if we can show that mc(c,m,o0) ¢ IBP(UI)

then it follows that o[m — v] Cal € IC’ (TI) C Tz, by Definition 5 and

Lemma Suppose, to the contrary, that me(c,m,0) € IBp(ﬁI). Then, by
Definition 3] there is x # ¢ such that x[m]-%0 € Uz or xm] o € Uz. It
follows that x[m] ~»z o by Definition[29] which contradicts the premise. Therefore,
me(c, m,0) ¢ IBp(Uz), and so o[m — v]<, € Tz, Z(o[m — v]<,,) = t.

=

Proposition 5. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the template rules of P.

Proof. By contradiction. Because 7 is a stable interpretation of P, Ty = Wp(ﬁz)
and Uz = !I/p(TI) by Definition Suppose, to the contrary, that Z does not
satisfy the template rules of P. Then, by Definition I3, ground(P) has an object
0 € HUp and a template rule R either of the form code(c) @thisim — v] :— B
or of the form code(c) @this[m — v], such that Z(R|,) = f. Let us assume that
R = code(c) @this[m — v] :— B (the case in which R = code(c) @this[m — v] is
similar). By Definition [I§] there are three possible cases to consider:

Inheritance in Rule-Based Frame Systems: Semantics and Inference 123

code

(1) imodez(Rjo) =t and Z(o[m — V] 4.) < V2(Bjo) i

Because imodez(R|,) = t, therefore by Definition (i) ¢[m] 5"z 0 and so
cm&oe Tz by Definition 29 (ii) ec(o,m) is neither a strong nor a weak ex-
plicit definition. So ec(o, m) ¢ IBp(Uz) by Definitions B3 and @ and (iii) there
is no x # ¢ such that x[m]~»zo. It follows that there is no x # ¢ such that
x[m] <% 0 € Uz or x[m] % 0 € Uz by Definition 23 Thus mc(c, m, o) ¢ IBp(Uz).
Since TI - GI, it also follows that c[m] Lo e IAJI, ec(o,m) ¢ IBP(TI)7 and
mec(c,m,0) ¢ IBp(T7), by the monotonicity of IBp.

First let us assume V2(B,) = t. It follows that Z(o[m — v]¢ 4,) # t. Since
VR(Bo) = t, it follows that V2(L) = t for all L € By, by Definition [l So by
Lemmall} (i) if L is a positive literal then Ual%I(L) =t; and (ii) if L is a negative

literal then val%I(L) = t. Therefore, o[m — V]S 4. € TCP,GI(TI) C Tz, by

code
Definition [24] and Lemma Thus Z(o[m — v|$ 4.) = t, a contradiction. On
the other hand, if V2(B|,) = u, then Z(o[m — V]S 4.) = f. Since V2(B),) = u,

it follows that V2(L) > u for all L € B|,, by Definition[Il So by Lemmal[lt (i) if
L is a positive literal then val%I(L) =t; and (2) if L is a negative literal then
val%r(L) = t. Therefore, o[m — V]S 4. € TCPVTI([AJI) C Uz, by Definition

code

and Lemma [I6l Thus Z(o[m — v]$ 4.) > u, a contradiction.

(2) imodez(Ryo) = u, Z(o[m — v|$,q.) = f, and V2(Bo) > u

code
Because imodez(Rj,) = u, by Definition I (i) c[m] *%‘z 0 or ¢[m] &7 0, and
so c[m] %5 o € Uz by Definition 2% (ii) ec(o, m) is not a strong explicit definition
and so ec(o,m) ¢ IBp(T7z) by Definitions 23] and @ and (iii) there is no x # ¢

s.val s.code

such that x[m] "5 70 or x[m] "5z 0. It follows that there is no x # ¢ such that
x[m]% 0 € Tz or x|m] ¥ o € Tz by Definition Z9 Thus me(c, m,0) ¢ IBp(Tz).
Since V2(B|) > u, it follows that V2(L) > u for all L € B, by Definition Il So
by Lemma [I} (i) if L is a positive literal then val%I(L) =t; and (2)ifLisa
negative literal then Uall%I(L) =t. Thus o[m — V]S 4. € TCPEI([AJI) C Uz, by

code

Definition 22 and Lemma [I68 So, Z(o[m — v]S 4.) > u, a contradiction.

code

(3) imodez(Rjo) = f and Z(o[m — V] 4.) > 1

code

Because Z(o[m — v]¢.,.) > u, so o[m — V]S .. € U C Uz. It follows that

olm — v]¢ 4. € TC, TI([AJI) by Lemma Bl So by Definition P4} c[m] %% 0 € Uz,

code
ec(o,m) ¢ IBp(Tz), and mc(c, m,0) ¢ IBp(Tz). Because c[m]<50 € Uz, so
c[m] *& 70 or c[m] "4z 0, by Definition Since ec(o,m) ¢ IBp(T7z), there-
fore ec(o,m) is not a strong explicit definition, by Definitions 23 and @ Be-
cause me(c,m,0) ¢ IBp(Tz), so there is no x # c such that x[m]&o € Ts

A~
s.val

or xm]"% o0 € Tz. It follows that there is no x # c such that x[m]*%'z0 or

s.code

x[m] ~"5"z 0, by Definition Thus o must either weakly or strongly inherit
R, by Definitions [I7] and Therefore, imodez(R|,) > u, a contradiction.

Proposition 6. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the cautious ISA transitivity constraint.

124 G. Yang and M. Kifer

Proof. By Definition[I3] we need to show that the following conditions hold:
(1) for all s, c: if there is x such that Z(s::x Ax::c) = u and Z(s::c) # t,
then Z(s::c) =u
(2) for all o, c: if there is x such that Z(o:x Ax::c) = u and Z(o:c) # t,
then Z(o:c) =
Suppose I(s:xAx:: c) =u. Thens:x e TUU and x::c € TUU. It follows that
suX € UI and x:: ¢ € Uz, by Definition 29 So s::c € IC!(Uz) by Definition
Since UI = !I/p(TI) by Definition B0, it follows that s::c € IC! (UI) - UI, by
Lemma Thus Z(s::c) > u. But Z(s::c) # t. It follows that Z(s::c) = u.
Similarly, if Z(o:x Ax::c) =u and Z(o:c) # t, then Z(o:c) = u.

Proposition 7. Let Z = (T;U) be a stable interpretation of an F-logic KB P.
Then T satisfies the cautious inheritance constraint.

Proof. By Definition [[4] we need to show for all o, m, v, c: Z(o[m — v]S,;) =u
iff the following conditions hold:
(i) o[m] is not a strong explicit definition;
it) c[m]*&'z0 or c[m] "' o;
iii) Z(c[m — v]ex) = w;
(iv) there is no x # such that x[m] %'z o or x[m] &7 o;
(v) Z(o[m — v]Gu) # t.

“ =", Because 7 is a stable interpretation of P, therefore [AJI = WP(T‘I) by
Definition[30l Because o[m — v] <, = u, therefore om — v|¢ , € TUU C Uz by
Definition 29 Thus o[m — V]S, € IC (7), by Lemmal6l So c[m]~% o € Uz,
c[m — V]ex € Uz, ec(o,m) ¢ IBP(TI), and me(c,m, o) ¢ IBp(Tz), according
to Definition Because ec(o,m) ¢ IBP(TI), it follows that o[m — X]ex ¢ TI
for all x, by Definition So Z(o[m — Xlex) # t for all x. Thus o[] is not
a strong explicit definition by Definition @ Because c[m]"%o0 € UI, it fol-
lows that c[m] 570 or ¢[m] %47 0, by Definition B9l c[m — v]ex € Uz implies
Z(c[m — V]ex) > u. Because mc(c, m,0) ¢ IBp(T7), it follows that there is no
x # ¢ such that c[m]<% o € Tz or c[m]*% 0 € T7. So there is no x # ¢ such that
c[m] &'z 0 or c[m] 47 o, by Definition

“ <=7. Because o[m] is not a strong explicit definition, Z(o[m — Xex) # t for
all x, by Definition [l It follows that o[m — x|ox ¢ T for all x, and so ec(o, m) ¢
IBp(T7), by Definitions 29 and IZ{L Because c[m] 370 or c[m] "5z o, therefore
c[m]*% o e Uz by Definition Since Z(c[m — V]ex) > u, it follows that
c[m — v]ex e TuUU C UI Because 7 is a stable interpretation of P, therefore
Uz = Wp(Tz), by Definition B So if we can show mec(c, m, o) ¢ IBp(T7), then it
follows that olm — v]$,; € IC (UI) C Uz, by Definition 25 and Lemma [I6l

Suppose, to the contrary, that mc(c, m,o) € IBp(Tz). Then there is x # c such
that x[m] <% o € Tz or x[m] %% 0 € Tz by Definition 23 It follows that x[m] “%7 0

code

or x[m] *&z o, by Definition 29, which contradicts the premise. Therefore,

Inheritance in Rule-Based Frame Systems: Semantics and Inference 125

me(c,m,0) ¢ IBp(Tz), and so o[m — v]¢,, € Uz, Z(olm — v],;) > u. But
I(o[m - V]val) #t So I([m - V] al) u.

A.2 Proof of Theorem [5 in Section

Theorem Bl The cautious object model M of an F-logic KB P is minimal
among those object models of P that satisfy the cautious ISA transitivity con-
straint and the cautious inheritance constraint.

Proof. Recall that M :<7r(’/foo); ﬂ(ﬁoo) —F(’TOO)). Let Z = (T;U) be an object
model of P that satisfies the cautious ISA transitivity constraint and the cautious
inheritance constraint. Moreover, Z < M. To show that M is minimal, it suffices
to show that T = T and TU U = Us. By Definition (i) T C T oo

(i) TU U C Uy; (iii) for all ¢, m, o: c[]ff’filzo implies c[m] *5'y(0; and (iv) for
all ¢, m, o: c[m] “4°z o implies c[m]" «»Mo Let J = (T;0) and K= (TUU;0).

Suppose, to the contrary, that T C Teo. Since Too = Uv T’v by Definition
and {Tv} is an increasing sequence by Lemma [0 let o be the first ordinal such
that T C Ty and T D TAFV for all v < a. Clearly, a must be a successor ordinal.
Thus To =1Ufp(Tp 5,), by Definitions [32 and Since Tp | is monotonic
by Lemma Bl it follows that the ordinal powers of TP,Ga,l is an increasing

sequence. Denote j T b © for all ordinal 7. Let 3 be the first ordinal such

yYa—1

that T C jﬁ and T D J7 for all v < . Clearly, § must be a successor ordinal.
Let A be any atom in HBp such that A ¢ T and A € J . By Definitions
and 25 we have:

Jg = RCP,GQ_l(Jﬂ—l) U Tcpyﬁa_l(Jg_l) U
IC'(Jp 1) UICE 5 (Jp-1)UIC, 5 (Js-1)

There are four cases to consider:

(1) Ae RCP,GQ,l(Jﬁfl)

By Definition 22 there must exist a regular rule, H : — Ly,..., Ly, in ground(P),
such that H matches A, and for all L;,;1 <i<n: (i) if L; is a positive literal,
then val%ﬂ_1 (L)) = t; and (i) if L; is a negative literal, then Ual% 71(Li) =t.
Next we show that for all Lj,1 <i<n, V}’(Li) = t. If L; is a positive literal,
since Jg—1 C€ T and val%ﬂ_l (Li) = t, then it follows that V%(L;) = t, by
Lemma 2l Thus V%(Li) =t by Lemma [Il Note that IAJOO - ﬁa_l by Lemma [l
It follows that TU U C Uy C U,—1. Therefore, if L; is a negative literal, since
val%a_l(Li) = t, then it follows that VR(L;) = t, by Lemma 2 Thus VR(L)) =t
by Lemma [Il Because Z satisfies P, it follows that Z(A) = VB(H) = t. Thus
A € T, a contradiction.

126 G. Yang and M. Kifer

(2) AeTCpg (Jo1)

It must be true that A =o[m — v]<_,.. So, by Definition B c[m] %50 € J5_1,
ec(o,m) ¢ IBp(U a,1), me(c, m,o0) ¢ IBp(ﬁa,l), and there is a template rule,
R = code(c) @thism — v] :— B, in ground(P) such that for every literal L€ B;,:
(i) if L is a positive literal then val%ﬁ_l (L) = t; and (ii) if L is a negative literal
then WZ%Q,I(L) =t.

Because c[m] Loe jﬁ 1, there must exist a successor ordinal p < 8—1 < 3,

ode

such that c[m] %0 € J,. It follows that c[m]¥o € IC, 5 (J,1). Thus

c#o0,0:c€ J,_1,and ov(c m,o) ¢ IBp(IAJa,l), by Deﬁmtlon Note that
Jp L CTand TUUC Uy C Uyoq. So, 0: ceTandov(c m,o0) ¢ IBp(T U U).
Thus c[m] *%°7 0 by Lemma El Because ec(o,m) ¢ IBp(Uy_1), it follows that
ec(o,m) ¢ IBp(T U U) by the monotonicity of IBp. It follows that o[m] is neither
a strong nor a weak explicit definition in Z, by Definitions 23] and [
Next we show that there is no x such that x # ¢, xm]~»z 0. Suppose, to the
contrary, that there is x # ¢ such that x[m]~»zo0. Then x # 0, 0:x € TU U,
x[m — ylex € TUU for some y or there is a template rule in ground(P) that spec-
ifies the instance method m for class ¢, and ov(x, m o) ¢ IBp(T), by Lemma [
SlnceTUUCU CUa 1 andTDTa 1,80 0: era 1, X[m — y]exeﬁa_l
for some y or there is a template rule that specifies the instance method m for

class ¢, and ov(x, m,0) & IBp(Ta_1). It follows that x[m]& o e IC & 1(ﬁa_1)
orx[m] o e IC] 71(604,1), by Definition[28 Thus me(c, m,0) € IBp(ﬁa,l),

by Definition [23] which contradicts the fact that mc(c,m,o0) ¢ IBp(ﬁa,l).
So far we have shown that o[m] is neither a strong nor a weak explicit definition

s.code

in Z, c[m] ~5°z 0, and there is no x such that x # ¢ and x[m]~»7 0. Therefore, o
strongly inherits R in Z, by Definition 6 So imodez(R|,) = t. We already know

that for every literal L € Bo: (i) if L is positive then val%ﬁi1 (L) =t; and (ii) if L
is negative then val% _, (L) = t. Now we will show that for all L € By, VE(L) =t.
If L is a positive literal, since 35_1 C T and wl%ﬁ_l (L) = t, then it follows that

VE(L) = t, by Lemma [Thus V2(L) = t by Lemma [l Note that Uso € Upen
by Lemma [It follows that TUU C 600 - ﬁa,l. Therefore, if L is a negative
literal, since val%w1 (L) = t, then it follows that VR(L) = t, by Lemma 2 Thus
VE(L) =t by Lemma [l

Therefore, V(L) = t for every literal L € By,. It follows that V2(B,) = t.
In the above we have shown that imodez(R|,) = t. Since T is an object model
of P, so T should satisfy R,. Thus Z(o[m — v|¢ 4.) = t, by Definition It
follows that ojm — v]< 4, € T, a contradiction.

(3) AcIC(Js 1)

If A = o:c, then there exists x, such that o:x € 35_1 and x::c € jg_l, by
Definition Since :]\ﬁ,l C T, it follows that o:x € T and x::c € T. So
Z(o:x) =t and Z(x::c) = t. Because Z is an object model of P and so satisfies

code

code

Inheritance in Rule-Based Frame Systems: Semantics and Inference 127

the positive ISA transitivity constraint, therefore Z(o:c) = t by Definition
It follows that o:c € T, a contradiction. Similarly, if A =s::c, then we can also
show that s::c € T, which is a contradiction.

(4) Ae IC; O 1(Jg_l)

It must be the case A = o[m — v]¢_,. Thus, by Definition B, c[m]% 0 € Jz_1,
cm — v]ex € Jﬁ 1, ec(o,m) ¢ IBp(Uy—1), and mc(c,m,0) ¢ IBp(Uy_1).
Because c[m]fv> o€ Jg 1, there must exist a successor ordlnal p<pB—-1<p,
such that c[m]<% o € J . It follows that c[m]"% o0 € ICC o (—1). So, c # o,

o:c€ jp_l, c[m — z]ex € Jp 1 for some z, and ov(c, m o) ¢ IBp(—1), by
Definition Since Jp,l - J5,1 CTand TUU C UOO - Ua,h it follows
that o:c € T, c[m — V]ex € T, and ov(c,m,0) ¢ IBp(T U U). Thus c[m] <370
by Lemma [l Because ec(o,m) ¢ IBp(ﬁa,ﬂ7 so ec(o,m) ¢ IBp(T UU) by the
monotonicity of IBp. It follows that o[m] is neither a strong nor a weak explicit
definition in Z, by Definitions 23] and [l

Next we show that there is no x such that x # ¢, xm]~»z 0. Suppose, to the
contrary, that there is x # ¢ such that x[m]~»zo0. Then x# o0, 0:x € TUTU,
x[m — ylex € TUU for some y or there is a template rule in ground(P) which
specifies the instance method m for class ¢, and ov(x,m,0) ¢ IBp(T) by
Lemma 4l Smce TuU C U - Ua 1and T D Ta 1, it follows that o:x € Ua 1,
X[m — ylex € Ua 1 for some y or there is a template rule that specifies the
instance method m for class ¢, and ov(x,m,0) ¢ IBp(T 1). It follows that
x[m] & o € ICE 3 1(6a 1) or x[m]&o € IC 5 1(U 1), by Definition

Therefore, mc(c, m,o0) € IBp(ﬁa,ﬁ7 by Deﬁnltlonm which contradicts the fact
that mc(c,m,0) ¢ IBp(Uq_1).

So far we have shown that o[m] is neither a strong nor a weak explicit definition in
T, c[m] =870, Z(c[m — v]ex) = t, and there is no x such that x # ¢ and x[m] ~»7 o.
Because 7 is an object model of P and so satisfies the unique source inheritance
constraint, therefore ojm — v|<_; € T by Definition [[2] a contradiction.

Therefore, if T C Too, then we can derive a contradiction in all four possible
cases. So it must be true that T = Too. It remains to show that TUU = Us
We know that TuU C U007 because 7T < M. Therefore, if “we can show that
TUU D Use, then TU U = Uy. By Definitions 32 and IZE Uy = Up(Tp3_)-
Since TP 7_ is monotonic, the ordinal powers of Ty, 5 Is an increasing sequence.

Denote K.y = T for all ordinal v. We will prove by transfinite induction

P, T

that TUU D K, for all ordinal «, thus complete the proof.
The case for a limit ordmal « is trivial. If @ = 0, then Ko =) C TUU.
If a # 0, then K U5<a Kg By the induction hypothesis we know that

TUUD Kp forall < a. So TUU D K,

128 G. Yang and M. Kifer

Let a be a successor ordinal and A any atom in HBp such that A € IA{a . We
will show A € T U U. By Definitions 26l and 25, we have:

K, = RCP,Tm(KQ—l yu Tcpﬁ‘x(Ka_l U
IC!(Ka_1)U ICI‘;’TM(IA{a_l)U IC%)TM(IA{a_l)

There are four cases to consider:

(1) A€RCpz (Kao1)
By Definition B2], there must exist a regular rule, H : — Ly,...,L,, in ground(P),
such that H matches A, and for all Lj,1 <i<n: (i) if L; is a positive literal,
then vale (L) =t; and (i) if Li is a negative literal, then vall% L) =t.
Next we show that for all L, 1 <i < n, VR2(L;) > u. If L is a positive literal, since
Ko_1 € TUU by the induction hypothesis and val B (L;) = t, then it follows
that V2(L;) = t, by Lemma 2l Thus VR(L;) > u by Lemma Il We have proved
that T = To. Therefore, if Lj is a negative literal, then V%(L;) = V%f (L) =t.
Thus V2(L;) > u by Lemma [II Because T satisfies P, so Z(A) = VR(H) > u.
Thus Ac TUU.
(2) A€TCp5 (Kao1)
It must be true that A =o[m — v]¢_,.. So, by Definition 24, c[m] %50 € Ko_1,
ec(o,m) ¢ IBp(w0); mc(c,my0) ¢ IBp(Ts), and ground(P) has a template
rule, R = code(c) @thisjm — v] :— B, such that for every literal L € Bjo: (i) if
L is a positive literal then val% _, (L) =t; and (ii) if L is a negative literal then
Uall% (L) =t.

Because c[m] % o € Ka 1, there must exist a successor ordinal p < a—1 < a,

val

such that c[m]~> o0 € K . It follows that c[m]«lﬁ o€ ICy (IA{p_l). Therefore,

c 75 0,0:C € Kp 1, and ov(c,m,0) ¢ IBp(Ts), by Deﬁmtlon Note that
Kp 1 € TUU, by the induction hypothesis. We have proved that T = T
It follows that o:c € TU U and ov(c,m,0) ¢ IBp(T). Therefore c[m] *%°z 0 or
c[m] "7 0, by Lemma [l Because ec(o, m) ¢ IBp(Too), so ec(o, m) ¢ IBp(T).
Thus o[m] is not a strong explicit definition, by Definitions 23] and [Because
cm — V]ex € K,.1 CTU U, it follows that Z(c[m — V]ex) > u.

Next we show that there is no x # ¢ such that x[m] <%z o or x[m] *&“z 0. Sup—
pose, to the contrary, that there exists x # ¢ such that x[m] "3z 0 or x[m] *%°7 o.
Then x[m] ‘R’”ﬁlMo or x[m] “4“\ 0, because T < M. Thus x|m]"% o0 € To or
x[m] %4 0 € T, by Lemma [Thus me(c,m,0) € IBp(To) by Definition 23,
which contradicts the fact that mc(c, m,0) ¢ IBP(’TOO).

So far we have shown that c[m] *%°z0 or c[m] 4“7 0, o[m] is not a strong
explicit definition, and there is no x # ¢ such that x[m] <570 or x[m] *%‘zo.
Therefore, o must either strongly or weakly inherit R in Z, by Definitions
and So imoder(R|,) > u. We already know that for every literal L € By,:

Inheritance in Rule-Based Frame Systems: Semantics and Inference 129

(i) if L is a positive literal then val% (L) = t; and (i) if L is a negative
literal then Ual% (L) = t. Now we show that for all L;,1 <i<n,V2(L;) > u.
If L; is a positive literal, since Ka,l C TUU by the induction hypothesis and
val%%1 (Li) = t, then it follows that VR(L;) = t, by Lemma[2 Thus V2(L;) > u
by Lemma [II Note that T = Teo. Therefore, if L; is a negative literal, then
Vh(L) = V%’ (Li) = t. Thus VB(L;) > u by Lemma[Il Therefore, V2(L) > u for
every literal L € Byo. It follows that V2(Bjo) > u. Moreover, imodez(R|o) > u.
Because 7 is an object model of P, so 7 should satisfy Rj,. It follows that
Z(o[m — V]S 4o) = u, by Definition I8 Thus ojm — v]¢ 4, € TUU.

code code

(3) AcIC(Ka_1)

If A = o:c, then there exists x such that o:x € Ka,l and x::c € Kaq, by
Definition Since Ka,l C T UU by the induction hypothesis, it follows that
o:x € TUU and x::c € TUU. SoZ(0:x) > uand Z(x::c) > u. Because Z satisfies
the cautious ISA transitivity constraint, therefore Z(o:c) > u by Definitions
and It follows that o:c € TUU. Similarly, if A = s:: ¢, then we can also show
that s::ce TUU.

(4) A€IChy (Raor)

It must be the case that A = olm — v] .- It follows that c[m]~% o € Ko,
cm — V]ex € Ko_1, ec(o,m) ¢ IBp(T), and me(c,m,0) ¢ IBp(Tw), by
Definition 25 Because c[m]% o € Ko , so there must exist a successor ordinal
p < a-1< a,such that c[m]So € IA{ Thus c[m]&o € IC;,TOO(IA{,),l).
Therefore, by Deﬁmtlonm c#o0,0:CE€E Kp 1, cm — zex € Kp 1 for some
z, and ov(c,m,0) ¢ IBP(00)- Since Kp 1 C Ka 1 € TUU by the induction
hypothesis and T = To, it follows that o:c € TU U, clm — v]ex € TUT,
and ov(c, m,0) ¢ IBp(T). Thus c[m] 570 or c[m] %3’z 0 by Lemma HAl Because
ec(o,m) ¢ IBp(Ts), it follows that ec(o, m) ¢ IBp(T), and so o[m] is not a
strong explicit definition, by Definitions 23] and [l Because c[m — v]ox € TUTU,
it follows that Z(c[m — v]ex) > u.

Now we show that there is no x # ¢ such that x[m] %3z 0 or x[m] 5“7 0. Suppose,
to the contrary, that there exists x # ¢ such that x[m] *3'z 0 or x[m] 3“7 0. Then
x[m] 28 v 0 or x[m] &y 0, because T < M. It follows that x[m]~% o € To or
x[m] %40 € Too, by Lemma I3 Thus me(c, m,0) € IBp(Ts) by Definition B3,
which contradicts the fact that mc(c, m,0) ¢ IBP(’TOO).

s.val

So far we have shown that o[m] is not a strong explicit definition, c¢[m] <370

w.val . s.val

or c[m] Mzo Z(c[m — V]ex) > u, and there is no x # ¢ such that x[m]~>z 0

or x[m] " <47 0. Because T satisfies the cautious inheritance constraint, therefore
Z(o[m — v]$,;) > u, by Definition I4l So ojm — v]$, € TUU.

We have shown that in all four possible cases, if A € Ka ,then Ac TUU. It
follows that T U U D K, . This completes the induction step.

130 G. Yang and M. Kifer

A.3 Lemmas and Propositions Supporting Theorem [@ in Section 10

Lemma 17. Let P* be the well-founded rewriting of an F-logic KB P and 1%/
be a subset of HBpur. Then Ilfp(Cpur rur) is in normal form.

Lemma 18. Let P be the well-founded rewriting of an F- -logic KB P, Ta
subset of HBp, 1% a subset of HBpus which is zsomorphzc to T and is in normal
form, and G a ground positive literal. Then vall(G) =t iff p°(G) ¢ 1%,

Proposition 8. Let P be the well-founded rewriting of an F-logic KB P, 1w
a subset of HBpu which is in normal form, and T a subset of HBp. If I“’f 18
1somorphic to I then Ifp(Cpur qur) is isomorphic to Ifp(Tp).

Proof. Let J/ = 1fp(Cpus 1ur) and J = Ifp(Ty, 7). First we will show that all of
the following conditions are true:

(1) for all o,c: isa(o,c) € J* iff o:ce J

(2) for all s, c: sub(s,c) € J* iff s::ce J
(3) for all s,m,v: ezmuv(s,m,v) € J¥ iff sim — v]ex € J
(4) for all o,m,v,c: vamwv(o,m,v,c) € J* iff ofm — V]S, € J
(5) for all o,m, v, c: comv(o,m,v,c) € J* iff olm — v] Code € J
(6) for all ¢, m,o: vacan(c,m,o0) € J*/ iff c[m] %o J
(7) for all ¢, m,o: cocan(c,m,0) € J*/ iff c[m]Fo e J

I. =

Let us define:
Sg’f =0 Sy =10 for limit ordinal 0
SY = Cpuw w (8™)) Sa = prT(ga_l) for successor ordinal o
sur = | sy Se =J Ss for limit ordinal o # 0
B<a <o

Sw = Jsw See = Sa

Then S = 1fp(Cpur 1ur) and Seo = Ifp(T}, 7). We will prove by transfinite

induction that for any ordinal o and for all o s, c, m, v, the following conditions
are true:

if isa(o,c) € S¥ then o:c € Sy

)
(2) if sub(s,c) € S thens:c € S,
(3) if exmu(s,m,v) € S¥ then s[m — V]ex € S
(4) if vamwv(o,m,v,c) € S then o[m — V|, € Sa
(5) if comv(o,m,v,c) € S¥ then o[m — v|¢ Gode € Sa
(6) if vacan(c,m,o0) € S¥ then c[m] %o € S,
(7) if cocan(c,m,0) € S then c[m]*% 0 € S,

Inheritance in Rule-Based Frame Systems: Semantics and Inference 131

The case for a limit ordinal « is trivial. Now let o be a successor ordinal. So
Sw = Cme’Imf(S:f_l). First we show that for any ground positive literal L, if

pb(L) € S* |, then val% B (L) =t: (i) If L = o:c, then p®(L) = isa(o,c). It
follows that o:c € Sa_; by the induction hypothesis. Thus val% » (0:¢c) =t;
wf

a—1r
(i) If L = o[m — v], then p’(L) = mw(o,m,v). Note that % C S¥/ | for all
v < a — 1. Therefore, there must exist a successor ordinal p < o — 1 such that

(ii) Similarly, we can show if p®(L) = sub(s,c) € S then val%m_1 (s::c) = t;

mo(s,m,v) € S = CowJurf(S,;)il). It follows that exmuv(o,m,v) € S;f’fl, or
there is ¢ such that vamwv(o, m,v,c) € S;”fl or comv(o,m,v,c) € Sz’fp according

to the trailer rules in Definition Thus o[m — v]ex € gp_l , or there is ¢ such
that olm — v]S,, € S,—1 orom — v|¢ ;. € S,—1, by the induction hypothesis.
Clearly, S,—1 € Sa—1. Thus Ual% » (o[m — v]) =t.

Now consider the following cases:

(1) isa(o,c) € S¥ and isa(o,c) is derived via a rule R* € ground(P*') which
is rewritten from a regular rule R € ground(P).

Then RY = isa(o,c) :— p®(C1),...,p%(Cm), = p?(G1),...,— p%(G,) must be the
rewriting of R=o0:c :— Cy,...,Cm, 2 Gy,...,~Gp, where G, 1 <i <m, and G,
1 <j < n, are positive literals. By Definition B9, each p®(C;) € S;”]il and each

p®(Gj) ¢ 1. Following the above claim, val'%(k1 (CG) =t foral 1<i<m.

Moreover, I* is isomorphic to 1 and is in normal form, therefore vall%(—\ G)=t

~

for all 1 <j<n, by Lemma[I8 So o:c € RCPT(ga_l) CTp5(Sa-1) = ga,
by Definitions 22] and 26l

(2) isa(o,c) € S¥ and isa(o, c) is derived via a trailer rule R in ground(P*/).
Then there exists s such that R* = isa(o,c) :— isa(o,s), sub(s,c). It follows
that isa(o,s) € S;"]il and sub(s,c) € S;‘”il. Thus o:s € /S\aq and s::c € §a,1
by the induction hypothesis. So o:c € IC*(Sa_1) C TP7T(§Q_1) = S., by
Definitions 25 and

(3) sub(s,c) € S¥ and sub(s,c) is derived via a rule R* € ground(P*') which
is rewritten from a regular rule R € ground(P).

Similarly to (1), we can show that s::c € S, .

(4) sub(s,c) € S¥ and sub(s, c) is derived via a trailer rule R in ground(P*/).
Similarly to (2), we can show that s::c € S, .

(5) exmu(s,m,v) € S
Then exmuv(s,m,v) must be derived via a rule RY € ground(P®) which is
rewritten from a regular rule R € ground(P). Similarly to (1), we can also show
that s[m — v]ex € §a.

(6) vamuv(o,m,v,c) € S¥
By Definition B8 wvamwv(o,m,v,c) should be derived via a trailer rule from

ground(P*f). So vacan(c,m,0) € S* |, exmuv(c,m,v) € S |, ex(o,m) ¢ I/,

132 G. Yang and M. Kifer

and multi(c,m,0) ¢ 1%/, Thus c[m]%o € S, , and c[m — V]ex € §a 1, by
the induction hypothesis. Since I/ is isomorphic to T, ec(o,m) gé IBp(T) and
me(c,m,o0) ¢ IBp(1). Thubo[m—>v] w €IC, 1(8a1) € Tp £(Sa1) = Sa,
by Definitions 25 and "

(7) comv(o,m,v,c) € ng

Then comv(o, m, v c) must be derived via a trailer rule. So cocan(c, m,0) € S/ .,
ins(o,m,v,c) € S |, ex(o,m) ¢ I/ and multi(c,m,0) ¢ I*/. By the induc-
tion hypothesis, c[%50 € Sa_1. Since I*/ is isomorphic to 1, it follows that
ec(o,m) ¢ IBp(1), me(c, m,0) ¢ IBp()- Cleamly7 ins(o, m, v, c) must be derived
via a rule R = ins(o,m,v,c) :— p?(Cy),...,p"(Cn), - (G1)7...,—|p (Gn), in
ground(P™), which is rewritten from the following template rule in ground(P),
R = code(c) @thisim — v] :— By,...,Bm, 7 F1,...,~F,, where B; and F; are
positive literals, C; = (B)HO and Gj = (F)HO’ forall1<i<mand 1<j<n.

Similarly to (1), we can show that Ual§ _, ((Bi))o) = t for all 1 <i<m and
Ual%(—' (Fj)o) = t for all 1 <j<n. It follows that by Definitions 24 and 26
o[m — v]<, € TCp 1 (Saz1) € Tp 7(Sac1) = Sa

(8) wacan(c,m,o0) € S¥f

Then vacan(c, m o) must be derived via a trailer rule in ground(P*/). It follows
that isa(o,c) € S™ |, exmuv(c,m,v) € S* |, ¢ # o, and override(c,m,o0) & I/,
by Definition [38 So o:c € §a 1 and c[m — V]ex € §a_1, by the induction
hypothesis. Moreover, ov(c,m,0) QE IBP(I), since 1%/ is isomorphic to 1. Thus

c[m]f’i"rioeIC (§ 1) C Ty (S)—SmbyDeﬁnltlonsand

(9) cocan(c, m,o) € s

Then cocan(c, m o) must be derived via a trailer rule in ground(P™f). It follows
that isa(o,c) € Sa 1, codedef(c,m) € Sa 1, € # o, and override(c,m, o) ¢ 1%/
by Definition B8 Note that o:c € /S\a,h by the induction hypothesis, and
ov(c,m,0) ¢ IBP(A) because I/ is isomorphic to 1. Since codede f(c, m) esy
there is a template rule in P which specifies the instance method m for class c,
by Definition B8 It follows that c[m] ¥ o € IC, (s 1) C T, (s _1)=Sa,

by Definitions 28] and
II. <=

Let us construct an extended atom set K from J vl as follows: generate one
o:cin K for every - isa(o,c) in J* | one s::c in K for every sub(s,c) in J*f,
one sm — v]ey in K for every exmu(s,m,v) in J*f, one o[m — vl S, in K for

every vamv(o,m,v,c) in J* one om — v|¢_, in K for every comv(o,m,v,c)

code
in J*/ | one c[m]"% o0 in K for every vacan(c,m,o) in J*/, and one c[m] <% o in
K for every cocan(c, m ;0) in J @/ Clearly, to prove that the conditions are true,
it suffices to show that K D 7.

Because J = lfp(T p.7), therefore, to show that K D 7, it suffices to show

~

that Tp (K) c K according to the conventional fixpoint theory [28]. Recall

Inheritance in Rule-Based Frame Systems: Semantics and Inference 133

that by Definitions 28] and 28]
TP)()=RC, (JUTC,, (YUICH(K)UIC" ~(K)UICl (IA{)

Let A be any atom in T}, 5 (K) There are five possible cases to consider:

(1) Ae RCP,T(K)

Then there is a regular rule R=H :— Cy,...,Cy, =Gy, ..., G, in ground(P),
such that H matches A, C; (1 <i<m) and Gj (1 <j < n) are positive literals,
Ual% (G)=tforalll <i<mand Uall%(—' Gj) =t for all 1 < j < n. Consider the
rewriting R of R, p"(H) :— p®(Cy),...,p%(Cm), = p®(G1),..., = p"(G,). First
we show p®(C) € J¥ forall 1 <i<m: (i) If G = o:c, then p®(C;) = isa(o, c).
Since val% (o:c) = t, it follows that o:c € K by Definition [0 Therefore,
isa(o,c) € J*, by the construction of K; (ii) Similarly, we can show if C; = s :: ¢,
then p®(C;) = sub(s,c) € J¥; (iii) If C; = s[m — v], then p®(C;) = muv(s, m,v).
Since vale([m —v]) = t, s0 s[m — v]ex € K, or there exists ¢ such that
sim — v]¢, € K orsm — V]S, . € K. So ezmu(s, m,v) € J*/ or there exists
c such that vamuv(s,m,v,c) € J% or comuv(s,m,v,c) € J¥, by the construction
of K. Because J*/ = prf)lwf(wa), therefore mu(s, m,v) € J* according to the
trailer rules in Definition B8 By Lemma I8 p°(G;) ¢ 1% for all 1 <j <n. So
p"(H) € Cpus yur (J¥) = J¥, by Definition B9 Tt follows that: (i) If A = o:c,
then H = o:c. So p"(H) = isa(o,c) € J*, thus o:c € K; (ii) Similarly, if
A = s:c, then suc € K; (111) If A =sm— v]ex7 then H = s[m — v]. So
p"(H) = exmu(s, m,v) € J® f thus s[m — V]ex € K.

(2) A€ TC;, 3(K)

It must be the case that A = o[m — V]S, ge- It follows that me(c, m, o) ¢ IBp (1),
ec(o,¢) ¢ IBp(1), c[m]*¥ 0 € K, and ground(P) has a template rule, R, of the
form code(c) @Qthisim — v] :— Cl,...,Cm,—|G1,...,—|Gn7 where C; (1 <i<m)
and Gj (1 <j < n) are positive literals, Ual% ((C)jo) =t forall 1 <i<m and
vall%(—' (Gj)HO) = t for all 1 <j<n. Consider the rewriting R” of R, such
that RY = ins(o,m,v,c) :— p®(B1),...,p’(Bm), = p®(F1),...,— p"(F,), where
Bi = (i), for all 1 <i<m and Fj; = (GJ')Ho for all 1 <j < n. Similarly to (1),
we can also show that p®(B;) € J*/ for all 1 < i < m. By Lemmal[I8 p(F;) ¢ 1%/
for all 1 <j<n. So ins(o,m,v,c) € CowVwa(wa) = J| by Definition
Because c[m] %50 € K, therefore > cocan(c,m,0) € J¥ by the construction
of K. Note that ec(o, c) ¢ IBp(1) and mc(c,m,0) ¢ IBp(1). Since IV is
isomorphic to I, it follows that ex(o,c) ¢ 1% and multi(c,m,0) ¢ 1. So
comv(o, m, v, c) 6 Copus 1o (JU) = J/, accordlng to the trailer rules of P*/ and
Definition B3 It follows that o[m — v]¢ . € K.

(3) AeICK)
If A = o:c, then there is x such that 0:x € K, x::c € K. So isa(o,x) € J* and
sub(x,c) € J¥ | by the construction of K. Thus isa(0,¢) € Cpur yur (J) = J

code

134 G. Yang and M. Kifer

by Definition [39 and the trailer rules of P“ Thuso:c € K. Similarly, we can
show that if A=s::c, thens::ce K.

(4) A€IC: +(K)

If A=c[m]f\ao theno:c e K, c#o0,c/m — v]ex € K, and ov(c,m,0) ¢ T » by
Definition Because K is constructed from J*f and I* is isomorphic to I
it follows that isa(o,c) € J, exmuv(c,m,v) € J* | and override(c, m,0) ¢ wa.
So vacan(c,m,0) € Cpus o (J*) = J*/, by Definition BJ and the trailer rules
of P . Thus c[m]% o € K. Similarly, if A = c[m]“% o, we can also show that
c[m]®¥o e K.

(5) A€IC; ;(K)

Then A = o[m — v]¢,, and c[m]%o € K, c[m — V]ex € K, eclo,m) & T,
me(c, m,0) ¢ 1, by Definition 25 Because K is constructed from Jwf | and I“’f
is isomorphic to 1, it follows that vacan(c, m,0) € J“’f7 exmv(c,m,v) € J,

ex(o,m) ¢ I/ multi(c m,o0) ¢ I*/. So by Definition [3J and the trailer rules of
P vamv(o,m,v,c) € Cpus 1ur (J*') = J*. Thus o[m — v]¢,, € K.

Finally, to finish the proof for the claim that J*/ is isomorphic to J , we still
need to show that the following conditions are true:
(1) for all o,m: ex(o,m) € J* iff ec(o,m) € IBp(j)
(2) for all ¢, m,o: multi(c, m,0) € J* iff mc(c,m,0) € IBp(J)
(3) for all ¢, m,o: override(c, m,o0) € J* iff ov(c,m,o0) € IBp(J)
Note that ex/2, multi/3, and override/3 can only be derived via the trailer rules
as defined in Definition B8 Moreover, J*/ = Cpus 1ur (J*). It follows that:

(1) ex(o,m) € J¥ iff there exists v such that exmuv(o,m,v) € J* iff there
exits v such that o[m — v]ex € J, iff ec(o, m) € IBp(J).

(2) multi(c,m,0) € J¥ | iff there exists x # c such that vacan(x,m,o) € J* or
cocan(x, m,0) € J* | iff there is x # ¢ such that x[m] %0 € J or x|m] %0 € J,
iff me(c,m,0) € IBp(J).

(3) override(c,m,0) € J iff there exists some x, such that x # c, x # o,
sub(x,c) € J¥ isa(o,x) € J¥, and there is v such that exmuv(x, m v) e J or
codede f(x,m) € J iff there is x such that x # ¢, x # o, x::c € J 0:X € J

and there is v such that x[m — v]ex € J or there is a template rule in P which
specifies the instance method m for class c, iff ov(c,m,0) € IBp(j).

Proposition 9. Let a range over all ordinals, then T, T U and UY
are all in normal form. (The notations used here are from Definition[{3)

Proof. First we show by transfinite induction that T*f is in normal form for

any ordinal «. The case is trivial for limit ordinal 0. If « is a successor ordinal,

then T% = Spus (U 1) =Up(Cpus ywr). It follows that T is in normal form,
sYVa—1

by Lemma [[71 Now suppose a # 0 is a limit ordinal, T% = U5<a Tgf. Ac-

cording to Definition B2} we need to show for all o,m,v: mv(o,m,v) € T%

Inheritance in Rule-Based Frame Systems: Semantics and Inference 135

iff exmv(o,m,v) € T or there is ¢ such that vamv(o,m,v,c) € T% or

a

comv(o,m,v,c) € T%.
1 =
If mv(o,m,v) € T% then there is 3 < a such that mv(o,m,v) € Tgf. By the
induction hypothesis, Tg’f C T* is in normal form. Thus ezmuv(o, m,v) € Tg’f ,
or there is ¢ such that vamwv(o, m,v,c) € Tgf or comv(o, m,v,c) € Tgf.
2 <
If exmu(o, m,v) € T then there is 3 < « such that exmuv(o, m,v) € Tg’f. It fol-
lows that mv(o,m,v) € Tg’f C T since Tg’f is in normal form by the induction
hypothesis. On the other hand, if there exists ¢ such that vamv(o, m,v,c) € T%
or vamwv(o,m,v,c) € T then there is v < a such that vamv(o,m,v,c) € Tfy”f
or comwv(o,m,v,c) € T4 . It follows that mv(o,m,v,c) € T/ C T, since T/
is in normal form by the induction hypothesis.

Similarly, we can also prove that T% is in normal form. Moreover, for any
ordinal o, U = Spus (TY) = lfp(Cpus pur). It follows that U2/ is in normal
form, by Lemma [I7 Similarly, we can show that U% is in the normal form.

	Introduction
	Preliminaries
	Motivating Examples
	Interaction Between Default Inheritance and Rules
	Inheritance of Code
	Observations

	Three-Valued Semantics
	Inheritance Postulates
	Basic Concepts
	Core Inheritance Postulates
	Cautious Inheritance Postulates

	Object Models
	Computation
	Stable Object Models
	Cautious Object Models
	Implementation
	Related Work
	Conclusion and Future Work
	Appendix: Proofs
	Lemmas and Propositions Supporting Theorem 1 in Section 8
	Proof of Theorem 5 in Section 9
	Lemmas and Propositions Supporting Theorem 6 in Section 10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

