Process Description and Control

Chapter 3
Major Requirements of an Operating System

- Interleave the execution of many processes to maximize *processor utilization* while providing reasonable *response time*
- Allocate *resources* to processes
- Support *interprocess communication* and user creation of processes
Process

☑ Also called a *task*
☑ Execution of an individual program
☑ Can be traced
 - list the sequence of instructions that execute
Dispatcher

- Program that assigns the processor from one process to another
- Prevents a single process from monopolizing processor time
Two-State Process Model

(a) State transition diagram

(a) Queuing diagram
How Processes are Created

✓ Submission of a batch job
✓ User logs on
✓ Created to provide a service such as printing
✓ Spawned by an existing process
How Processes Terminate

- Batch job issues *Halt* instruction
- User logs off
- Process executes a service request to terminate
- Error and fault conditions
Reasons for Process Termination

✓ Normal completion
✓ Time limit exceeded
✓ Memory unavailable
✓ Bounds violation
✓ Protection error
 ▪ example write to read-only file
✓ Arithmetic error
✓ Timeout
 ▪ process waited longer than a specified maximum for an event
Reasons for Process Termination (contd)

✓ I/O failure
✓ Invalid instruction
 ▪ happens when try to execute data
✓ Privileged instruction executed in user mode
✓ Data misuse
✓ Operating system intervention
 ▪ such as when deadlock occurs
✓ Parent terminates so child processes terminate
✓ Parent request
Process States

- **Running**
- **Not-running**
 - *ready* to execute
- **Blocked**
 - *waiting* for I/O

Dispatcher cannot just select the process that has been in the queue the longest because it may be blocked
A Five-State Process Model

- Running
- Ready
- Blocked
- New
- Exit
Five-State Process Model

New → Admit

Ready

Running

Exit

Dispatch

Release

Time-out

Blocked

Event Occurs

Event Wait
Single Blocked Queue

- Admit
- Ready Queue
- Dispatch
- Processor
- Release
- Time-out
- Event Wait
- Blocked Queue
- Event Occurs
Multiple Blocked Queues

Admit

Ready Queue

Dispatch

Processor

Release

Time-out

Event 1 Wait

Event 1 Queue

Event 2 Wait

Event 1 Occurs

Event 2 Queue

Event 2 Occurs
Suspended Processes

- CPU is faster than I/O so all processes could be waiting for I/O
- Swap these processes to disk to free up more memory
- Blocked state becomes suspend state when swapped to disk
- Two new states:
 - Blocked-suspended
 - Ready-suspended
Process State Transition Diagram with Two Suspend States

- Ready → Ready (Admit)
- Ready → Running (Dispatch)
- Running → Exit (Time out)
- Ready → Blocked (Event Occurs)
- Blocked → Ready (Activate)
- Blocked → Blocked (Suspend)
- Ready → Ready (Suspend)
- Running → Ready (Event Occurs)
- Exit → Ready (Event Wait)
Operating System Control Structures

- An OS schedules and dispatches processes for execution by the CPU
- Allocates resources to processes
- Responds to requests by user programs. Therefore
 - Tables (a.k.a. control blocks) are constructed for each entity managed by the OS
Memory Tables

✓ Allocation of main memory to processes
✓ Allocation of secondary memory to processes
✓ Protection attributes for access to shared memory regions
✓ Information needed to manage virtual memory
I/O Tables

- Whether an I/O device is available or assigned
- Status of I/O operation
- Location in main memory being used as the source or destination of the I/O transfer
File Tables

✓ Existence of files
✓ Location of files in secondary memory
✓ Current Status
✓ Attributes
✓ This information is maintained by a file-management subsystem (that runs on top of the OS kernel)
Process Table

✓ Process image consists of program, data, stack, and attributes

✓ Attributes
 ▪ process control block
Process Control Block

Process Identification

✓ Unique numeric identifier
 ▪ may be an index into the primary process table

✓ User identifier
 ▪ who is responsible for the process
Processor State Information

✓ Contents of processor registers
 ▪ User-visible registers
 ▪ Control and status registers
 ▪ Stack pointers

✓ Program status word (PSW)
 ▪ contains status information
 ▪ Example: the EFLAGS register -- Pentium machines version of PSW
Process Control Information

✓ Additional information needed by the operating system to control and coordinate the various active processes
 - scheduling and state information
 - data structuring (e.g., parent-child relationships; membership in wait/ready queues)
 - interprocess communication
 - process privileges
 - memory management
 - resource ownership and utilization
Typical Functions of an Operating-System Kernel

Process Management

✓ Process creation and termination
✓ Process scheduling and dispatching
✓ Process switching
✓ Process synchronization and support for inter-process communication
✓ Management of process control blocks
Typical Functions of an Operating-System Kernel

Memory Management

✓ Allocation of address space to processes
✓ Swapping in/out of memory blocks
✓ Page and segment management
Typical Functions of an Operating-System Kernel

I/O Management
✓ Buffer management
✓ Allocation of I/O channels and devices to processes

Support Functions
✓ Interrupt handling
✓ Accounting
✓ Monitoring
Process Creation

✓ Assign a unique process identifier
✓ Allocate space for the process
✓ Initialize process control block
✓ Set up appropriate linkages
 ▪ Ex: add new process to linked list used as a scheduling queue
✓ Other
 ▪ maintain an accounting file
When to Switch a Process

✓ Interrupts
 ▪ Clock
 ○ process has executed for the maximum allowable time slice
 ▪ I/O

✓ Memory fault
 ▪ memory address is in virtual memory so it must be brought into main memory
When to Switch a Process

✓ Trap
 ▪ error occurred
 ▪ may cause process to be moved to Exit state

✓ Supervisor call
 ▪ such as file open
Change of Process State

✓ Save context of processor including program counter and other registers
✓ Update the process control block with the new state and any accounting information
✓ Move process control block to appropriate queue - ready, blocked
Change of Process State

- Select another process, \(P \), for execution
- Update the process control block of \(P \)
- Update memory-management data structures (e.g., page table register should now point to the page table of process \(P \))
- Restore execution context of \(P \) (registers, program counter, etc.)
Execution of the Operating System

✓ Nonprocess Kernel
 ▪ execute kernel outside of any process
 ▪ operating system code is executed as a separate entity that operates in privileged mode

✓ Execution Within User Processes
 ▪ operating system software within context of a user process
 ▪ process executes in privileged mode when executing operating system code
Execution of the Operating System

Process-Based Operating System

- major kernel functions are separate processes
- a process is invoked by the operating system