CSE306 - Homework and Solutions

Note: your solutions must contain enough information to enable me to judge whether you
understand the material. Simple yes/no answers do not count. A simple core dump of every-
thing you remember will not do it either. Take a look at the solutions to see what level of detail
is required.

1. Consider a hypothetical 32-bit microprocessor with 32-bit instructions composed of two
fields: 1-byte opcode and the rest used for addressing main memory.

What is the maximum directly addressable memory capacity for this processor?

2. Suppose we have a multiprogrammed computer where each job has identical characteris-
tics: Each job runs N computational periods of length T, where half of that time is spent
on I/O and half on computation. Jobs are dispatched in a simple round-robin manner
and 1/0O activity can overlap with CPU operations.

Compute the average turnaround time (average total time to complete each job), through-
put (average number of jobs completed per time period T), and processor utilization
(percentage of time that the processor is not idle) for the cases of one, two, and four
simultaneous jobs for the following two cases:

(a) each period T is distributed as follows: CPU — first half; I/O — second half;
(b) CPU — during the first and the third quarter; I/O — during the other quarters.

3. Suppose that the dispatcher uses an algorithm that favors programs that have used less
CPU time in the recent past. Explain why this algorithm favors I/O bound jobs (i.e.,
those that use more I/O time than CPU time) and, at the same time does not permanently
deny CPU to CPU-bound jobs (i.e., those that use more CPU than 1/0).

4. If a process exits and there still are threads of that process running, what happens to the
thread?

5. Consider an OS that supports only user-level threads and allows to run only one process
at a time. Can a scheduler for user-level threads implement preemptive multitasking,
such as round-robin without the help of the kernel? Explain.

6. Consider a segment table

Segment | Base | Limit
0 200 | 500

1 2000 | 50

2 100 | 90

3 1000 | 900

Assuming that the first digit represents the segment, what are the physical addresses for
the following logical addresses? Which references are illegal?

10.

11.

12.

13.

Suppose you have a machine whose hardware supports paging but not segmentation. Is it
possible to implement an OS for this machine that would support segmentation efficiently?
Assume there is no translation look-aside buffer. Explain.

In the above problem, now take into account the effect of having the look-aside buffer.

. Suppose pages were referenced in the following order: A ,B,C,D,A B,E(w),A(w),B,C,D,E,

where (w) means that the corresponding page was written to. Assume that initially the
main memory was empty and that it contains just 3 frames. How many page transfers
there will be under these page replacement strategies:

(a) FIFO
(b) LRU
For the previous problem and the FIFO page replacement algorithm, assume that the
hardware uses an inverted page table. Draw pictures that show the evolution of the

inverted page table as pages are swapped in or out. Include dirty bits and whatever is
necessary.

Consider hardware that is based on inverted page tables. Does the format of page table
entries require the valid/invalid bit? Explain.

Suppose that we have five jobs to schedule. The jobs have arrived in the order A, B, C,
D, E and have CPU bursts as follows: 10, 1, 2, 3, 5.

Compute the turnaround and average waiting times for each of the jobs using:

(a) FCFS
(b) SJF

(¢) Round-robin with time quantum=2
Assume that all these jobs are already waiting and the CPU has just become available.

In the previous case, assume that the arrival times are 0, 2, 3, 4, 5 and that schedul-
ing strategy is preemptive priority scheduling with priority function 2*waitingTime —
remainingCPUtime (the higher the value, the higher the priority). Compute the average
turnaround and average waiting times.

14.

15.

16.

An instruction takes 2 time units to execute. Processing a pagefault takes an additional
n time units (just the cpu time, 1/O is asynchronous). Page faults happen every k
instructions. Give a formula for the effective instruction time (i.e., the average number
of time units CPU needs to execute an instruction). Explain.

Similar to the previous problem, but now we have a fast cache where memory pages are
kept (note: memory pages themselves are kept in the cache—not the page table entries).

The times are as follows:

Referencing a word of a page in the cache: ¢

Referencing a word in main memory: m to load page in cache, then restart the
reference using cache.

Referencing a word on disk: d to bring page from disk to main memory, then
copy page to cache, then restart reference.

The cache hit ratio is 0.9

The main memory hit ration is 0.6

Ignoring the overhead of accessing page tables, compute the average time required for
memory access in such a system?

Which type of processes is generally favored by a multilevel feedback queuing scheduler—
the processor-bound jobs or the I/O-bound ones? Explain.

Solutions

1. 22 = 16M. This is because 32 (instruction size) - 8 (opcode) is 24.

2. In case of 1 job, CPU utilization is 50% for both (a) and (b). In case of two jobs it is
N/(N-+0.5) for (a) and N/(N+0.25) for (b). In case of four jobs it is 2N/(2N+-0.5) for (a)
and 2N/(2N+0.25) for (b). (Draw the execution diagrams to see that.)

Assume that all jobs arrived at the same time, so we count the turnaround time of all
jobs from the same moment. The turnaround time in case of 1 job is N*T.

In case (a) for 2 jobs, the individual turnaround times are NT, (N40.5)T and the average
is (N40.25)T. In case (b), the average is 0.5(NT + (N+0.25)T) = T(N+1/8).

In case (a) for of 4 jobs, the turnaround times for the individual jobs are 2NT-T,
(2N-0.5)T, 2NT, (2N+40.5)T and the average is (2N-0.25)T. In case (b), the individ-
ual turnaround times are (2N-0.5)T, (2N-0.25)T, 2NT, (2N+0.25)T and the average is
(2N+7/8)T.

All these figures are obtained by drawing and then examining the execution diagrams.

For instance, in case of 4 jobs and the execution pattern (a), such a diagram might looks
as follows:

T 2T 3T 4T 5T 6T
CPU | 1 2 3 4 | 1 2 3 4 |
R e e B B e L]
I/0 | 1 2 31 4 1 2 31 4
Round 1 Round 2 Round 3

We see that each round of execution where all jobs finish their time period T takes
2T+0.5T. The next round will finish at 4T+0.5T, the following at 6T+0.5T, etc. There-
fore, executing all jobs will take 2TN+0.5T time units. Job 4 ends at this time, job 3
ends 0.5T earlier, job 2 ends another 0.5T before that, etc.

3. 1/O bound jobs are likely to use less CPU time in the recent past, so they’ll be favored.

CPU-bound jobs will not be starved permanently because eventually their recent CPU
usage will decline. So their priority will keep increasing until they are scheduled.

4. They are terminated as well.

5. No. Such a scheduler runs as a user process; moreover, it cannot run concurrently with
the threads it manages, since there is only one process and no kernel-level threads and
so the system can run only one thread at a time. Thus, this user-level scheduler cannot
preempt the threads it manages. (This is precisely why you cannot assume that Java
threads will preempt each other on every platform, so the programmer must make sure
that periodically threads yield control voluntarily.)

4

6. The absolute addresses are as follows:

(a) 600
(b) 1100
(c) illegal
(d)

(¢)

7. Yes. You need to do a little more work in software when segments are loaded, but when
the program runs there is no additional loss of cycles.

illegal (Why?)
189

Consider a 32 bit machine with 20 bits reserved for page numbers. Suppose we want to
implement a segmentation schema were 10 bits are reserved for segment number and 22
for offset.

We can divide each page table into sets of 2! consecutive page entries. Each such set
will represent a segment. We also need a segment table that will keep track of segment
sizes. This is necessary because the page table format leaves no room for the segment
size parameter.

When a segment, n, is loaded, the OS must fill the corresponding page entries n * 21°
through (n + 1) * 2'° — 1 with consecutive frame numbers that correspond to the frames
where the segment is being loaded. Page entries that are assigned to the segment but lie
beyond the segment boundary are marked as invalid. For instance, if our segment n has
size 2° pages, then all page entries in the range n * 21° 4 2% through (n + 1) * 2!% — 1 will
have their presence bit set to “invalid.”

Once segment is loaded, reference to bytes inside that segment can be done through the
paging hardware without any loss of efficiency.

There also is some extra work at the time segment is swapped out, because it will be
necessary to check the dirty bits of all pages that belong to the segment. On the other
hand, there is much less work in I/O when the image of a segment needs to be saved on
disk, since the OS only need to save the specific dirty pages, not the entire segment.

8. With TLB, there will be slight loss of efficiency compared to segmentation hardware.
Indeed, in a machine with paging hardware, TLB will be designed to accommodate page
table entries, not segment table entries. To better see what happens, suppose that the
first page table entry, 77, for some segment S is in TLB, but the CPU must process a
memory reference to the second page. Even though we can get the address of the segment
from T} (since T} has the address of the first frame in the segment), our paging hardware
does not know it. Instead, it will try to look up the second entry in the page table for S
and save it in TLB (possibly replacing 77!).

9. We consider memory snapshots under each page replacement algorithm separately. Num-
bers in parentheses show the number of page transfers.

(a) FIFO: A,B,C (3). D,B,C (1). D,A,C (1). D,AB (1). E,AB (1). E,C,B (2). E,C,D
(1). Total: 10. Note that when A is replaced by C (the E,C,B snapshot), A is dirty,
so page replacement takes two I/0Os.

(b) LRU: A;B,C (3). D,B,C (1). D,A,C (1). D,AB (1). E,AB (1). C,AB (2). C,D,B
(2). C,D,E (1). Total: 12. Note that in the snapshot E,A B, page C replaces E and
not A (unlike FIFO), because A was referenced more recently than E. The cost of
replacing E with C is 2, since page E is dirty.

10. We only show the frame number, the dirty bit (D), the reference bit (R), and the process
id (PID) in each page table entry. We use some arbitrary process ids to illustrate the fact
that page entries in the inverted page table do not need to belong to the same process.
We also assume that the hardware (or some software daemon) clears up reference bit after
3 ticks. In the picture, below, the content of the inverted page table changes left-to-right
and top-to-bottom.

Frame# | PID | D | R Frame# | PID | D | R Frame# | PID | D | R
All 11 01 D1 12 |0 |1 D|1 12 |0 |1
B |2 11 01 B |2 11 01 A2 11 01
Cl|3 12 0|1 Cl|3 12 10 |1 Cl3 12 10 |1

At this point, the reference bit (R) is cleared.

Frame# | PID | D | R Frame# | PID | D | R Frame# | PID | D | R
D|1 12 010 E |1 13 1|1 E |1l 13 1|1
A2 11 010 A2 11 010 A2 11 1|1
B|3 11 01 B|3 11 0|1 B|3 11 01

Frame# | PID | D | R Frame# | PID | D | R Frame# | PID | D | R
E |1l 13 110 El1 13 110 E |1 13 110
A2 11 110 Cl2 12 10 |1 Cl2 12 10 |1
B|3 11 0|1 B|3 11 0|1 D|3 12 10 |1

Frame# | PID | D | R
E |1 13 1|1
Cl2 12 010
D |3 12 010

11. No. By definition, inverted page tables contain page entries only for valid pages.

12. We consider the execution sequences in each case:

(a) FCFS: AAAAAAAAAABCCDDDEEEEE
Turnaround: (104+11413+416+421)/5 = 14.2
Wait time: (0410+11+13+16)/5

(b) SJF: BOCDDDEEEEEAAAAAAAAAA
Turnaround: (21+1+346+11)/5 = 8.4
Wait time: (114+0+143+6)/5 = 4.2

6

13.

14.

15.

16.

(¢) RR with time slice=2: AABCCDDEEAADEEAAEAAAA
Turnaround: (21+43+45+12+17)/5 = 11.6
Wait time: (114+2+43+9+12)/5 = 7.4

The CPU bursts start as follows: AABCC.

At this point A has priority 2*3 — 8 = -2 and D has priority 2*1 — 3 = -1. E has priority
-5 at this point, so D gets to execute. However, after 2 ticks, D’s priority becomes 2*1
—1 =1 and A’s priority becomes 2*5 — 8 = 2. The priority of E is 2*2 — 5 = -1. So, A
preempts: AABCCDDAA

At this point the priorities are: A: 2*¥5-6=4, D: 2*3-1=5, E: 2*4-5=3. Thus, D preempts
and finishes. A is next:

AABCCDDAADAA

Now the priorities are: A: 2*¥6-4=8, E: 2*7-5=9, so E preempts:
AABCCDDAADAAEE

New priorities: A: 2*¥8-4=12, E: 2*7-3=11, so A preempts:
AABCCDDAADAAEEAA

Next E preempts for two ticks and then A. At this point A terminates and then E
terminates: AABCCDDAADAAEEAAEEAAE.

Turnaround: (20-+1+42+46416)/5 = 9.0
Wait time: (104+-04+0+3+11)/5 = 4.8

Normal instruction takes 2 units. Pagefaulting instruction takes n + 2 units. Every k-th
instruction pagefaults. Thus, on the average, it takes this long to execute k instructions:

2% (k—1)+(n+2) = 2k+n
Therefore, the average number of time units per instruction is: (2k +n)/k = 2+ n/k.

Reference time for cache is ¢; reference time for main memory is ¢ + m, and for disk it
is d + m + c. The probability of missing the cache is 0.1. Out of this, the probability of
fetching from main memory is 0.6. So, the probability of finding the referenced word in
main memory (but not in cache) is 0.1 % 0.6 = 0.06. The probability of having to go to
disk is 0.1 * (1 — 0.6) = 0.04. Thus, the average access time is:

0.9¢+0.06(c +m) +0.04(c+m+d) = c+0.1m+0.04d

As processes use more and more CPU, they are moved down to the lower-priority queues.
[/O-bound processes, which do not use much CPU, are moved up. So, this strategy favors
I/O-bound jobs.

