Wire Length Prediction Using Statistical Techniques

Jennifer L. Wong*, Azadeh Davoodi, Vishal Khandelwal, Ankur Srivastava, Miodrag Potkonjak*

*University of California, Los Angeles
University of Maryland, College Park

ICCAD 2004
San Jose, CA
November 9, 2004

jwong@cs.ucla.edu

Motivation

• Wire length is important in deep submicron
• Buffers reduce wire length delay, but costly (area, power) and impact floorplan and routing
• Fast and rapid floorplanning, detailed routing costly
• Goal: to predict long wires for reducing clock cycle time (eg. using efficient buffer placement)
Synthesis Paradigms

- Traditional Deterministic Approaches
 - Objective function and set of constraints
 - Optimize objective function value
- Probabilistic Synthesis Approaches
 - Probability of occurrence
 - Objective is to maximize the likelihood
 - Statistics (parametric & non-parametric)

Net Routing: Wire Length
Talk Overview

• Summary of Wire Length Prediction and Buffer Insertion
• Model Building Approach
 – Statistical Background
 – Feature Extraction
 – Derivation of PDF and CDF
 – Evaluation and validation
• Wire Length Prediction Model
• Application to Buffer Insertion

Related Work: Wire Length Estimation

Related Work: Statistics

Related Work: Buffer Insertion

Data Collection

- Cadence (QPlace) – placement and routing
- IBM designs – provide data points

<table>
<thead>
<tr>
<th></th>
<th>Layers</th>
<th>Nets</th>
<th>Area</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm01</td>
<td>8</td>
<td>11507</td>
<td>5 mm</td>
<td>44,266</td>
</tr>
<tr>
<td>ibm02</td>
<td>10</td>
<td>18429</td>
<td>7 mm</td>
<td>78,171</td>
</tr>
<tr>
<td>ibm07</td>
<td>10</td>
<td>44394</td>
<td>16 mm</td>
<td>164,369</td>
</tr>
<tr>
<td>ibm08</td>
<td>10</td>
<td>47944</td>
<td>17 mm</td>
<td>198,180</td>
</tr>
<tr>
<td>ibm10</td>
<td>10</td>
<td>64227</td>
<td>29 mm</td>
<td>269,000</td>
</tr>
<tr>
<td>ibm11</td>
<td>10</td>
<td>67016</td>
<td>23 mm</td>
<td>231,819</td>
</tr>
<tr>
<td>ibm12</td>
<td>10</td>
<td>67739</td>
<td>34 mm</td>
<td>284,398</td>
</tr>
</tbody>
</table>

Problem Formulation

- **Goal**: To identify long nets which would require buffer placement

- Deduce likelihood each net will have a particular length
 - Cost analysis (2-20 buffers?)
 - Using features with low computation effort and rapid extraction
Statistical Tasks

1. Classification: YES/NO, outlier?
 - CART Model

2. Regression: $y = f(x)$, L_1, L_2, ..., L_∞
 - Polynomial regression
Statistical Tasks

3. Density/Kernel Estimation: likelihood of occurrence
 • Regression/Percentiles

Evaluation & Validation

• Rebsubstitution
 – Data resampling to prevent overfitting

[Graph showing data distribution]
Statistical Tasks

• Question:
 – Which features to use?
 – Which models to use?
 – Any unique insights?

Modeling Approach
Net Characterization

• Cadence Placement and Routing Tool (QPlace)
 – Post placement information as input
• **Goal**: Identify metrics that influence the post routing wire length of each net

Features - Net Characteristics

• # of Net Terminals
Features - Net Characteristics

• $\frac{1}{2}$ Perimeter Bounding Box (BBOX)

Features - Net Characteristics

• Minimal Spanning Tree (MST)
Features - Net Characteristics

- Convex Hull (CHULL)

Features - Net Characteristics

- Single Net Interaction
 - Unique Terminals in BBOX
 - White Space of Net
 - Space Utilization Factor of Net
- Resource Competition Metric of Net
- Interaction Between Neighboring Nets
 - # of Overlapping Neighbors
 - Amount of Overlapping Area of Net with Neighboring Nets
 - Neighbor Utilization Factor
 - Neighbor Hardness Factor
Model Features

- ½ Perimeter BBox
- Net Length / BBox (Normalized)

Outlier Detection

Ibm12: 5-terminals
Outlier Detection

Outlier Detection: CART Model
Outlier Detection

- CART Model
 - # of terminals (2 term, 3-5 term, 6+ term)
 - Resource Competition Metric of the net
 - Resource Competition Metric of overlapping neighbors
 - # of overlapping neighbors
 - # of common terminals for net
- Misclassification rate: 6.7%

Partitioning of Data Set

- Separation of data into 2+ groups
 - Classify behavior of groups separately

- Short (< 6,000) & Long Nets (> 6,000)
 - Short nets: handle reasonably, grid uniformity
 - Long Nets: susceptible to impact from many small nets
Polynomial Regression Model
Evaluation & Validation

• Rebsubstitution
 – 100 data subsets, 70% of data
 – Interval of Confidence ± 10% in 86% of the cases

Accuracy of Model: Visual Inspection
Inter-design Modeling

- **Goal:** To use the wire length model built for a given design to predict the wire lengths of an alternate design

- **Model Features**
 - C: Overall congestion
 - NL: Number of Layers used in the design
 - L: Length of Net

\[
L_i = L_j \left(\frac{NL_j}{NL_i} \right) \left(\frac{C_i}{C_j} \right)^{0.48}
\]

Evaluation & Validation

- **Learn-and-test**
 - Comparison of built model (4 learn designs) to a model built using a single design (3 test designs)
 - Prediction within 3% accuracy for 96% of the designs
Experimental Results

• Buffer Insertion Problem
 – Given: Fan-out wiring tree delay constraint, wirelengths etc
 – Find: Buffer placement for: max gate arrival time, min buffers

<table>
<thead>
<tr>
<th></th>
<th>Statistical Model</th>
<th>Standard BBOX</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net1</td>
<td>1367</td>
<td>1546</td>
<td>11.5</td>
</tr>
<tr>
<td>Net2</td>
<td>865</td>
<td>983</td>
<td>12.0</td>
</tr>
<tr>
<td>Net3</td>
<td>690</td>
<td>1413</td>
<td>51.1</td>
</tr>
<tr>
<td>Net4</td>
<td>1563</td>
<td>1798</td>
<td>13.0</td>
</tr>
<tr>
<td>Net5</td>
<td>2375</td>
<td>2892</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Average of 21% Reduction in Delay using the Probabilistic Model

Conclusion

• Statistical wire length prediction density estimation model
• Accurate model for IBM designs set and Cadence tool
• Important for reducing delay in buffer insertion