A Probabilistic Constructive Approach To Optimization Problems

Jennifer L. Wong, Farinaz Koushanfar, Seapahn Meguerdichian, Miodrag Potkonjak

University of California, Los Angeles
University of California, Los Angeles

ICCAD 2001
November 7, 2001

jwong@cs.ucla.edu
Probabilistic Constructive & MIS
Probabilistic Constructive & MIS
Probabilistic Constructive & MIS

\[\text{OF} \]
\[\begin{array}{c|c}
 6 & 0 \\
\end{array} \]
Probabilistic Constructive & MIS
Probabilistic Constructive & MIS

Solution:

- E
- G
- K
- C
- I
- H
- B
- J

OF
- 6
- 0
- 3
Probabilistic Constructive & MIS

Solution: B J H E
Probabilistic Constructive & MIS
Talk Organization

- Motivation
- Global Picture
- Generic Approach
- Applications
 - Graph Coloring, MIS, Sequence Covering, Scheduling
- Experimental Results
- Conclusion
Algorithm Classification

<table>
<thead>
<tr>
<th></th>
<th>Probabilistic</th>
<th>Deterministic</th>
</tr>
</thead>
</table>
| Iterative Improvement | • Metropolis
• Simulated Annealing
• Genetic Algorithms
• Tabu Search |
| Constructive | • Kernighan-Lin
• Fiduccia-Mattheyses
• Sanchis
• Krishnamurthy
|• Branch & Bound
• Divide & Conquer
• Dynamic Programming
• Force Directed |
Related Work - Deterministic Constructive

Branch & Bound
(Lawler & Wood)
Related Work – Deterministic Constructive

Generic
- Maximally Constrained, Minimally Constraining
- Sorting Algorithms: Insertion, Selection, Quicksort, Radix, Bucket
- Basic Graph Algorithms: BFS, DFS, Topological Search, SCC
- Complex Graph Algorithms: Dijkstra, Bellman–Ford, Floyd-Warshall

CAD
- Force-directed Scheduling
- Retiming for Critical Path
- List Scheduling
- DAGON: Technology Mapping
- Op-amp Design
- LC Oscillators
- Branch-&-Bound Clock Selection
Related Work - Deterministic Iterative Improvement
Related Work - Probabilistic Iterative Improvement

Simulated Annealing

- Cost function
- Solution space
- Local Search
Related Work - Probabilistic Iterative Improvement

Generic
- Simulated Annealing
- Rejectionless SA
- Mean Field Annealing
- Simulated Evolution
- Tabu Search
- Genetic Algorithms

CAD
- TimberWolf (Sechen '85)
- Roy & Sechen ('93), Chatterjee & Hartley ('90)
- Van den Bout & Miller ('90)
- Saab & Rao ('90, '92)
- Tao ('91), Lim & Chee ('91)
- Inayoshi & Manderick ('92)

jwong@cs.ucla.edu
Generic Probabilistic Constructive Approach

- Solve difficult small part of the problem well
- Find probabilistically many difficult small parts of the problem
- Find the best small part
- Continue to build solution
- Reduce the instance size
Main Idea – Candidate Part

Solution Space

Atomic portion of the solution
Main Idea – Probabilistic Search

- Two Types
 - Constructive
 - Iterative Improvement
Main Idea – Probabilistic Search

- Two Types
 - Constructive
 - Iterative Improvement

Solution Space
Main Idea – Probabilistic Search

- Two Types
 - Constructive
 - Iterative Improvement

Solution Space
Main Idea – Objective Function

- Scope
- Accuracy

Solution Space
Main Idea – Comprehensive Objective Function

- Scope is the entire instance
- Analysis of overlap between potential CPs
Main Idea – Candidate List

Solution Space

Candidate List

.34
.95
.57
.92
.89
.95
.92
.89
Main Idea – Stopping Criteria

- Minimum Size
- Adaptive
 - Search for long period w/o any improvement
 - Restriction to the number of overlapping CP
Main Idea – Best Candidate Selection

- Select the CP with best COF
 - Advantage: Very fast approach

- Conduct Comprehensive Analysis of CPs in CL
 - Correlation of CP Pairs, Triplets, ….
Main Idea – Solution Integration
Main Idea – Solution Integration
Main Idea – Overall Control Strategy

- Probabilistic → different solutions/ run-times
- Variety of control strategies
 - Multi-starts
 - Learning Examples
Additional Augmentation Mechanisms: Delayed Binding
Applications

- Generic Optimization Problems
 - GC
 - MIS
- CAD-related Optimization Problems
 - Sequence covering
 - Scheduling
Probabilistic Constructive - MIS

Two approaches

- Inclusion
 - Selection of nodes to **include** in MIS

- Exclusion
 - Selection of nodes to **exclude** from MIS
Probabilistic Constructive – MIS Inclusion

Candidate Part (CP)
- Subset of nodes with no edges between them (k=4)

Probabilistic Search
- Remove single node from CP, include another

Candidate List (CL)
- No node can exist in more than 1/5 of the CPs
- K_{min}, except if OFs of CPs in CL are consistent -> $2^* K_{\text{min}}$
Probabilistic Constructive – MIS Inclusion

Objective Function (OF)
- \(n_r \): Number of nodes in remainder of graph
- \(e \): Total number of edges - incident edges

\[
\text{OF} = \alpha_1 n_r + \alpha_2 e
\]

Comprehensive Objective Function (COF)
- \(n_i \): Number of neighbors of node \(i \) in the CP

\[
\text{COF} = \text{OF} + \alpha_3 \sum n_i^2
\]

Stopping Criteria
- No CPs with improved OF after \(kn_r \) attempts (k = 5)
Probabilistic Constructive – MIS Inclusion

- **Best Candidate Selection (BCS)**
 \[BCS = COF + \sum_{i=1}^{\vert CP \vert} 1/a_i \]

- **Solution Integration**
 - Integrate BCS into solution
 - Remove all nodes in CP, neighbors of nodes, & incident edges

- **Overall Control Strategy**
 - N/10 multi starts
 - N: number of nodes in the original instance
Probabilistic Constructive – MIS Exclusion

- **Probabilistic Search**
 - Select node from CP to possibly include in MIS & replace with node to be excluded
 - Remove single node from CP, include another

- **Objective Function (OF)**
 - \(e \): number of edges remaining in the resulting graph
 - \[\text{OF} = \alpha e \]
Experimental Results

- Generic Optimization Problems
 - GC
- MIS
- CAD-related Optimization Problems
 - Sequence covering
 - Scheduling

Experimental Results - MIS

- DIMACS Instances for Maximum Clique
 - Maximum Clique ➔ MIS in G_C
Experimental Results - MIS

<table>
<thead>
<tr>
<th>Name</th>
<th>V</th>
<th>E in Clique</th>
<th>E in MIS</th>
<th>γ</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>school1_nsh</td>
<td>358</td>
<td>16710</td>
<td>47193</td>
<td>14</td>
<td>0.22</td>
</tr>
<tr>
<td>keller4</td>
<td>171</td>
<td>9435</td>
<td>5100</td>
<td>11</td>
<td>0.9</td>
</tr>
<tr>
<td>sanr200_0.7</td>
<td>200</td>
<td>13868</td>
<td>6032</td>
<td>18</td>
<td>3.71</td>
</tr>
<tr>
<td>brock200_1</td>
<td>200</td>
<td>14834</td>
<td>5066</td>
<td>21</td>
<td>22.58</td>
</tr>
<tr>
<td>san200_0.7_2</td>
<td>200</td>
<td>13930</td>
<td>5970</td>
<td>18</td>
<td>0.31</td>
</tr>
<tr>
<td>P_hat300-2</td>
<td>300</td>
<td>21928</td>
<td>22922</td>
<td>25</td>
<td>0.94</td>
</tr>
<tr>
<td>hamming8-4</td>
<td>256</td>
<td>20864</td>
<td>11776</td>
<td>16</td>
<td>0.006</td>
</tr>
<tr>
<td>san200_0.9_1</td>
<td>200</td>
<td>17910</td>
<td>1990</td>
<td>70</td>
<td>1.02</td>
</tr>
<tr>
<td>MANN_a27</td>
<td>378</td>
<td>70551</td>
<td>702</td>
<td>126</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Conclusion

- Probabilistic – Fast
- Constructive – Flexible
- Generic CAD Optimization Problems
- Easy Implementation/ Generic Approach
- New Algorithmic Paradigm