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Abstract

Developing and deploying software patches is currently
slow and labor-intensive. After software vendors discover
a security bug in their product, they must manually write
a patch, test it thoroughly, and distribute it to users, who
may peform further testing at their site before finally in-
stalling the patch. These manual steps take time, leav-
ing users vulnerable for days or even weeks after a bug
is discovered. Pre-patched software removes these time-
consuming steps from the vulnerability response critical
path, reducing the window of vulnerability to hours or
even minutes. With pre-patched software, applications
ship with latent run-time checks that are automatically
inserted during the compilation process. The compiler
emits checks to cover any potentially-unsafe operation in
the code. When the software vendor discovers a new vul-
nerability in its product, it can issue an alert informing
its customers that they should activate one or more of
the checks. Generating the run-time checks in advance
removes the manual patch-development and testing pro-
cesses from the vulnerability response critical path. Thus,
when the vendor discovers a new vulnerability, it can im-
mediately issue an alert and users can act on that alert
without hesitation. By default, the run-time checks are
disabled and hence incur little or no overhead. We have
developed a CIL-based program-transformation that pre-
patches C programs for memory-safety bugs. Early exper-
iments suggest that pre-patched software may incur little
measurable run-time overhead.

1 Introduction

Software makers currently have two imperfect ways to
deal with security bugs in deployed code: run-time checks
and patches. Run-time checks, such as those used by
CCured[3] or Java, prevent attackers from exploiting se-
curity bugs but can significantly reduce run-time perfor-
mance. Because of the performance costs, most applica-
tions are shipped without run-time checks. Patches, on the
other hand, are created and applied after a defect is discov-

ered, so they impose no run-time overhead, but creating
patches is time-consuming and error-prone. Furthermore,
many users, such as server administrators, test patches
before installing them because patches may contain new
bugs. This leaves a large window-of-vulnerability be-
tween the time a bug is discovered and the time that users
are protected.

This paper describes pre-patched software, a new tech-
nique that combines the advantages of patching and run-
time checks for dealing with defects in deployed systems.
With pre-patched software, a program will ship with a set
of latent run-time checks generated at compile-time and
embedded in its code. The program can subsequently be
“patched” simply by activating one or more of the latent
checks. Until a check is activated, it will incur little or no
run-time overhead.

The primary benefit of this approach is to move patch
development and testing out of the critical path for re-
sponding to a newly discovered vulnerability. Since
the run-time checks are generated at compile time and
shipped with the original software, the vendor and user
can test the patches in advance. When the vendor discov-
ers a new vulnerability, it only needs to issue an alert in-
forming its users to activate one of the latent checks. The
users can act on the alert immediately and without hesita-
tion. If users configure their computers to automatically
respond to alerts, then only a few minutes may elapse be-
tween vulnerability discovery and patch installation.

2 Related Work

Numerous researchers have developed program transfor-
mations that insert run-time checks to enforce security
properties: CCured[3] enforces type-safety, CREDI[7]
enforces memory safety, dynamic taint-tracking[9] pre-
vents input validation exploits, RICH[1] prevents integer-
overflows. These transformations can add significant run-
time overhead; transformed programs may run 1.5 to 10
times slower.

Other researchers have developed methods for automat-
ically generating network filters for observed attacks|[6,



5, 8]. All such systems face the challenge of construct-
ing as precise and general a filter as possible from only
a few observed attacks: too narrow a filter may miss fu-
ture variants of the worm, too broad will reject valid traf-
fic. This has led to the notions of attack-based detec-
tors, i.e. filters specific to a particular worm or attack,
and vulnerability-based detectors, i.e. filters that can de-
tect any worm that targets a particular vulnerability. Ob-
viously, vulnerability-based filters are preferred. Brum-
ley, et al. produced the first vulnerability-based filter-
generator by slicing the vulnerable application to con-
struct a pared down program that acts as a recognizer for
inputs that excercise the relevant application execution-
path[2]. Our system also provides vulnerability-based de-
fense but, since the patches will be generated in advance,
will offer faster response times and increased reliability.
Wang, et al’s Shield project uses network filters to pre-
vent attackers from exploiting known vulnerabilities[8].
Shield was specifically designed in response to the un-
reliability and irreversibility of software patching. Pre-
patched software also addresses these issues, but goes
even further. With pre-patched software, patches are reli-
able, reversible, and predictable. Pre-patched software of-
fers other advantages, as well. Shield filters must be gen-
erated after a vulnerability is discovered and often dupli-
cate a substantial amount of the vulnerable application’s
logic. Pre-patched software will generate patches in ad-
vance and will not duplicate application logic, offering
faster response times and potentially lower overhead.

3 Pre-Patched Software

Figure 1 presents the major differences between pre-
patched software and conventional software patches. The
traditional software distribution model makes no prepara-
tions for handling vulnerabilities discovered in deployed
software. Thus, once the vendor discovers a vulnerability,
it must develop a patch from scratch, test it thoroughly
to ensure that the patch causes no regressions, and dis-
tribute the patched binary to its customers. Cautious cus-
tomers may then conduct their own testing before finally
installing the patch on production machines. These man-
ual steps may take weeks or even months, during which
time customers are vulnerable to attack. This is especially
problematic when hackers discover the vulnerability be-
fore the vendor does.

Pre-patched software removes these steps from the crit-
ical path for responding to a newly-discovered vulnerabil-
ity. A pre-patching compiler generates patches at compile
time for potential bugs that may be discovered in the fu-
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Figure 1: (a) The steps of traditional patch development
and deployment. (b) Software development and “patch”
deployment with pre-patched software.

ture. The vendor can test these patches, in isolation or
combination, before shipping the software. The patches
are shipped to customers with the software. Customers
can perform further testing on the patches to ensure that
the patches will not break functionality used at the cus-
tomer’s site. Once customers are satisfied that the patches
are safe, they can configure their computers to automat-
ically activate patches upon receiving an alert from the
software vendor.

Generating patches at compile time. Several re-
search projects have produced program transformations
that insert run-time checks to catch security bugs at run
time[4, 3, 10, 7, 9, 1]. A pre-patching compiler can use
similar techniques, but must leave the inserted instrumen-
tation latent until it is needed. The compiler can generate
latent checks by guarding each instrumentation site with
a branch conditioned on the value of some global vari-
able. Each instrumentation site can have its own guard
variable, enabling individual instrumentations to be acti-



vated separately. Alternatively, the compiler can generate
the instrumentations, copy them to an unused portion of
the executable, and replace them with NOPs in the origi-
nal program. Instrumentations could then be activated by
copying their code back into place in the main body of the
code.

In either case, the overhead of checking guard variables
or executing NOPs may be non-trivial. Since almost all
the instrumentation will be disabled at any given time,
we can optimize this common case by generating fast-
path and slow path versions of each function. If the func-
tion has no active instrumentation, then it will execute the
fast-path version, which will contain no instrumentation
or NOPs and hence will run at full speed. If the func-
tion contains at least one active instrumentation site, then
it will execute the slow-path version, which will contain
full instrumentation.

Alert generation. The software vendor can use pre-
patched software to respond quickly to zero-day worms
and other exploits against their application. Upon discov-
ering such an exploit, the vendor must generate an alert in-
forming its customers to activate a check in the software.
To determine which check must be activated, the vendor
can simply run the exploit against an instance of the ap-
plication with all instrumentation activated. The software
will abort on some failing check. The vendor then issues
an alert for that check. Thus, in the presence of a zero-
day worm, the vendor can discover the relevant patch and
issue an alert very quickly, perhaps in just a few minutes.

Limits of pre-patched software. Since the run-time
checks must be generated automatically in advance, pre-
patched software is not applicable to all kinds of secu-
rity bug. For example, it would be difficult to create a
program transformation to defend against high-level logic
errors in the application. Pre-patched software is there-
fore most applicable to low-level security bugs that many
applications wish to avoid, e.g. buffer overflows, format-
string bugs, SQL injection bugs, cross-site-scripting bugs,
etc. Also, pre-patched software is only as good as the pre-
patching compiler. If the compiler only generates patches
for one type of bug, then that is the only bug that can be
handled with pre-patches in the deployed software. The
vendor must respond to any other kind of bug with stan-
dard patches.

Pre-patched software is not intended as the final re-
sponse to discovered vulnerabilities. Developers can al-
most always write a better patch, with lower overhead
and better error response, than an automated compiler.
Pre-patched software prevents worms and other exploits
while the vendor develops a manually-crafted response to
the vulnerability.

4 A C Memory-Safety Pre-Patcher

This section describes a prototype pre-patching program
transformation we are developing to protect against buffer
overflows in C. Our transformation follows the general
approach of the Jones and Kelly[4] bounds checker, al-
though we have made several enhancements described be-
low. We chose to start with the Jones and Kelly bounds
checker, as opposed to CCured[3] or the memory-safe
C compiler[10], because Jones and Kelly’s approach re-
quires no changes to the input source code and has a
high degree of compatibility between transformed and un-
transformed code. The Jones and Kelly bounds-checker’s
meta-data also has a particularly simple organization,
making it easier to activate individual instrumentation
sites.

The Jones and Kelly Bounds Checker. A bounds-
checking transformation for C must track the bounds for
pointers in the program and instrument certain pointer op-
erations to ensure that no out-of-bounds pointer derefer-
ence occurs. The Jones and Kelly transformation stores all
bounds information in an interval tree indexed by pointer
values. As long as all pointers remain in their correct
region, then lookups in this tree will return the correct
bounds for any given pointer.

The Jones and Kelly bounds-checker instruments mem-
ory allocation and deallocation to register the newly allo-
cated regions in the interval tree. Pointer arithmetic oper-
ations are annotated to verify that the result of the arith-
metic points to the same region as the original pointer.
Pointer dereferences are instrumented to ensure that the
entire area read or written lies within the pointer’s target
region. Pointer assignments, including argument passing,
require no instrumentation. Casts from pointer types to
integer types require no instrumentation. Casts from inte-
ger types to pointer types and casts from one pointer type
to another are un-checked.

Unfortunately, many C programs perform pointer arith-
metic computations that yield intermediate results outside
the original pointer’s region, although the final result is
within the region. Jones and Kelly do not support such
programs. The CRED bounds-checker extended the Jones
and Kelly bounds-checker to support such out-of-bounds
pointers. With CRED, whenever a pointer goes out of
bounds, its value is changed to point to a data structure
that holds its true value and bounds. All other C pointer
operations are modified to handle these OOB pointers.

Memsafe. Our transformation, which we call Mem-
safe, follows the Jones and Kelly approach with a few
modifications. For each local pointer variable that does
not have its address taken (which we call “solid” point-



ers), Memsafe creates a corresponding bounds variable
that holds the bounds for that pointer. The bounds vari-
able is updated whenever the pointer is. We cannot per-
form a similar optimization on non-solid pointers because
they may change at any time due to aliasing and multi-
threading. For solid pointers, though, this optimization
eliminates many lookups in the interval tree, which are the
source of most overhead in the Jones and Kelly bounds
checker. Whenever a solid pointer is assigned to a non-
solid pointer, e.g. a global variable, we first check that
the solid pointer is in bounds. This guarantees that all
non-solid pointers are in-bounds and hence we can look
up their bounds in the interval tree. Whenever a non-solid
pointer is assigned to a solid pointer, we look up the non-
solid pointer’s bounds and store them in the solid pointer’s
bounds variable.

We also modify functions to accept bounds parameters
corresponding to each pointer parameter. For backwards
compatibility, we generate a wrapper function that expects
no bounds parameters. This function looks up any miss-
ing bounds and calls the real function. This enables trans-
formed code to inter-operate with untransformed code.

Storing bounds information for solid pointers reduces
run-time overhead by eliminating many lookups and also
enables our transformation to handle temporarily-out-of-
bounds pointers in many cases. Source programs can gen-
erate and manipulate out-of-bounds pointers as long as
those pointers are not dereferenced and are stored in solid
variables. Experimental results in the next section show
that many programs satisfy this requirement. This enables
our transformation to support most programs without the
complexity of CRED-style OOB structures.

Our current prototype performs several peephole and
loop optimizations on the inserted instrumentation. Fur-
ther optimizations, such as a CCured-like type-based
proofs that some pointer-dereferences are safe, are also
possible and may offer significant performance gains, al-
though we have not implemented them yet.

Latent check implementation. Memsafe assigns each
instrumentation site a unique index within a global bit-
vector. The instrumentation at that site only executes if its
corresponding entry in the vector is set. The transforma-
tion generates inter-instrumentation dependencies and en-
codes them as a data-structure inside the resulting object
file. The global bit-vector is loaded from a file at program
startup. The run-time system uses the dependency infor-
mation to enable all supporting checks after initializing
the bit-vector from disk.

Our transformation generates fast-path/slow-path code,
as described in Section 3. Each function decides whether
to run its fast path or its slow path upon entering the func-

tion. The function can also switch between fast and slow
paths at the beginning and end of every loop. Thus, for
example, if the function is executing along its slow path
and reaches a loop that contains no active instrumentation,
then the function will temporarily switch to the fast path
for the duration of the loop. The optimal placement of
switching points depends on the program’s run-time be-
havior, so we chose the above heuristic since it is likely to
give a good pay-off for relatively few switching points.

As with dependencies between instrumentations, there
are also control-flow dependencies between switch points
and instrumentations. Memsafe computes these depen-
dencies at compile time and embeds them in the same de-
pendency data structure as the inter-instrumentation de-
pendencies. The run-time dependency resolution algo-
rithm thus activates the correct set of switch points for
any set of active instrumentations.

If a function contains no intrumentation, then we only
generate a single path for it.

5 Evaluation

We implemented Memsafe as a source-to-source transfor-
mation using the CIL program analysis framework. Our
evaluation focuses on two aspects of the transformation:
correctness and performance.

Correctness. For backwards compatibility, a correct
transformation should allow program executions that do
not exhibit a memory error to execute normally. For secu-
rity, a correct transformation should cause program execu-
tions with a memory error to halt as soon as the error oc-
curs. Furthermore, we must verify that transformed code
runs correctly with no checks enabled, all checks enabled,
and arbitrary subsets of checks enabled.

Since memory errors taken from real-world programs
can be brittle and highly-dependent on architecture and
compiler details, we have chosen to evaluate the cor-
rectness and security of our transformation using a suite
of simple test programs. Each test program accepts a
command-line argument indicating whether it should ex-
ecute code with a buffer overflow. The test programs are
designed so that, when compiled with a normal compiler,
the buffer overflows are all silent and harmless. We run
each of these programs through the Memsafe transforma-
tion and verify that the resulting executables all satisfy the
following requirements

e With all checks disabled and with no buffer overflow,
the program executes normally.

e When run with all checks enabled and no buffer over-



GCC CIL Memsafe
All off All on
Time Ratio Ratio Ratio
bh 1.26 1.119 1.08  3.976
bisort 091 1.022 1.21  21.56
em3d 1.21 1.05 1.05 57.96
health 0.25 1.12 096 77.76
perimeter  0.63 1.206 2 1575
power 095 1.074 1.22  1.547
treeadd 0.17 1.176 1.59  13.29
tsp 1.41 1.057 1.01  3.504
gzip 2.29 1 096 3.393
gunzip 1.33  0.737 1.06  1.496
Average N/A  1.056 1.21  20.02

Table 1: Overhead of our transformation when compiled
with optimization, i.e. gcc’s -O3 mode.

flow occurs, the program completes its execution
normally.

e When run with all checks enabled and a buffer over-
flow occurs, the program aborts due to a failed run-
time check.

e We then turn off all checks except the failing check
from the previous test (and any supporting checks),
and re-run the program with a buffer overflow. It
must abort as before.

e Finally, we run the program several times with ran-
dom subsets of 10%, 20%, 30%, and 40% of the run-
time checks enabled, but with no buffer overflow, and
confirm that the program always executes normally.

Our test-suite currently contains 54 different tests, in-
cluding several hand-written tests, tests derived from pro-
grams written by the authors for un-related projects, and
gzip 1.2.4, which contains a known buffer overflow. All
tests pass. The benchmarks used for the performance
analysis described below serve as further evidence of the
correctness of our transformation.

Performance. In the common case, there will be no
known vulnerabilities in an application, so users will run
the application with all checks disabled. Thus overhead
in this configuration is the most important. Occasionally,
the user will have a single check activated, along with its
supporting checks, because of an outstanding vulnerabil-
ity in the application. This overhead should be as low as
possible, but it is less important than overhead with all
checks off. Finally, during testing, the vendor or user may

GCC CIL Memsafe
All off All on
Time Ratio Ratio Ratio
bh 2.05 0.985 1.1 3.405
bisort 091 1.099 1.2 21.64
em3d 1.54 1.013 099 48.29
health 0.31 0.935 1.03  66.97
perimeter  2.07 0.932 1 5.657
power 0.95 1.063 1.22  1.558
treeadd 0.13  1.385 1.77  16.69
tsp 141 1.021 1.04 3411
gzip 3.12  0.987 1.12 4.196
gunzip 1.15 1.296 1.04  2.565
Average N/A  1.072 1.15 17.44

Table 2: Overhead of our transformation when compiled
without optimization, i.e. gcc’s -O0 mode.

wish to run the application with all checks enabled. This
overhead is not too important unless it is so high that the
application is unusable. Thus, we measure the overhead
of our pre-patching transformation in these three configu-
rations: all checks off, one check enabled, and all checks
enabled.

Table 1 shows the overhead of our transformation on
the Olden benchmark when all checks are disabled or all
checks are enabled. The mst benchmark from the Olden
suite stores out-of-bounds pointers in non-solid variables,
and so is not supported by our transformation. The trans-
formation appears to incur non-trivial overhead (about
21%) when all checks are disabled, but we suspect that
this overhead is primarily caused by interference with the
GCC optimizer. To confirm this, we re-ran the experi-
ments with GCC optimizations disabled. Table 2 shows
that, in this configuration, the overheads are much lower,
averaging 15%. It is also interesting to note from these
tables that simply running the code through CIL can pro-
duce significant changes to the running time of a program
— from nearly 30% faster to nearly 30% slower. From
these experiments we conclude that a pre-patcher inte-
grated with the compiler’s optimizer can have very low
overhead — as little as 8%.

Tables 1 and 2 show that the overhead when all checks
are enabled can be very high. Although lower overhead
would be better, this is acceptable because the software is
rarely run in this mode.

Finally, Figure 2 shows the overheads when a single
check is activated in our benchmark programs. Since
the overhead will vary depending on which check is ac-
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Figure 2: Memsafe overhead with one check enabled.

tivated, we re-ran each benchmark 100 times, activating
a randomly chosen check on each execution. We report
the average execution time ratio, along with error bars in-
dicating the 95% confidence interval. The benchmarks
are compiled without GCC optimizations. Overheads can
vary significantly depending on the activated check, but
on average the program runs twice as slow as when com-
piled with gcc. Although this is a relatively high overhead,
the benefit is that, in the common case when all checks are
off, the overhead is much lower, e.g. 8-15%, as shown in
Table 2.

6 Conclusion

Pre-patched software turns the normal patching model on
its head. By generating run-time checks in advance, but
leaving them disabled until necessary, vendors can react
quickly to newly-discovered bugs and worms without in-
curring a high run-time overhead.

Our prototype implementation demonstrates that pre-
patching is a feasible mechanism for dealing with low-
level bugs, such as memory-safety errors in C. The tech-
niques developed for our prototype can be used to create a
pre-patching compiler that addresses other security bugs.
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