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Abstract—Crowdsourcing can be applied to the Internet-of-Things (IoT) systems to provide more scalable and efficient services to
support various tasks. As the driving force of crowdsourcing is the interaction among participants, various incentive mechanisms have
been proposed to attract and retain a sufficient number of participants to provide a sustainable crowdsourcing service. However, there
exist some gaps between the modeled entities or markets in the existing works and those in reality: 1) dichotomous task valuation and
workers’ punctuality, and 2) crowdsourcing service market monopolized by a platform. To bridge those gaps of such impractical
assumption, we model workers’ heterogeneous punctuality behavior and task depreciation over time. Based on those models, we
propose an Expected Social Welfare Maximizing (ESWM) mechanism that aims to maximize the expected social welfare by attracting
and retaining more participants in the long-term, i.e., multiple rounds of crowdsourcing. In the evaluation, we modeled the continuous
competition between the ESWM and one of the existing works in both short-term and long-term scenarios. Simulation results show that
the ESWM mechanism achieves higher expected social welfare and platform utility than the benchmark by attracting and retaining
more participants. Moreover, we prove that the ESWM mechanism achieves the desirable economic properties: individual rationality,
budget-balance, computational efficiency, and truthfulness.

Index Terms—Internet of Things, Crowdsourcing, Incentive Mechanism, Distributed Computing
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1 INTRODUCTION

THE Internet-of-Thing (IoT) is one of the fastest growing
research and industry areas involving vast amount and

variety of computing devices, which creates the availabil-
ity of massive data generation and exchange among the
devices. Annually, the IoT devices grow in both quantity
and quality (capability). Quantitatively, the number of IoT
devices installed or deployed worldwide is expected to
reach 75.44 billion in 2025 according to IHS Markit survey
conducted in 2016 [1]. Qualitatively, smartphones, one of the
most representative types of IoT devices, are now equipped
with powerful CPU, GPU, RAM, and storage, e.g., Octa-core
(4x2.8 GHz Kryo 385 Gold & 4x1.7 GHz Kryo 385 Silver),
4 GB RAM in Samsung Galaxy S9, which are comparable
to those of many laptops and desktops several years ago,
as well as various sensors such as accelerometer, gyro-
scope, iris, and fingerprint scanner. Utilizing such powerful
and numerously distributed IoT devices, we can provide
a service where people can request IoT devices to collect
massive amount of sensor data or to solve computationally
complex problem inexpensively using their idle computing
power in a manner of crowdsourcing in which tasks that
were traditionally completed by appointed agents are now
outsourced to an undefined large group of crowd. Using
the concept of crowdsourcing, many applications have been
proposed: LiveCompare [2] for grocery price comparison,
GreenGPS [3] to allow drivers to find the most fuel-efficient
route, LiFS [4] for indoor localization, and so on [5]–[7].
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However, such IoT-based crowdsourcing services are
viable only when IoT device users actively participate in the
crowdsourcing system (not only to use the services but also
to provide their resources). Thus, we require an incentive
mechanism that properly rewards resource providers for
their resources, which will induce them to participate in the
crowdsourcing system. In the literature, various incentive
mechanisms for crowdsourcing have been proposed to en-
courage user collaboration [8]–[17]. However, despite their
well-defined system models, there exist some gaps between
the entities or markets modeled in the existing works and
those in reality. In the crowdsourcing system, there are
three kinds of entities: requesters, workers, and platforms. A
requester asks a platform to assign his/her task to a worker,
while a worker aims to complete the task to receive a reward.
In the IoT-based crowdsourcing system, IoT device users
can be both requesters and workers. A platform plays as an
auctioneer to mediate between requesters and workers.

In terms of requesters, the existing works have a di-
chotomous task valuation model. That is, a task valuation
immediately collapses to zero, like a step function, after its
deadline. However, such dichotomous model is not general
enough to include the task depreciation case where the value
of a task is fully preserved until its deadline and depreciates
in proportion to the time past after the deadline [18]. De-
pending on the level of task depreciation over time, it may
be beneficial to accept some late tasks results rather than
requesting them again. Accordingly, such task depreciation
can also affect the payment policy of incentive mechanisms.
In the existing works that only considered fixed and binary
task valuation model, workers are rewarded based on the
fixed payment policy. However, to encompass general cases
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where tasks depreciate after their deadline and workers can
still submit their task result, the reward for workers should
be decided based on the task valuation achieved at the
moment workers submit their assigned task result.

Stemming from the dichotomous task valuation model,
workers in the literature are modeled to show only binary
behavior in terms of punctuality. In other words, workers
either submit their assigned task results in time or not
submit. However, considering the aforementioned general
cases where tasks depreciate over time and late task results
are accepted, workers’ punctuality should be considered
in diverse aspects. In practice, workers can have heteroge-
neous level of punctuality. That is, some workers may be
always punctual, while others may be usually punctual but
sometimes late. Even among the late workers, some may
submit their task results slightly after the deadline while
others submit far after the deadline. Thus, such heteroge-
neous punctuality should be considered to better capture
the general behavior of users in the crowdsourcing market.

Moreover, the limitation of the crowdsourcing market
model in the existing works is that a platform explicitly or
implicitly monopolizes the crowdsourcing market alone. In
the literature, mechanisms were separately evaluated under
the same condition such as the number of participants. In
addition, the crowdsourcing markets in the literature are
static, which means that they do not involve or consider
movements of participants over time. However, in reality,
several platforms will compete with each other in a crowd-
sourcing market to attract more participants. Accordingly,
each participant will decide which crowdsourcing platform
to join depending on the payment policy of each platform.
This results in dynamic movements of participants in the
market over time.

To bridge those gaps in the literature, this paper makes
the following main contributions:

1) We design a heterogeneous time-varying task valu-
ation model that encompasses task depreciation.

2) We design a behavior model of workers that cap-
tures their stochastic punctuality in completing their
assigned tasks.

3) We design an incentive mechanism that aims to
maximize the expected social welfare in the long
term by attracting and retaining more participants.

4) We model the dynamic competition over time be-
tween crowdsourcing service platforms which in-
volves dynamic movements of participants between
the platforms.

The rest of this paper is organized as follows. In Section
2, we provide a literature review of the existing mechanisms
for crowdsourcing. In Section 3, we present our system
models on requesters, workers, and a platform. Based on
the models, we formulate the expected social welfare max-
imizing problem in Section 4. In Section 5, we propose our
Expected Social Welfare Maximizing (ESWM) mechanism
that selects appropriate requester-worker pairs considering
heterogeneity in task depreciation speed and workers’ punc-
tuality. In Section 6, we evaluate the performance of our
ESWM mechanism. In Section 7, we conclude our paper.

2 RELATED WORK

In this section, we review the state-of-the-art research works
on incentive mechanisms for crowdsourcing. Yang et al.
[8] presented two general models of incentive mechanisms
to motivate mobile users’ participation: platform-centric
model and user-centric model. D. Peng et al. [9] proposed
a quality-based incentive mechanism for crowdsensing by
rewarding participants proportionally to their contribution.
Y. Wen et al. [19] presented a quality-driven auction-based
incentive mechanism for a Wi-Fi fingerprint-based indoor
localization system. In this direction, C. Liu et al. [10] also
proposed a Quality of Information (QoI)-aware incentive
mechanism to maximize the quality of information.

In the long-term view, Lee and Hoh [11] proposed a
mechanism, called RADP-VPC, that provides long-term in-
centives to participants to maintain participants and pro-
mote dropped ones to participate again. Similarly, L. Gao
et al. [12] proposed a mechanism to provide long-term
incentives to participants to achieve the maximum total
sensing value and the minimum total sensing cost.

Focusing on dynamic crowdsensing where participants
arrive in an online manner, Zhao et al. [13] presented
two online incentive mechanisms using a multiple-stage
sampling-accepting process. Similarly, Y. Wei et al. [15]
proposed an online incentive mechanism to maximize the
number of matched pairs of participants and crowdsourc-
ing service users when participants and service users are
dynamically changing.

J. Sun et al. [20] proposed a behavior-based incentive
mechanism for crowdsensing with budget constraint. This
work aims to achieve both the extensive user participation
and high quality sensing data submission, based on users
behavior abilities. S. Ji et al. [21] presented an incentive
mechanism for mobile phones with uncertain sensing time.
In order to address the sensing time uncertainty problem,
this work modeled the problem as a perturbed Stackelberg
game where mobile phone users sensing task times may be
different from their original plans. T. Luo et al. [22] proposed
an incentive mechanism for heterogeneous crowdsourcing
using all-pay contests where workers have not only different
type information (abilities and costs), but also the different
beliefs (probabilistic knowledge) about their respective type
information. In this work, the belief is modeled as a proba-
bility distribution.

X. Zhang et al. [14] proposed truthful incentive mech-
anisms for the case where participants’ cooperation may
be required to finish a job. Using Tullock contest, T. Luo
et al. [16] designed an incentive mechanism to maximize
the crowdsourcing service users profit. L. Duan et al. [17]
proposed an incentive mechanism for smartphone collabo-
ration in distributed computing using contract theory under
two different scenarios having complete and incomplete
information of participants.

However, the heterogeneity of task depreciation over
time has not been addressed in the literature. Task deprecia-
tion models over time in the existing works are dichotomous
as the value of tasks immediately drop to zero after the
given deadline. In other words, there can be only two kinds
of task valuation, either full or null. Such dichotomous
model overlooks the cases where task valuation remains
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valid even after the deadline, though depreciating in pro-
portion to the amount of time past the deadline, which can
be observed in practice and the literature [18].

Moreover, the heterogeneity of workers’ punctuality lev-
els has not been addressed. In real crowdsourcing systems,
each worker’s priority on its assigned task can vary, e.g.,
some prioritize on the assigned tasks while others prioritize
on their own tasks. In the existing works, workers are
assumed to have dichotomous behaviors. Moreover, many
works implicitly or explicitly assumed that all selected
workers meet their deadlines. However, coupled with the
depreciation of task value after the deadline, workers’ het-
erogeneous punctuality levels can make difference in the
realized task valuation at the task result submission time.
For instance, a provider with a relatively higher punctuality
level is expected to achieve a higher task valuation than the
one with a lower punctuality level. Besides, the partial task
valuation achieved after the deadline can vary depending
on the punctuality level.

3 SYSTEM MODEL

3.1 System Overview

In this section, we propose a system model considering task
depreciation over time and workers’ stochastic punctuality.
A crowdsourcing system consists of a platform (an auction-
eer), a set of M requesters (buyers) R = {r1, r2, r3, ..., rM}
identified by j, and a set of N workers (sellers) W =
{w1, w2, w3, ..., wN} identified by i. Then, the crowdsourc-
ing system is extended to two platforms that compete with
each other. As mentioned earlier, IoT devices or users can be
both requesters and workers in the IoT-based crowdsourc-
ing system. For simplicity, we assume that a requester rj
can submit only one task Γj to the platform and a worker
wi can take only one task. As in the real world systems, a
platform is assumed to have a limited capacity to handle K
number of task requests. The process of crowdsourcing in
our system is in a form of double auction where requesters
(workers) compete with each other to be selected as the
winning requesters (workers) as detailed below:

1) A set of requesters R submit to the platform their
own type information θrj which contains the max-
imum task valuation vmaxj , deadline tdj , and etc.
Similarly, a set of workers W submit to the platform
their own type information θpi which contains their
cost value ci. The platform analyzes and adds the
level of punctuality λi to the corresponding θpi .

2) The platform selects a subset of R as the win-
ning requesters Rs and a subset of W as the win-
ning workers Ws, and calculates temporary fees
qj ≤ vmaxj for rj ∈ Rs and temporary payment
pi ≥ ci for wi ∈ Ws assuming that all wi ∈ Ws

will be perfectly punctual. Note that the temporary
qj and the payment pi will be updated based on
the task valuation at the time of actual task result
submission.

3) For Rs and Ws, the platform matches each rj ∈ Rs
to eachwi ∈Ws. The matching algorithm is detailed
in Section 5.2.
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Fig. 1. vj(t) with different α values

4) When each wi ∈ Rs completes and submits the re-
quested task Γj at tsubi , the platform decides defini-
tive fee q′j and payment p′i, based on the achieved
task valuation at tsubi . Note that q′j and payment p′i
are the fee that rj ∈ Rs will be charged and the
payment wi ∈Ws will receive, respectively.

3.2 Requesters

In crowdsourcing, requesters are buyers in a double auction
who compete to be selected as the winners so that they
can outsource their tasks to workers. For those selected Rs,
their outsourced tasks will be completed by the winning
workers. In the initial stage of the auction, each requester
rj submits to the platform its own type information θrj =
( Γj , t

d
j , t

ex
j , v

max
j , αj) . Here, Γj , tdj , and texj , respectively,

denote a task outsourced by requester rj , the deadline when
the valuation of the outsourced task starts to depreciate, and
the expiry time when the valuation of the task becomes
null. The maximum valuation of Γj is denoted as vmaxj .
As each requester rj is rationally selfish, he/she will use
crowdsourcing service only if the value of Γj is higher
than the corresponding fee qj . To this extent, requesters are
modeled in the same way as the existing works where tasks
are heterogeneous in various aspects such as task size, bid,
and etc. Such heterogeneity has been well formulated into
mathematical problems and various solutions for them have
been proposed.

In addition, we consider the heterogeneity of task de-
preciation over time which has not been addressed in the
literature as mentioned in Section 2. In this work, to reflect
the diversity of task depreciation in crowdsourcing, we in-
troduce αj to denote the speed of task depreciation after the
deadline. In practice, the speed or level of task depreciation
can vary, i.e., some tasks depreciate to null right after their
deadline, while others do gradually. Therefore, to reflect
such heterogeneity of task depreciation, we introduce a new
function in terms of elapsed time t which reflects the speed
of task depreciation defined as

vj(t) =

{
vmaxj , if 0 ≤ t ≤ tdj
max{0, vmaxj − αj(t− tdj )2}, otherwise.

(1)
We use a quadratic function of elapsed time t as a form

of accelerated depreciation methods where tasks are more
profitable or have a higher utility during their early time
period. Until the deadline tdj of rj , the task valuation vj(t)



iv

0 10 20 30 40
Time Elapsed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ta
sk
 C
om

pl
et
io
n 
Pr
ob

ab
ilit

y

μ = 0.5
μ = 0.8
μ = 1.2
tex=38
td=25

Fig. 2. fi(t;µi, σi, td∗, tex∗ ) with different µi values

remains constant at maximum vmaxj . However, vj(t) starts
to depreciate after tdj , depending on its αj . Tasks with small
αj will depreciate slowly and we may achieve the partial
task valuation when completed even after tdj . In contrast,
tasks with large αj will depreciate too fast to achieve any
valuation even though it is completed shortly after tdj . In
Fig. 1, we show how vj(t) changes with different αj values.
Based on vj(t) and q′j , we define the utility of requester rj
as follows

urj =

{
vj(t

sub
∗ )− q′j , if rj ∈ Rs

0 otherwise,
(2)

where tsub∗ denotes the time Γj is completed.

3.3 Workers
In crowdsourcing, workers are sellers in a double auction
who compete to be selected as the winners. Each winning
worker wi ∈ Ws is required to complete their requested
tasks. In the process of executing assigned tasks, each
worker wi will have task execution cost, ci ∈ R+. To
compensate such incurred cost, wi submits to the platform
its own type information θpi = ( ci) that represents the
minimum ask value that wi wants to receive as the reward
for completing a requested task. Because wi is rationally
selfish, wi will decide to work on the requested task only if
it is paid with p′i ≥ ci. To this extent, workers are modeled
in the same way as the existing works where the costs of
workers are heterogeneous.

On top of the heterogeneity in costs, we consider work-
ers’ heterogeneous behavior in meeting the deadline which
has not been addressed in the existing works. To reflect such
heterogeneous punctuality levels, we model wi’s stochastic
behavior for its assigned task Γ∗ as a conditional probability
function parameterized by td∗ and tex∗ , using the following
truncated normal distribution

fi(t;µi, σi, t
d
∗, t

ex
∗ ) =


1
σi
φ(
t−µit

d
∗

σi
)

Φ(
tex∗ −µit

d
∗

σi
)−Φ(

−µi
σi

)
, 0 ≤ t ≤ tex∗

0, otherwise,
(3)

where φ(ζ) =
1√
2π

exp(−1

2
ζ2), (4)

where (4) and Φ(·) denote the probability density function
of the standard normal distribution and the cumulative
density function, respectively. Note that µitd∗ is the mean
of the truncated normal distribution, which can be derived

from users’ log data. Note that the existing works [20], [23],
[24] demonstrate that we can analyze user behaviors, using
log analysis. In this work, we assume σ = 2µ for simplicity.
Such linear relationship between µ and σ is assumed to
more clearly differentiate workers’ behaviors. For a newly
participating wi, the platform sets its µi to 1.

Based on the behavior model, workers stochastically
submit their requested task results to the platform. In other
words, there is a high probability of wi submitting the task
results around µitd∗. To numerically represent such workers’
stochastic behavior, we use a punctuality coefficient λi,
which is equal to 1/µi. The platform appends λi to each θpi
resulting in θpi = (ai, λi). A user’s behaviors with different
µ values for the same task are shown in Fig. 2. Based on the
payment p′i and the incurred cost ci, we define the utility of
worker wi as follows

upi =

{
p′i − ci, if wi ∈Ws

0 otherwise.
(5)

3.4 Platform
In crowdsourcing systems, a platform acts as an auction-
eer to select the winners in both requesters (buyers) and
providers (sellers), and match each winning requester to a
winning worker. Reflecting servers have finite capacity, we
assume the platform has a limited capacity K to handle
outsourcing requests.

For a platform, the sum of fees from Rs and the sum
of payments to Ws are its revenue and expenditure, respec-
tively. Given Rs and Ws, we define the utility of a platform
as follows

u0 =
∑
rj∈Rs

q′j −
∑

wi∈Ws

p′i. (6)

3.5 Expected Social Welfare
In the existing works, to evaluate the performance of crowd-
sourcing services, the system-wise social welfare is calcu-
lated as follows ∑

rj∈Rs

vmaxj −
∑

wi∈Ws

ci. (7)

However, when tasks depreciate after their deadline at
various speed and workers’ behaviors are stochastic, the
expected social welfare can better evaluate the performance
of crowdsourcing services than the simple calculation in (7).
Thus, to reflect workers’ stochastic behaviors and potential
task depreciation in the performance evaluation, we define
the system-wise expected social welfare (ESW) as

ESW =
∑
rj∈Rs

Ei(vj(t))−
∑

wi∈Ws

ci, (8)

where Ei(vj(t)) is the expected valuation of Γj when as-
signed to wi. Note that in this work, we assume that the
cost ci is constant whenever wi completes its assigned task.
We define Ei(vj(t)) as

Ei(vj(t)) =

∫ texj

0
vj(t)f(t;µi, σi, t

d
j , t

ex
j )dt =

∫ tdj

0
vmaxj

f(t;µi, σi, t
d
j , t

ex
j )dt+

∫ texj

tdj

vj(t)f(t;µi, σi, t
d
j , t

ex
j )dt, (9)
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where vj(t) remains constant until tdj . Here, Ei(vj(t)) con-
sists of two parts: 1) pre-deadline, and 2) post-deadline. The
pre-deadline part and the post-deadline part represent the
expected task valuation until the deadline and that after the
deadline, respectively. Note that (7) is a special case of (8)
where the integral of fi(t;µi, σi, tdj , t

ex
j ) from 0 until tdj is 1

because Ei(vj(t)) in this case is calculated as

Ei(vj(t)) =

∫ texj

0
vj(t)fi(t;µi, σi, t

d
j , t

ex
j )dt =∫ tdj

0
vmaxj fi(t;µi, σi, t

d
j , t

ex
j )dt = vmaxj . (10)

Note that when the assumption of perfect punctuality does
not hold, the expected valuation of (9) can be less than vmaxj ,
i.e., Ei(vj(t)) ≤ vmaxj , due to the task results submitted after
the deadline.

3.6 Desirable Economic Properties

In this work, we aim to design an incentive mechanisms
for crowdsourcing that satisfies the following four desirable
economic properties: 1) individual rationality, 2) budget-
balance, 3) computational efficiency, and 4) truthfulness.
Each is described as below.

3.6.1 Individual Rationality
An incentive mechanism is individually rational if both
requesters (buyers) and workers (sellers) have non-negative
utility when their true valuation and cost are reported.

3.6.2 Budget-balance
An incentive mechanism is budget-balanced if the platform
has non-negative utility at the end of the auction. That is∑
rj∈Rs qj −

∑
wi∈Ws

pi ≥ 0.

3.6.3 Computational Efficiency
An incentive mechanism is computationally efficient if it
runs in polynomial time.

3.6.4 Truthfulness
An incentive mechanism is truthful if neither requester nor
worker can increase its utility by submitting the false task
valuation or cost information. In other words, submitting
the true valuation or cost information is a dominant strategy
for all participants.

4 EXPECTED SOCIAL WELFARE MAXIMIZING
PROBLEM

In our system, the objective of the platform is to find
the optimal requester-worker matches that maximize the
expected social welfare. As one requester is matched with
only one worker, all possible combinations of (rj , wi) pairs
can be defined as a matrix L below

L =


l11 l12 . . . l1|W |
l21 l22 . . . l2|W |
...

...
...

...
l|R|1 l|R|2 . . . l|R||W |

 , (11)
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Fig. 3. Hungarian Algorithm VS Greedy Algorithm

where each element lji = 1 only if rj ∈ R and wi ∈ W are
matched, otherwise 0. Thus, based on the L matrix and (8),
we can formulate the expected social welfare maximizing
problem to find the optimal requester-provider matches L∗

as follows

L∗ = argmax
L

∑
rj∈R

∑
wi∈W

(Ei(vj(t))− ci)lji, (12)

subject to
lji ∈ {0, 1}, ∀lji ∈ L, (12.a)∑
rj∈R

∑
wi∈W

lji ≤ K, (12.b)

∑
wi∈W

lji ≤ 1, ∀rj ∈ R, (12.c)

∑
rj∈R

lji ≤ 1, ∀wi ∈W. (12.d)

The objective function (12) is a combinatorial optimiza-
tion problem to select the optimal requester-provider pairs
that maximize the expected social welfare defined as (8)
subject to constraints (12.b), (12.c), and (12.d). As mentioned
in the definition of a L matrix, lji in (12.a) is a binary
variable to indicate whether rj ∈ R and wi ∈ W are
paired or not. Constraint (12.b) states that the platform has
a limited capacity to handle K task requests. In an ideal
case where the platform can manage all the incoming task
requests, K in (12.b) can be set to |R|. Constraint (12.c) and
(12.d) state that each requester can be matched to only one
worker and vice versa.

In the ideal system where all the task requests can be
handled, the optimal requester-provider matches L∗ can be
obtained via the Hungarian algorithm [25]. Guaranteeing to
solve the assignment problem in polynomial time, the Hun-
garian algorithm, also known as Munkres assignment algo-
rithm, can find the optimal requester-worker pairs in O(n3)
when n is max{|R| , |W |}. However, despite its guaranteed
polynomial running time, the running time of the Hungar-
ian algorithm significantly increases to solve (12.d). To test
the feasibility of the Hungarian algorithm in practice, we
implemented it in Ubuntu 18.04.1 LTS equipped with Intel
Xeon(R) CPU E5-2630 @ 2.30GHz (24 cores) and 36GB RAM.
In the test, we varied |R| from 100 to 500 in an increment of
100, setting K and |W | to 100 and twice of |R|, respectively.
Note that we first find the optimal pairs including all the
requesters, and then select the top K pairs. As shown in Fig
3a, there exists a significant difference in the time required
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to find the K optimal pairs. For instance, the Hungarian
algorithm completes in approximately 190 seconds, while a
greedy algorithm ends in 0.25 second. Moreover, such time
difference widens as |R| increase: the Hungarian algorithm
requires almost half a day (38711 seconds ≈ 11 hours) to
find the optimal pairs for 500 requesters, while the greedy
approach-based algorithm requires approximately a second
to complete (1.05 second). Consequently, it is not feasible
to deploy the Hungarian algorithm to find the optimal
requester-worker pairs in the growing IoT networks where
instantaneous interactions between numerous IoT devices
are demanded, despite its optimal return in social welfare
as shown in Fig. 3b.

In addition, the native Hungarian algorithm does not
guarantee the aforementioned desirable economic proper-
ties (individual rationality, budget-balance, and truthful-
ness) which are essential to sustain the crowdsourcing ser-
vice despite achieving higher expected social welfare. Thus,
to address this limitation, we propose an expected social
welfare maximizing mechanism (ESWM) that is based on a
greedy algorithm to heuristically obtain the locally optimal
solution. Considering heterogeneity in task depreciation
speed and workers’ punctuality, the ESWM selects appro-
priate requester-worker pairs in a polynomial time (within
a couple of seconds). Note that when the platform handles
a large number of tasks in real-world IoT systems, the real-
time response is essential for the practical deployment of
the algorithm. Unlike the existing works, our ESWM aims
to achieve a higher social welfare or platform utility in long-
term view by attracting and retaining more participants,
rather than attempting to simply maximize the platform
utility in a given round of auction. In addition, the ESWM
achieves individual rationality, budget-balance, computa-
tional efficiency, and truthfulness.

5 ESWM MECHANISM

In this section, we propose an expected social welfare max-
imizing (ESWM) mechanism, which largely consists of 3
main steps: 1) winner selection step, 2) matching step, and
3) pricing step. In Fig. 4, the overall workflow of H-ESWM
mechanism is shown.

5.1 Winner Selection Step
In the initial stage of each double auction, a set of requester
R and a set of provider W submit to the platform their type
information θr and θp, respectively. Ultimately, the platform
aims to select the same number of winners from both R and
W . As the platform is assumed to have a limited capacity K
to handle task requests, the maximum numbers of Rs and
Ws are set to K .

5.1.1 Winning Requester Selection Algorithm (WRSA)
The winner selection criterion in the WRSA is straightfor-
ward; select requesters whose task valuation is high and
slowly depreciates the task valuation after the deadline. The
platform iteratively selects a requester with the maximum
ratio of voj/(α

β
j |Γj |) among R as a winning requester (line

3-4) as detailed in Algorithm 1. Note that β is a tunable
parameter to adjust weight between voj/ |Γj | and αj . By
controlling β, we can decide the priority order between
unit task valuation and depreciation speed in the winning
requester selection. The effect of β on the platform perfor-
mance will be discussed in the later section. The selection
process repeats until the number of Rs reaches K + 1 or
every rj ∈ R is selected. Among Rs, the platform chooses
a requester with the minimum ratio of voj/(α

β
j |Γj |) as a

threshold requester, and excludes it from Rs (line 9-10).

Algorithm 1: Winning Requester Selection Algorithm
(WRSA)

Input : R,K , β
Output: Rs, rth

1 Rs ← ∅;
2 while |Rs| 6= K + 1 do
3 r∗ ← arg max

rj∈R
1

αβj

voj
|Γj | ;

4 Rs ← Rs ∪ {r∗}, R← R \ {r∗};
5 if |R| = 0 then
6 break;
7 end
8 end
9 rth ← arg min

rj∈Rs
1

αβj

voj
|Γj | ;

10 Rs ← Rs \ {rth};
11 return Rs, rth

5.1.2 Winning Worker Selection Algorithm (WWSA)
The criterion and selection process of the WWSA are similar
to those of the WRSA. The WRSA selects providers who
have low ask values and high probability to meet the dead-
line. In each iteration, the platform selects a worker with
a minimum ratio of ci/λ

β
i among W as a winning worker

(line 3-4). As in the WRSA, β is a tunable parameter value
to adjust where the platform puts more weight on between
ci and λi for the winner selection. By using the ratio, it tries
to select a worker with high punctuality as well as a low-
cost value. The platform repeats such selection process until
the size of Ws reaches K + 1 or every wi ∈ W is selected.
Then, the platform chooses a worker with a maximum ratio
of ci/λ

β
i among Ws as a threshold worker, who is ruled out

from Ws (line 9-10).
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Algorithm 2: Winning Worker Selection Algorithm
(WWSA)

Input : W,K, β
Output: Ws, wth

1 Ws ← ∅;
2 while |Ws| 6= K + 1 do
3 w∗ ← arg min

wi∈W
ci
λβi

;

4 Ws ←Ws ∪ {w∗}, W ←W \ {w∗};
5 if |W | = 0 then
6 break;
7 end
8 end
9 wth ← arg max

wi∈Ws

ci
λβi

;

10 Ws ←Ws \ {wth};
11 return Ws, wth

5.2 Matching Step
In the matching step, the platform iteratively matches Rs
to Ws in such a way that unmatched rj ∈ Rs with the
maximum voj/(α

β
j |Γj |) is assigned to unmatched wi ∈ Ws

with the minimum ci/λ
β
i as detailed in Algorithm 4. By such

matching criterion, the platform pairs a rj ∈ Rs whose task
remains in high valuation even after its deadline with a wi
who is cost-effective and punctual.

Before the matching of Rs and Ws, the platform first in-
spects whether both Rs and Ws can be one-to-one matched
and replaces, if necessary, either rth or wth, by running the
trimming algorithm (TA) (line 4) as detailed in Algorithm
3. In the TA, the platform trims Rs and Ws returned by

Algorithm 3: Trimming Algorithm (TA)
Input : Rs,Ws, rth, wth, β
Output: Rs,Ws, rth, wth, Q, P

1 Assume vo1
αβ1 |Γ1|

≥ · · · ≥ vo|Rs|

αβ|Rs||Γ|Rs||
≥ voth

αβth|Γth|
;

2 Assume c1
λ1
β ≤ · · · ≤

c|Ws|

λβ|Ws|
≤ cth

λβth
;

3 Q← ∅, P ← ∅;
4 if |Rs| < |Ws| then
5 wth ←Ws[|Rs|+ 1];
6 Ws ←Ws[1 ∼ |Rs|];
7 end
8 else if |Rs| > |Ws| then
9 rth ← Rs[|Ws|+ 1];

10 Rs ← Rs[1 ∼ |Ws|];
11 end
12 qj ← 0,∀rj ∈ Rs;
13 pi ← 0,∀wi ∈Ws;
14 for (rj , wi) ∈ (Rs,Ws) do

15 qj ← max{qj ,
αβj

αβth

voth
|Γth| |Γj |};

16 pi ← max{pi, athλβth
λβi };

17 Q← Q ∪ {qj};
18 P ← P ∪ {pi};
19 end
20 return Rs,Ws, rth, wth, Q, P

the WRSA and the WWSA in such a way that both Rs

and Ws have the same size, i.e., |Rs| = |Ws|, concurrently
replacing either rth or wth (line 4 or 11). After the trimming
process, the platform calculates temporary fee qj for each
rj ∈ Rs and temporary payment pi to each wi ∈ Ws. For
the calculation of qj and wi, the platform uses the ratio
value vth/(α

β
th |Γth|) of rth and the ratio value cth/λ

β
th of

wth, which consequently make qj and pi the critical values
to guarantee truthfulness of requesters and workers, respec-
tively (line 14-19). Note that we denote qj (pi) temporary fee
(temporary payment) because both qj and pi in the TA were
initially calculated based on the assumption that allwi ∈Ws

will meet the deadline and all rj ∈ Rs will accordingly
achieve their full valuation. Later when wi ∈ Ws completes
its assigned task, both qj and pi will be updated in the
Pricing Algorithm.

After the TA, the platform checks whether the budget-
balance holds (line 5). If it holds, the platform starts the
matching process (line 10-12). Otherwise, the platform re-
vokes the auction (line 6-8).

Algorithm 4: Matching Algorithm (MA)
Input : Rs,Ws, rth, wth, β
Output: Match,Q, P

1 Assume vo1
αβ1 |Γ1|

≥ · · · ≥ vo|Rs|

αβ|Rs||Γ|Rs||
≥ voth

αβth|Γth|
;

2 Assume c1
λ1
β ≤ · · · ≤

c|Ws|

λβ|Ws|
≤ cth

λβth
;

3 Match← ∅;
4 Rs,Ws, rth, wth, Q, P = TA(Rs,Ws, rth, wth, β);
5 if

∑
pi∈P

pi >
∑
qj∈Q

qj then

6 Rs ← ∅,Ws ← ∅;
7 Q← ∅, P ← ∅;
8 return Match,Q, P
9 end

10 for (rj , wi) ∈ (Rs,Ws) do
11 Match←Match ∪ (rj , wi);
12 end
13 return Match,Q, P

5.3 Pricing Step

Unlike the existing works where the fee for Rs and the
payment to Ws are determined before the task submission
and do not change, our mechanism determines the final fee
and payment, called effective fee and payment, depending
on the task valuation at the task submission time (tsubi ) of
each wi ∈ Ws. As detailed in Algorithm 5, when wi ∈ Ws

is matched to rj ∈ Rs and submits its task result at tsubi , the
platform decides the effective fee q′j for rj and the effective
payment p′i to wi in proportion to the ratio of achieved valu-
ation vj(tsubi ) to the original (full) valuation voj , respectively
(line 4-10). The platform can run the pricing processes for
each match (rj , wi) in parallel. Note that temporary qj and
pi were calculated in the MA.

The entire process of H-ESWM is shown in Algorithm 6.
The platform first runs the WRSA and the WWSA to decide
the winners in a double auction. Then, it runs the MA to
match Rs to Ws. Lastly, the platform decides both effective
fee and payment in the PA.
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Algorithm 5: Pricing Algorithm (PA)
Input : Match,Q, P
Output: Q′, P ′

1 Q′ ← ∅, P ′ ← ∅;
2 q′j ← 0,∀wi ∈Match;
3 p′j ← 0,∀rj ∈Match;
4 forall (rj , wi) ∈Match do
5 tsubi ← wi’s task submission time;
6 qj ← fee for rj ∈ Q calculated before tisub;
7 pi ← payment to wi ∈ P calculated before tisub;

8 q′j ←
vj(t

sub
i )
voj

qj , Q
′ ← Q′ ∪ {q′j};

9 p′i ←
vj(t

sub
i )
voj

pi, P
′ ← P ′ ∪ {p′j};

10 end
11 return Q′, P ′

Algorithm 6: H-ESWM
Input : R,W,K, β
Output: Match, P ′, Q′

1 Rs, rth = WRSA(R,K);
2 Ws, wth = WWSA(W,K);
3 Match,Q, P = MA(Rs,Ws, rth, wth);
4 Q′, P ′ = PA(Match,Q, P );
5 return Match,Q′, P ′

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the ESWM
mechanism in both short-term and long-term scenarios. As
crowdsourcing service platforms may continuously compete
with each other in real IoT-based crowdsourcing systems,
the current performance of platforms can also affect the
performance in the future competitions. Thus, we first com-
pare the performance of proposed ESWM mechanism with
one of the existing works [14] in the short-term scenario
with one round of auction. Then, we extend the evaluation
to the long-term scenario where the previous performance
metrics (average requester utility or worker utility) affect
the current recruitment of requesters and workers. We let
[14] and ESWM mechanism compete with each other and
see how effectively they can attract participants.

6.1 Performance Metrics
As for performance metrics, we consider the social welfare,
the platform utility, the average requester utility, and the av-
erage worker utility. We compare the performance metrics of
our mechanism to those of the benchmark [14] whose winner
selection process is also based on the greedy algorithm, but
only considering the ratio of vmaxj /|Γj | and ci. Lastly, we
prove that our mechanism achieves the four desirable eco-
nomic properties. Before we provide the simulation results,
we define each performance metric as below.

6.1.1 Social Welfare
The social welfare is divided into two categories: 1) the
Naı̈ve social welfare (NSW) as defined in (7), and 2) the
expected social welfare (ESW) as defined in (8). While the
expected social welfare takes potential task depreciation into

account, the Naı̈ve social welfare merely assumes the ideal
case where all the tasks are completed in time.

6.1.2 Platform Utility
The platform utility is as defined in (6).

6.1.3 Average Requester & Worker Utility
The average requester utility is defined as follows

ūr =

∑
rj∈R u

r
j

|R|
. (13)

Similarly, the average worker utility is defined as follows

ūp =

∑
pi∈W upi
|W |

. (14)

6.2 Simulation Setting
In our simulations, we uniformly distribute vmaxj , |Γj |, tdj ,
and texj for requesters over (0, 100] and [1, 10], (0,100], and
[tdj , 1.5tdj ], respectively. And we uniformly distribute αj over
(0, 100] to include the case where a task becomes valueless
right after the deadline (when vmaxj = 100 and αj = 100).
For workers, we uniformly distribute ci and µi over (0, 10]
and (0, 1.5], respectively. All the simulation results for the
performance metrics are averaged over 200 runs.

6.3 Benchmark vs ESWM in a Single Auction
In this simulation, we compare the performance of the
ESWM mechanism to the benchmark when both are given
the same 1,000 requesters and 2,000 workers with β = 0.5.

Fig. 8d shows the social welfare of the benchmark and
the ESWM mechanism, increasing the platform capacity
from 100 to 1000 in an increment of 100. In terms of the naı̈ve
social welfare, both mechanisms achieve almost the same
value. However, the ESWM mechanism produces higher
expected social welfare than the benchmark. This can be
attributed to the fact that the ESWM mechanism focuses on
the estimated valuation which will be achieved in the sub-
mission time rather than the original valuation which may
depreciate. In contrast, the benchmark mechanism shows
a wider gap between its naı̈ve social welfare and expected
one, failing to capture the potential task depreciation.

Fig. 8a shows the platform utility achieved by the bench-
mark and the ESWM mechanism, before and after the
task submission of workers. In both cases, the benchmark
mechanism produces higher platform utility than the ESWM
mechanism. Such difference results from the difference in
the pricing step. In the WRSA and the WWSA, the fee for
rj ∈ Rs and the payment to wi ∈Ws were calculated as

qj =
αβj

αβth

vmaxth

|Γth|
|Γj | , pi =

λβi

λβth
cth. (15)

For rj ∈ Rs, αj tends to be smaller than αth since the
ESWM mechanism iteratively selects winners with the max-
imum vmaxj /(αj |Γj |). Consequently, qj is smaller than that
of the benchmark calculated as vmaxth |Γj | / |Γth|. Similarly,
λi for wi ∈ Ws is likely to be larger than λth, as the
ESWM mechanism iteratively selects as a winner worker
with the minimum ci/λ

β
i . Consequently, pi is larger than
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Fig. 5. Benchmark (B.M) vs ESWM in a Single Auction

that of the benchmark calculated as cth. However, after the
task submission, the difference significantly decreases due
to more frequent unpunctuality in the benchmark, which
consequently inflicts more utility loss.

Fig. 8b and Fig. 8c show the average requester utility
and the average worker utility, respectively. As mentioned
in the analysis of Fig. 8a, the ESWM mechanism charges Rs
less and rewards Ws more. Consequently, the ESWM mech-
anism makes both requesters and workers achieve higher
average utility by sacrificing its own utility. In a myopic
strategy, it is not a rational decision for a platform to sacrifice
its own utility for participants. However, as demonstrated in
the next subsection, such sacrifice can bring about a positive
effect to the platform itself in the long-term strategy.

6.4 Benchmark vs ESWM with Re-selection

In the previous simulation, we showed that the ESWM
mechanism achieves higher social welfare, average re-
quester utility, and average worker utility than the bench-
mark, at the cost of its own utility. As an initial stage of the
competition, both mechanisms were given the same number
of requesters and workers in the previous simulation. That
is, we assumed that both mechanisms could attract the same
number of requesters and workers.

However, in reality, how attractive each mechanism is to
participants can differ since each provides different utility
for participants. As all participants are rationally selfish,
they select the mechanism that would provide higher utility
to them. Consequently, when the benchmark and our mech-
anism compete in a crowdsourcing system, the number of
participants that each mechanism attracts can vary depend-
ing on the average utility each provides. Thus, to reflect such
different attractiveness of each mechanism to participants,
we define participation probability functions for requesters
and workers as

pr(ūrA , ūrB ) = (

√
ūrA√

ūrA +
√
ūrB

,

√
ūrB√

ūrA +
√
ūrB

), (16)

pp(ūpA , ūpB ) = (

√
ūpA√

ūpA +
√
ūpB

,

√
ūpB√

ūpA +
√
ūpB

), (17)

where ūrA (ūrB ) and ūpA (ūpB ) denote the average utilities
of requesters and workers who joined mechanism A (mech-
anism B) in the previous recruitment, respectively. Given
the average utility of participants in each mechanism, the
participation probability function returns a tuple of proba-
bilities that a participant decides to join each mechanism. In

this work, we set the participation probability proportional
to the square root of the average utility of participants
obtained from the previous simulation results, based on [26].
According to the reference, the concavity of the square root
function captures the diminishing impact of the utility on
the participation probability.

Based on the probabilities, each participant decides
which mechanism it will join in the current recruitment.
Consequently, when there exist two different mechanisms
competing in a crowdsourcing system, a mechanism which
has provided higher utility to participants can expect to
attract more participants. We call such decision-making
process of participants re-selection. In the re-selection simula-
tion, the benchmark mechanism and the ESWM mechanism
compete with each other in a system with 2,000 requesters,
4,000 workers, and β = 0.5.

Fig. 6a shows the simulation results of the social welfare
under such re-selection scenario. Compared to the previous
simulation results, the ESWM mechanism achieves much
higher naı̈ve and expected social welfare than the bench-
mark. As the ESWM mechanism provided both requesters
and workers with higher average utility, it is more appeal-
ing to both requesters and workers than the benchmark,
which attracts more of them. Consequently, such quanti-
tative growth leads to higher chance of taking beneficial
participants, which ultimately increases the social welfare
of the ESWM mechanism. Note that in the point of view of
the platform, beneficial participants means a requester with
high vmaxj and low αj , and a worker with low ci and high
λi. In addition, even with more number of participants, es-
pecially workers, the ESWM mechanism can still handle the
task requests better than the benchmark (800 task requests
while the benchmark can handle up to 600). The reason for
such difference can be inferred from the platform utility.
As shown in Fig. 6b, the platform utility of the benchmark
is 0 after K = 900. Thus, the platform, which is rational
and selfish, revokes the double auction as its budget-balance
condition is not satisfied.

Moreover, unlike the previous simulation result, Fig. 6b
shows that the ESWM mechanism achieves higher platform
utility than the benchmark. For the same reason in the social
welfare, such increased platform utility is achieved as the
ESWM mechanism attracts more participants, which enables
the platform to get better behaving participants. As a re-
sult, even though the ESWM mechanism sacrificed its own
utility in the initial stage, its utility loss is compensated by
attracting more participants in the long-term competition.
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Fig. 6. Benchmark (B.M) vs ESWM with Re-selection

In addition, the platform capacity to achieve the maximum
platform utility increases from 400 to 500, which results in
the higher maximum platform utility.

Fig. 6c and Fig. 6d show the average requester utility
and the average worker utility, respectively. In both results,
the ESWM mechanism and the benchmark achieve almost
the same average utility as long as both can handle task
requests. This can increase the number of requesters and
workers participating in the ESWM mechanism, which iron-
ically reduces the average utility of participants, especially
workers. In other words, as the number of participants
who join the ESMW mechanism increases, more participants
fail to be selected as winners, which results in more zero
utilities. As a result, the average participant utility of the
ESWM mechanism decreases. Based on our observation
from Fig. 6c and Fig. 6d, we can anticipate that there will not
be a significant number of re-selections since the benchmark
and the ESWM mechanism offer similar average utilities for
both requesters and workers. That is, the benchmark and
the ESWM mechanism have approached near the balance
point where both mechanisms are equally attractive to par-
ticipants. Specifically, we can define the balance point as
the case where pr(ūrA , ūrB ) and pp(ūrA , ūrB ) are discrete
uniform distributions.

6.5 Effect of β
In the previous simulations, we fixed β which decides the
weights on αj for rj and λi for wi in the winner selection
step and the pricing step. To analyze the effect of β, we
evaluate the performance metrics by vary β over (0, 2] in an
increment of 0.1. In this simulation, we set |R| and |W | to
1,000 and 2,000, respectively, with K = 500.

Fig. 7 shows how β affects the four performance metrics.
In Fig. 7a, the ESWM mechanism achieves higher platform
utility as it sets lower β on both α and λ. Considering
the effect of β on qj and pi in the pricing process, such
phenomenon is easily comprehensible. In the pricing pro-
cess, as β increases, the fee charged to rj ∈ Rs whose αj
is smaller than αth decreases. Consequently, the platform
utility decreases since the fees for Rs which is the rev-
enue for the platform decreases. In contrast, the reward for
wi ∈ Ws whose λi is larger than λth increases. Since the
rewards given to Ws are an expenditure of the platform,
its utility decreases. Interestingly, in Fig. 7, when β for
both α and lambda are set beyond 1.0, the platform utility
becomes close to zero, which indicates that the platform
cannot sustain its crowdsourcing service. Thus, even though

appropriate β values enable the platform to attract more
participants by offering them higher average utility, a too
large β can obstruct the sustainability of the platform.

For the same reasons in the platform utility, the average
requester and worker utilities increase as β increases as
shown in Fig. 7b and Fig. 7c, respectively. When vmaxj for
rj ∈ RS is constant, lower fees for Rs lead to higher utility.
With ci for wi ∈ Ws constant, higher reward for Ws results
in higher utility. As in the case of the platform utility, we
can observe zero utility for both requesters and workers.

Unlike the before-mentioned performance metrics, the
expected social welfare shows a different trend. As shown in
Fig. 7d, while the social welfare generally increases as β of α
increases, it decreases as β of λ increases. Such inconsistency
with the other performance metrics is due to the difference
in the degree of importance of β in the winning requester se-
lection and winning worker selection processes. Compared
to the role of β of α in the winning requester selection, β of
λ plays a less critical role to maximize the expected social
welfare in the winning worker selection. In other words,
the speed of task depreciation affects more to the expected
social welfare than the workers’ punctuality. In addition,
setting β of λ large in the winning worker selection results
in prioritizing workers’ punctuality over their cost, which
may lead to the decrease of the expected social welfare.
However, considering the continuous competition with the
other platforms, setting β of λ too small will ultimately
result in the loss of both the expected social welfare and
the platform utility, since β of λ also affect the reward for
workers, which plays a critical role in attracting and retain-
ing more workers. Thus, dynamically setting appropriate
values for β of α and β is critical to the performance in the
continuous competition.

In Fig. 8, we show the zoomed-in views of Fig.7, limiting
β over (0, 1] in an increment of 0.1. In each subfigure, we
can more clearly observe the effect of β.

6.6 Proof of Desirable Economic Properties
We prove that the ESWM mechanism satisfies the aforemen-
tioned four desirable economic properties.

Lemma 1. ESWM mechanism is always individually rational for
all participants, except for unpunctual workers, regardless of the
task submission time, tsubi .

Proof. To prove the individual rationality of the ESWM
mechanism, we show that each participant’s utility is non-
negative by the end of an auction when reporting its true
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maximum valuation (requester) or cost (worker).
Requesters: To prove the individual rationality of re-
questers, we show that urj ≥ 0,∀rj ∈ R. For a rj ∈ Rs,
his/her utility is urj = vj(t

sub
∗ )− qj as defined in (2). When

rj ∈ R submits its true valuation vmaxj , the platform calcu-
lates the temporary fee, qj = (αβj v

max
th |Γj |)/(αβth |Γth|) ≤

vmaxj for rj in the winner selection process. Putting qj into
(2), the utility of each winning requester is urj = vmaxj −qj ≥
0 before its matched worker submits the task result.

In the pricing step, the platform finally determines the
fee for each winning requester as q′j , based on the achieved
valuation vj(tsubi ) by the matched worker wi. Given vj(tsubi )
and q′j , the utility of each winning requester becomes

urj = vj(t
sub
i )− q′j = vj(t

sub
i )(1− qj

vmaxj

). (18)

Since vj(tsubi ) ≥ 0 as defined in (1) and qj ≤ vmaxj , urj is
always non-negative. Therefore, the non-negative utility of
each winning requester is guaranteed regardless of the task
submission time. For the unselected requesters, their utility
is 0 as defined in (2). Such non-negative utility proves that
our incentive mechanism achieves the individual rationality
of all requesters, regardless of the task submission time.
Workers: When a worker submits its true cost value, the
platform calculates the temporary payment to each winning
worker, pi = (cthλ

β
i )/λβth ≥ ci. Putting pi into (5), the utility

of each winning worker before its task result submission is
upi = pi − ci ≥ 0.

In the pricing step, the platform determines the final pay-
ment p′i to each winning worker wi ∈ Ws who is matched
to rj ∈ Rs, based on the achieved valuation vj(tsubi ). Given
vj(t

sub
i ) and p′i, the utility of wi ∈Ws becomes

upi = p′i − ci =
vj(t

sub
i )

vmaxj

pi − ci =
vj(t

sub
i )

vmaxj

(pi −
vmaxj

vj(tsubi )
ci).

(19)

Unlike the case of the winning requesters, our mecha-
nism does not guarantee tardy workers non-negative util-
ity. For punctual workers who meet the deadline of their
requested task, i.e., tsubi ≤ tdj , the non-negative utility is
guaranteed since vj(tsubi ) = vmaxj if tsubi ≤ tdj , which makes
upi = pi − ci ≥ 0. In contrast, for unpunctual workers who
submit their requested task result past the deadline, i.e.,
tsubi > tdj , the non-negative utility is not guaranteed. When
tsubi > tdj , we cannot assure that pi − (vmaxj ci)/vj(t

sub
i ) ≥ 0

in (19) since vj(tsubi ) < vmaxj . For the unselected workers,
their utility is 0 as defined in (5). Such non-negative utility
exclusively for punctual workers can be an additional incen-
tive to promote workers to meet the deadline.

Lemma 2. ESWM mechanism is budget-balanced at least before
the task submission.

Proof. In Algorithm. 4, the ESWM mechanism checks
whether

∑
pi∈P pi >

∑
qj∈Q. If the condition is met, the

platform sets Rs, Ws, Q, and P empty sets and returns them
to terminate the crowdsourcing process. Otherwise, it con-
tinues the crowdsourcing process. Therefore, the platform
utility is always non-negative, which achieves the budget-
balance of our mechanism before the task submission.

Lemma 3. ESWM mechanism is computationally efficient.

Proof. In the ESWM mechanism, the winner selection al-
gorithm, the matching algorithm, and the pricing algo-
rithm run upper-bounded byO(max{N,M}K),O(K), and
O(K) respectively. Thus, the time complexity of our in-
centive mechanism is bounded in O(max{N,M}K), which
achieves the computational efficiency.

Lemma 4. ESWM mechanism is truthful.

Proof. To prove the truthfulness of our incentive mecha-
nism, we use Myerson’s Theorem [27]. According to [27], we
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need to show that our mechanism satisfies two conditions,
monotonicity of the winner selection process and critical
value-based pricing to the winners to prove its truthfulness.

A monotonicity of mechanisms is satisfied if a seller wi
(a buyer rj) wins the auction by bidding ci (vmaxj ), it will
surely win the auction by bidding c′i ≤ ci (v′maxj ≥ vmaxj ).
The critical value is the maximum (minimum) value that a
seller (buyer) can ask to win the auction. In other words,
if a seller (buyer) bids higher (lower) value than the critical
value, it will lose the auction. As our incentive mechanism is
in a form of double auction, we prove truthfulness by show-
ing the truthfulness of requesters and workers, respectively.
Requesters: We prove the truthfulness of requesters by
showing that the WRSA satisfies monotonicity and the
temporary fee qj is the critical value. In the WRSA, mono-
tonicity is evident. If a requester rj wins the auction by
bidding vmaxj , it means that we have a threshold requester
rth, such that vmaxj /(αβj |Γj |) ≥ vmaxth (αβth |Γth|). Then,
if the requester rj bids v′

max
j such that v′maxj ≥ vmaxj ,

it will definitely win the auction as v′
max
j /(αβj |Γj |) ≥

vmaxj /(αβj |Γj |) ≥ vmaxth /(αβth |Γth|). Therefore, the WRSA
satisfies monotonicity in the winner selection.

To verify the critical value based pricing, we show that
if a requester rj submits v”maxj which is less than the tem-
porary fee qj , then the requester will lose the auction. In the
WRSA, if a requester rj bids v”maxj such that v”maxj < qj ,
then it will be ousted from Rs as v”maxj /(αβj |Γj |) <

qj/(α
β
j |Γj |) = vmaxth /(αβth |Γth|). Therefore, qj is the critical

value for rj . Since both monotonicity of the winner selection
and critical value-based pricing to the winners are satisfied,
the WRSA achieves truthfulness.
Workers: As in the case of requesters, we prove the truth-
fulness of workers by showing that the WWSA satisfies
monotonicity and pi for wi ∈ Ws is the critical value. If
a worker wi wins the auction, it means that we have a
threshold worker, such that ci/λ

β
i ≤ cth/λ

β
th. Then, if the

worker wi asks for c′i such that c′i ≤ ci, it will surely win
the auction as c′i/λ

β
i ≤ ci/λ

β
i ≤ cth/λ

β
th. This shows that the

WWSA satisfies monotonicity in the winner selection.
To verify the critical value based pricing, we show that if

wi submits c”i which is larger than pi, then the worker will
lose the auction. In the WWSA, if a worker wi submits c”i
such that c”i > pi, then it will be excluded from Ws because
c”i/λ

β
i > pi/λ

β
i = cth/λ

β
th. Therefore, pi is the critical value

for wi. Since both monotonicity of the winner selection and
critical value-based pricing to the winners are satisfied, the
WWSA achieves truthfulness.

7 CONCLUSION

In this work, we addressed the impractical assumption in
the existing works that all the workers meet the dead-
line and task valuation remains constant. To bridge the
gap of such imperfect punctuality and the consequential
potential task depreciation in crowdsourcing systems, we
modeled the workers’ heterogeneous punctuality behavior
and task depreciation. To address the limitations of the
existing works, we proposed an expected social welfare
maximizing (ESWM) mechanism that selects appropriate
requester-worker pairs considering heterogeneity in task

depreciation speed and workers’ punctuality. Different from
the existing works, the ESWM mechanism aims to achieve
higher social welfare in a long-term for multiple rounds of
auction by attracting and retaining more participants, rather
than attempting to simply maximize the social welfare for
one round. In the evaluation, we compared the ESWM
mechanism to one of the existing works in both short-term
and long-term scenarios to reflect the continuous competi-
tion between crowdsourcing service platforms. Simulation
results show that the ESWM mechanism achieves higher
social welfare and platform utility than the benchmark.
Moreover, we proved that the ESWM mechanism achieves
the desirable economic properties.
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