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Abstract

We introduce the resource allocation problem where a planner needs to purchase differ-
ent resources from providers of different qualities and costs, and the planner allocates the re-
sources/providers to consumers with different preferences. The planner has a budget that limits
how much he can spend on the resources. He wants to maximize the social welfare generated
from the consumers, while keeping his total expenditure for purchasing the resources within his
budget. Previous studies have either focused on the resource acquisition part, with one buyer
and many strategic sellers, or the resource allocation part, with one seller and many strategic
buyers. This is for the first time both providers and consumers are included in the picture.

The consumers do not pay for the resources and will act to maximize their individual utilities.
Thus the planner must use proper rationing tools to make sure that they will stick to the
providers allocated to them. Two widely existing rationing tools are studied in this paper:
waiting times and lotteries (and the combination of them).

We characterize (sometimes partially) the structures of optimal allocation schemes when
different rationing tools are used, and we identify conditions under which lotteries can do better
and under which waiting times can do better. We also settle the computation complexity for
computing/approximating them. For resource allocation with waiting times, we show that the
optimal solution is NP-hard to find, and we construct an FPTAS for it. For resource allocation
with lotteries, we show that for a large class of the problem the optimal solution has a surprisingly
simple structure, and can be solved by a linear program.

Following our results, neither waiting time nor lottery is absolutely better than the other
in terms of generating social welfare. A planner should choose an appropriate tool based on
the conditions that we identify. Our results then let the planner computes/approximates the
corresponding optimal allocations efficiently. Indeed, our results are the first systematic study
of both rationing tools when resource acquisition and resource allocation occur together (which
is often the case in real life), and we provide useful approaches for future study on this more
general and realistic model.
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1 Introduction

Resource acquisition and resource allocation are the two central problems in resource management,
and they often occur together. A central planner of an organization must decide, efficiently and
effectively, what resources to purchase/rent from which providers and how to allocate them to
different consumers in the organization. For example, the planner can be a government or a
company; the resources can be office supplies, transportation vehicles, human resources, etc; and
the consumers can be individual employees or business units. Most studies in the mechanism design
literature (see, e.g., [3, 8, 17, 22, 30, 32, 57, 59]) have focused on just one side of the acquisition-
allocation story and ignored the other: either the planner already owns a set of items and is only
concerned about distributing them to strategic consumers; or he is the consumer and knows his
own preferences, and he is only concerned about getting them from strategic providers.

In this paper we keep both consumers and providers in the picture —a more realistic scenario
for the planner. We consider the consumers to be the only strategic side, and the providers in
our model are silent: they provide resources of different qualities and costs, but the information
about the resources is publicly known. Thus the planner is facing (1) an external market where the
resources are sold at market prices and (2) a set of internal consumers with different preferences
about the resources who act to maximize their individual utilities. To the best of our knowledge,
we are the first to systematically study this more general and realistic model.

An important feature of many resource management problems is that the planner has a budget
on how much he can spend on the acquisition. The planner’s goal is thus to maximize the social
welfare of the whole organization —the sum of the consumers’ utilities— while keeping his total
expenditure within the budget. Another important feature of many such problems is the absence of
money transfer from the consumers to the planner: the planner pays the providers for the resources
but allocates them to the consumers free of charge.1 Accordingly, when the planner’s budget cannot
afford to buy the best resource for each consumer (which is often the case), he must use proper
rationing tools to enforce certain fairness among the consumers and ensure that they will stick to
the providers allocated to them. Two classes of rationing tools have been widely studied in the
literature: waiting times and lotteries, corresponding to the two major parts of this paper.

Waiting Times v.s. Lotteries. Waiting times (see, e.g., [27, 35, 38, 39, 40, 51, 58]) are widely
used in real life when demand exceeds supply: at popular restaurants, in medical services, in job
promotions, etc. Each consumer is free to choose which provider he wants to be served by and
will be served after waiting for certain amount of time. A consumer’s utility for being served at a
provider is his value for that provider minus his waiting time there, and the fairness requirement
in our model corresponds to the allocations being stable: that is, they are envy-free2 and give each
consumer a non-negative utility. Rationing by waiting times gives the consumers free choice, which
is highly desired by our society. Also, the allocation is deterministic and the planner’s goal (i.e., to
maximize social welfare given his budget) is achieved with probability 1. However, waiting times
incur a loss to the social welfare, since the time waited by the consumers does not benefit anybody.

Lotteries (see, e.g., [13, 20, 26, 47, 52, 62]) are also widely used in many scenarios: at school
choice, at companies end-of-year parties, etc. All consumers are offered the same set of lotteries
(in the simplest case there is only one), where each lottery is a probabilistic distribution over all
providers. Each consumer chooses a lottery and gets a provider sampled according to it. Thus a
consumer is not completely free to choose his provider: he can choose any lottery he wants but then

1In some cases, such as the allocation of medical resources to patients of a healthcare plan, payments of the
consumers are not completely forbidden but highly constrained.

2The idea of envy-freeness has been widely adopted in mechanism design, see, e.g., [31, 37, 60, 53, 54, 41, 46, 24, 36].
In our model, it means no consumer wants to exchange his provider and waiting time with those of another consumer.
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has to stick to the sampled provider. A consumer’s utility, given a lottery, is his expected value for
the sampled provider, and fairness is defined in terms of expected values. The planner’s total cost
and the social welfare are also measured in expectation. Lotteries can avoid the welfare-burning
effect of waiting times and conceivably achieve better social welfare. However, the planner must
be able to enforce the consumers to stick to the sampled providers, and it is possible that under
certain coin tosses neither is the budget constraint satisfied nor is the social welfare optimal.

The two rationing tools can also be combined: a lottery can be associated with a waiting time,
and a consumer choosing this lottery will wait for that amount of time and then get a sampled
provider. A stable allocation is thus a special case of such allocations. Lottery allocations with
waiting times are similar to lottery pricing schemes [13, 20, 52, 62], except that their goal is to
maximize revenue while ours is to maximize social welfare with budget constraints. However, dif-
ferent from lottery pricing schemes where the structure and the computation complexity of optimal
solutions are still not well understood in many cases, in this paper we characterize (sometimes
partially) the structures of optimal allocation schemes for those use waiting times and those using
lotteries, including those using both. Part of our results may bring new insights to lottery pricing.

1.1 Our Results

We consider the allocation of one type of resource that can be obtained from different providers.
Here a provider is an abstract way of representing the resource with specific quality and cost, and
it may or may not correspond to a physical institution. For example, in a hiring procedure, the
providers can be candidates with different succeeding probabilities and salary requirements, or, in
vehicle rental, the providers can be trucks of different volumes and prices (even if all of them are
owned by U-Haul). A consumer’s value for a provider is proportional to the provider’s quality: this
is typical in many real-life scenarios, such as in the examples above where quality means succeeding
probability or transportation volume, in advertisements where quality means view-through or click-
through rate [33, 63, 2, 7, 50], or in scenarios where quality means the probability of obtaining the
same resource [4, 18, 28, 29, 42, 44]. Our models are formally defined for waiting times in Section
2 and for lotteries in Section 3. Below we summarize our main results. Due to the lack of space,
most of the proofs are provided in the appendix.

Optimal Stable Allocations. For resource allocation with waiting times, we completely charac-
terize the structure of optimal stable allocations and use this characterization to show the following.

Theorem 1. (restated) It is NP-hard to compute an optimal stable allocation.

Theorem 2. (restated) There exists an FPTAS for the optimal stable allocation problem which,
given any ε > 0, runs in time O((n + m)n3m/ε), where n and m are respectively the numbers of
consumers and providers.

To construct the desired FPTAS we introduce another problem, ordered Knapsack. Roughly
speaking, this is a bounded Knapsack problem where the items’ values are affected by the order
in which the items are packed into the knapsack. We construct an FPTAS for this problem and
show how to use it to approximate the optimal stable allocation. We believe that the ordered
Knapsack problem itself is of independent interest and is worth further study. Detailed discussion
on Theorems 1 and 2 are in Sections 2.1 and 2.2, respectively.

Optimal Lottery Allocations. If we consider the consumers as a continuous population repre-
sented by the interval [0, 1], their values of the providers can be specified by a function v mapping
each consumer x ∈ [0, 1] to a non-negative real, such that the value of consumer x at a provider
is v(x) times the provider’s quality. The function v is called the consumers’ valuation profile.3 It

3We do not call v the valuation function because it applies to all consumers, in which sense it corresponds to a
valuation profile in the discrete case.
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is somewhat surprising that, given the extremely rich structures of the possible lottery allocations
(with or without waiting times associated), for a large class of resource allocation problems, the
optimal lottery allocation has a very simple form: that is, there is a single distribution from which
all consumers’ providers are drawn, and no waiting time is imposed. We call such an allocation
scheme a randomized allocation, and we have the following.

Theorem 4. (restated) For any v(x) such that (1 − x)v′(x) is non-increasing, the optimal ran-
domized allocation is optimal among all lottery allocations, including those with waiting times.

Notice that a randomized allocation does not require the consumers’ providers be sampled
independently: our result holds as long as the marginal distribution for each consumer is as specified
by the allocation. In Section 3.1 we show that the optimal randomized allocation can be solved by
a linear program, so does the optimal lottery allocation whenever the condition in Theorem 4 holds.
In particular, the condition holds when v(x) is concave, and for many other cases where it is neither
concave nor convex, but does not increase “too fast”. When the condition holds, the ratio between
the social welfare of the optimal randomized allocation and that of the optimal stable allocation can
be arbitrarily large. Moreover, the randomized allocation can be implemented so that the budget
constraint is satisfied with probability 1. (See also Appendix D.) When the condition does not
hold, there are cases (see Appendix F) where optimal stable allocations do better.

Interestingly, the condition in Theorem 4 has a very natural interpretation from another view-
point. If we consider a single consumer who first has his “type” drawn uniformly at random from
[0, 1] and set his value to v(x), then the condition in Theorem 4 holds if and only if the distribution
of the consumer’s value has monotone hazard rate (MHR). This immediately connects our result
with lottery pricing schemes [19] with a single buyer and multiple items, where optimal pricing
schemes are studied when the distributions of the buyer’s values have MHR.

We generalize our result to settings where the consumers’ values are not proportional to the
providers’ qualities. Here the randomized allocation may not be optimal among all lottery alloca-
tions, but we have the following.

Theorem 5. (restated) Under similar conditions as in Theorem 4, the optimal randomized allo-
cation is better than the optimal stable allocation.

Theorem 5 is formalized in Section 3.2. Again, when the conditions do not hold there are cases
(see Appendix F) where optimal stable allocations do better.

In sum, our results suggest that neither rationing tool is absolutely better than the other in
terms of generating social welfare, and a planner should choose an appropriate tool based on
the consumers’ valuations as specified by Theorems 4 and 5. Our results allow the planner to
compute/approximate the corresponding optimal allocations efficiently.

1.2 Related Work

The closest setting to ours is the one in [11], on purchasing and providing healthcare services. Since
the authors allow arbitrary values of the patients for the hospitals, the NP-hardness for computing
the optimal equilibrium there is much easier to show compared with our result on the complexity
of optimal stable allocations. Also, in [11] the authors study optimal lotteries when there are two
hospitals. Since we allow any number of providers, our results on optimal lotteries and randomized
allocations have greatly generalized theirs. Besides [11], we are not aware of any other study where
both resource acquisition and resource allocation are considered in the same model. There are,
however, many studies focusing one side of the story.

On the one hand, procurement games with budget constraints, where the providers are strategic
and there are no consumers, have been studied under the framework of budget-feasible mechanisms
[59, 30, 22, 8, 17], where the goal is to maximize the buyer’s value for the items he buy. Frugal
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mechanisms [61, 34, 45, 5, 16] also study procurement problems, but instead of imposing a budget
constraint on the total cost, they look for solutions whose cost is as low as possible.

In unit-demand pricing schemes [12, 13, 19, 20, 21, 41, 44, 52, 62] n items are to be sold to m
buyers and each buyer only wants one of them, similar to our case where each consumer needs to
be assigned to one provider. Envy-freeness is a widely adopted solution concept there, but the goal
of pricing schemes is to maximize revenue. In [28, 44], the authors study pricing problems where
the buyers’ valuations are similar to ours, and they characterize the optimal envy-free solutions for
revenue [28, 44] and for total values [28] (what they call social welfare) in their settings. Although
their characterizations are analogous to ours, their goals are different and they do not further study
the computational complexity issues of the optimal solutions. While most works on pricing schemes
study deterministic optimal item-pricing [12, 19, 21, 41, 44], a few consider lotteries [13, 20, 52, 62]
and show that they can generate more revenue than deterministic item-pricing in various cases.
However, the structures of optimal lottery pricing schemes are far from being well understood.

The social welfare studied in our model has also been studied in money-burning mechanisms
[43], but for single-good auctions only. Moreover, the relation among providers and consumers can
be considered as a unit-demand auction [57, 32], where prices correspond to waiting times in our
model. Sometimes the goal of the auctioneer there is to maximize the same social welfare as ours
[3]. However, a big difference between our model and unit-demand auctions is that in our case the
numbers of items available from the providerd depend on their costs and the planner’s budget, thus
are not prefixed but need to be determined as part of the solution.

Finally, in scheduling problems a set of jobs need to be assigned to a set of machines, similar
to the allocation problem we consider. A well studied objective there is makespan minimization
[55, 49, 6, 24, 23] —that is, to minimize the maximum finishing time (which is considered as the
cost) of the machines. There is no value associated with the jobs being carried out, neither is there
a budget for the total cost. In [15] and [25], the authors introduce waiting times in order to reduce
the makespan and/or the total completion time —a “money-burning-based” scheduling problem.
Furthermore, a particular variant of the scheduling problem is online scheduling, see, e.g., [56],
where the jobs arrive along time. Although in this paper we do not consider the online resource
allocation problem, it would be very interesting to explore that direction.

2 Resource Allocation with Waiting Times

In the resource allocation problem, a planner allocates a particular type of resource to n consumers.
The resource can be provided by m providers, where each provider j serves the resource with quality
qj ≥ 0 and can serve each consumer assigned to him for a cost cj ≥ 0. For example, if the resource is
computation power then the providers can be computer clusters, with each qj being the processing
speed and cj the price for purchasing or renting such a cluster. We do not require cj to be
proportional to qj : some providers may be more cost-efficient than others. Consumer i’s values
for the providers are proportional to their qualities: there exists a value vi ≥ 0 such that i’s value
for being served by provider j is viqj . As pointed out in the Introduction, this valuation model
captures many resource allocation problems and carries many interesting properties as shown by
our results. We shall study more general valuation models in the last part of this paper.

A solution to the resource allocation problem is called an allocation. An allocation A consists
of an allocation function a : [n] → [m] and a waiting vector w = (w1, . . . , wm) where wj ≥ 0 for
each j ∈ [m]: a(i) is the provider to whom consumer i is assigned and wj is the waiting time for
any consumer assigned to provider j. The total cost of A is C(A) =

∑
i∈[n] ca(i). The planner

has a budget B ≥ 0, and A is budget-feasible if C(A) ≤ B. Given A, each consumer i’s utility is
viqa(i) − wa(i), and the social welfare of A is SW (A) =

∑
i∈[n] viqa(i) − wa(i).
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An allocation A is stable if for any consumer i, (1) viqa(i)−wa(i) ≥ 0 and (2) for any provider j,
viqa(i) −wa(i) ≥ viqj −wj . Notice that we could have allowed different consumers to have different
waiting times at the same provider. However, an allocation is envy-free if for any consumers i
and i′, viqa(i) − wa(i) ≥ viqa(i′) − wa(i′). Thus envy-freeness automatically implies that consumers
assigned to the same provider have the same waiting time, and our model is without any loss of
generality. We are interested in mechanisms that, given the consumers’ values, output allocations
that are stable and budget-feasible, and maximize the social welfare.

Definition 1. A stable allocation A is optimal if A ∈ argmaxA′ is stable and budget-feasible SW (A′).

Without loss of generality we assume ncmax > B and ncmin ≤ B, where cmax and cmin are the
maximum and the minimum costs of the providers, respectively.4 Moreover, it is often useful to
consider optimal stable allocations with respect to a particular allocation function, as follows.

Definition 2. For any allocation function a, a stable allocation A = (a,w) is optimal with respect
to a if A ∈ argmaxA′=(a,w′) and A′ is stable SW (A′).

Note that a stable allocation optimal with respect to a is not required to be budget-feasible:
the cost of such allocations is decided by a, thus either all of them are budget-feasible or none is.

2.1 The Hardness of Finding Optimal Stable Allocations

In this and next sections, for convenience we rename the consumers and the providers so that

v1 ≥ v2 ≥ · · · ≥ vn and q1 ≥ q2 ≥ · · · ≥ qm. (1)

Theorem 1. It is NP-hard to compute an optimal stable allocation.

To prove Theorem 1, we first characterize the social welfare of optimal stable allocations. Our
characterization is similar to that in [28, 44], but the exact formulas are very different from [44].
Indeed, [44]’s goal was to maximize the total payment, while our goal is to maximize social welfare.
Our Definition 4 and Lemma 2 are equivalent to Lemma 2.1 in [28]. Thus, we only state our key
lemmas here and refer the readers to Appendix A for the proofs

Definition 3. An allocation function a is ordered if a(1) ≤ a(2) ≤ · · · ≤ a(n).

In Lemma 4 of Appendix A we show that it is sufficient to consider stable allocations A = (a,w)
with a ordered. For any such A,

qa(1) ≥ qa(2) ≥ · · · ≥ qa(n) and wa(1) ≥ wa(2) ≥ · · · ≥ wa(n). (2)

Definition 4. For any ordered allocation function a, an allocation A = (a,w) is tight at a if

wa(n) = 0 and wa(i) = (qa(i) − qa(i+1))vi+1 + wa(i+1) for any i < n.

Notice that, by the first part of Inequality 2, the wa(i)’s in Definition 4 are all non-negative.
Also notice that, being tight at a implies that for any i < n, vi+1qa(i+1)−wa(i+1) = vi+1qa(i)−wa(i).
That is, consumer i+ 1 is indifferent between his utility at a(i+ 1) and that at a(i).

Lemma 1. For any ordered allocation function a, let A = (a,w) be an allocation such that, A is
tight at a and wj = v1q1 for any j 6∈ a({1, . . . , n}). Then A is stable.

4If not all consumers have to get the resource, the planner can add a dummy provider with quality 0 and cost 0
(representing the option of not getting the resource) and the condition ncmin ≤ B is satisfied.
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Lemma 2. For any ordered allocation function a and any stable allocation A = (a,w), A is optimal
with respect to a if and only if it is tight at a.

The following lemma shows that the social welfare of any stable allocation optimal with respect
to a can be explicitly calculated from the consumers’ values and the providers’ qualities.

Lemma 3. For any ordered allocation function a and any stable allocation A = (a,w) optimal with
respect to a, SW (A) =

∑
i<n i · qa(i) · (vi − vi+1) + n · qa(n) · vn.

Given the above lemma, we show how to reduce subset-sum to the resource allocation problem.
We refer the readers to Appendix A for the remaining of the proof. Consider the decision version
of the resource allocation problem:

DRA = {(q1, . . . , qm, c1, . . . , cm, v1, . . . , vn, B, V ) :

there exists a stable budget-feasible allocation A s.t. SW (A) ≥ V }.

It is clear that if one can find an optimal stable allocation for every instance of the resource allocation
problem then one can decide DRA. We shall show that DRA is NP-complete by a reduction from
the Subset-Sum problem:

SubsetSum =

{
(s1, . . . , sn, T ) : there exists S ⊆ [n] s.t.

∑
i∈S

si = T

}
.

Given an instance α = (s1, . . . , sn, T ) of SubsetSum, we assume without loss of generality that
s1 ≥ s2 ≥ · · · ≥ sn, and construct an instance γ = (q1, . . . , qm, c1, . . . , cm, v1, . . . , vn, B, V ) of DRA
as follows. Notice that we use the same symbol for both a variable and its binary representation,
and the 1st bit refers to the rightmost bit.

• There are m = 2n providers and n consumers.

• For each i ∈ [n], qi = ci = si · 2n(dlogne+1) + 2(n−i)(dlogne+1). That is, qi and ci are obtained by
appending n(dlog ne+ 1) bits of 0’s to the right of the binary representation of si, and then
set the (n− i)(dlog ne+ 1) + 1st bit to 1.

• For each i ∈ [n], qn+i = cn+i = 2(n−i)(dlogne+1). That is, qn+i and cn+i consist of one bit of 1
followed by (n− i)(dlog ne+ 1) bits of 0’s. Notice that the unique bit of 1 in qn+i and cn+i is
aligned with the unique bit of 1 after si in qi and ci.

• B = V = T ·2n(dlogne+1)+
∑

i∈[n] 2
(n−i)(dlogne+1). That is, B and V are obtained by appending

n(dlog ne + 1) bits of 0’s to the right of the binary representation of T , and then set the
(n− i)(dlog ne+ 1) + 1st bit to 1 for each i ∈ [n].

• For each i ∈ [n], vi =
∑n

k=i
1
k .

It is easy to see that the construction takes polynomial time and that γ satisfies Inequality 1.

2.2 An FPTAS for Optimal Stable Allocations

Letting Aopt be the optimal stable allocation, we have the following.

Theorem 2. There exists an algorithm for the resource allocation problem such that, given any
ε > 0, it runs in time O((n+m)n3m/ε) and outputs a stable budget-feasible allocation A = (a,w)
such that SW (A) ≥ (1− ε)SW (Aopt).
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In order to prove Theorem 2, notice that by Lemma 3, for any ordered allocation function a
we can define the social welfare of a, SW (a), to be the social welfare of stable allocations optimal
with respect to a. That is,

SW (a) =
∑
i<n

i · qa(i) · (vi − vi+1) + n · qa(n) · vn. (3)

An allocation function a is budget-feasible if C(a) =
∑

i∈[n] ca(i) ≤ B.

Definition 5. An ordered allocation function a is optimal if a ∈ argmax
a′is ordered and budget-feasible

SW (a′).

Given an ordered allocation function a, by Lemmas 1 and 2 we can construct, in time O(m+n),
a stable allocation A optimal with respect to a: that is, the allocation defined in Lemma 1. If a is
optimal, then A is an optimal stable allocation. Thus to prove Theorem 2 it suffices to focus on
approximating the optimal ordered allocation function.

Notice that if there exists a provider j such that cj < cj+1, then for any ordered allocation
function a and for all consumers assigned to provider j+1, by reassigning them to j we get another
ordered allocation a′ such that C(a′) ≤ C(a) and SW (a′) ≥ SW (a), where the second inequality
is by Equation 3 and because qj ≥ qj+1. Accordingly, we can further focus on ordered allocation
functions that do not assign any consumer to j+1. That is, we can assume without loss of generality
that c1 ≥ c2 ≥ · · · ≥ cm. Below we define a more general problem and construct an FPTAS for it,
which will give us an FPTAS for the optimal ordered allocation function.

2.3 The Ordered Knapsack Problem

Definition 6. The ordered Knapsack problem has m items, n players, and a budget B. Each item j
has n copies, with cost cj each. Each player i has value uij for item j. We have c1 ≥ c2 ≥ · · · ≥ cm,
ui1 ≥ ui2 ≥ · · · ≥ uim for each i ∈ [n], and ncm ≤ B < nc1. An allocation is a function a : [n]→ [m]
such that a(1) ≤ a(2) ≤ · · · ≤ a(n). The social welfare of a is SW (a) =

∑
i∈[n] uia(i), and the cost

of a is C(a) =
∑

i∈[n] ca(i). The goal is to find an allocation with cost no larger than B and the
maximum possible social welfare.

Intuitively, the ordered-Knapsack problem has a knapsack where the order of the items packed in
it affects their values —the “players” can be considered as ordered slots in the knapsack.5 Following
Equation 3, we can reduce the problem of the optimal ordered allocation function to the ordered
Knapsack problem by taking, for any j ∈ [m], uij = iqj(vi − vi+1) for any i < n and unj = nqjvn.
Any allocation of the resulting ordered Knapsack problem is an ordered allocation function of the
original resource allocation problem, with the same cost and the same social welfare. Thus, letting
aopt be the optimal allocation for the ordered Knapsack problem, to prove Theorem 2 it suffices to
construct an FPTAS for aopt.

Theorem 3. There exists an algorithm for the ordered Knapsack problem such that, given any
ε > 0, it runs in time O((n+m)n3m/ε) and outputs an allocation a with C(a) ≤ B and SW (a) ≥
(1− ε)SW (aopt).

5Such a scenario widely exists in real life. For example, in school choices the order may represent the priority of
being admitted to different schools. Indeed, priority list has been widely studied in the Economics literature (see,
e.g., [10, 1, 14]). But the model and the concerns there are different from ours, e.g., the optimization goal is usually
not utilitarian, and there is no budget constraints. Thus we do not elaborate on this line of research. Also notice
that the ordered Knapsack problem is quite different from the partially ordered Knapsack problem studied in [48].
In the latter each item has a fixed value and the outcome is a set instead of a function from players to items.
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Theorem 3 is proved in Appendix B, where we first construct a dynamic program that computes
the optimal allocation in pseudo-polynomial time, and then run it on properly scaled inputs to get
the desired FPTAS. The proof of Theorem 2 is in Appendix B as well.

Remark 1. In fact, we can construct a pseudo-polynomial time dynamic program directly for
the resource allocation problem. Then one may try to scale down the providers’ qualities qj and
consumers’ values vi separately and apply the dynamic program on the scaled inputs. However,
when scaling everything back, the errors in the social welfare will accumulate multiplicatively, due
to the terms iqa(i)(vi− vi+1). Thus the desired approximation ratio cannot be guaranteed. The idea
is to scale down each iqj(vi − vi+1) as a whole, but the resulted parameters may not lead to a well
defined resource allocation problem with qualities and values. That is where the ordered Knapsack
problem comes into play.

3 Resource Allocation with Lotteries

If no randomness is allowed, the optimal stable allocation is the best we can hope. However, if the
planner can ask the consumers to enter lotteries, the space of possible mechanisms becomes much
larger and more social welfare can be obtained. In this section, we first characterize the structure
of the optimal lotteries for a large sub-class of the resource allocation problem. Furthermore, for
a class of valuations more general than what we currently consider, we characterize the conditions
under which a particular lottery achieves more social welfare than the optimal stable allocation.

Although our results apply to the discrete case of n consumers, they are more succinct to state
for a continuous population of consumers. Thus in the discussion below, we let the consumers
be indexed by the interval [0, 1], and use the valuation function v(x) to specify the value of each
consumer x. We assume v(x) is strictly increasing and twice differentiable, so that the integrations
and differentiations used below are always well defined.6 Also, by shifting down all consumers’
values by v(0), we assume without loss of generality that v(0) = 0.

Definition 7. A lottery λ for the resource allocation problem is a tuple of non-negative reals,
λ = (p1, . . . , pm, w), such that

∑
j∈[m] pj ≤ 1. A lottery scheme L is a set of lotteries such that

there exists λ = (p1, . . . , pm, w) ∈ L with w = 0.

A consumer taking lottery λ will wait for time w and then be assigned to each provider j
with probability pj . Consumer x’s (expected) utility under λ is u(x, λ) = (

∑
j∈[m] pjqjv(x)) − w.7

Given L, each consumer chooses a lottery to maximize his own utility. That is, denoting by
λL(x) = (pL1 (x), . . . , pLm(x), wL(x)) ∈ L the choice of consumer x, we have that for any λ ∈ L,

u(x, λL(x)) ≥ u(x, λ). (4)

The definition of a lottery scheme ensures u(x, λL(x)) ≥ 0 for any x, and u(0, λL(0)) = 0.
Since for any two lotteries λ1, λ2 ∈ L, any convex combination αλ1+(1−α)λ2 can be realized by

a consumer choosing λ1 with probability α and λ2 with probability 1−α, without loss of generality
we assume that L is convex. Accordingly, the consumers’ choices are on the boundary of L.

6Our approach works as long as v(x) is non-decreasing (which is without loss of generality since we can reorder
and rename the consumers) and piece-wise twice differentiable. But in this more general setting the analysis is
unnecessarily complicated without bringing in more interesting view points. Thus we stick to our current setting so
as to highlight the key ideas. Moreover, following Inequality 1, we could have assumed that v(x) is decreasing. But
assuming v(x) to be increasing will make the statements and the analysis of the results more succinct.

7If
∑

j pj < 1 then with probability 1 −
∑

j pj the consumer waits for time w but does not get any resource. If
each consumer has to be served, then we just need to require

∑
j pj = 1 in the definitions and our results still hold.
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Since the consumers are infinite, each provider j’s cost cj denotes the cost for serving 1 unit of

the population at j, and the (expected) cost of L is C(L) =
∫ 1
0

∑
j∈[m] p

L
j (x)cjdx. L is budget-feasible

if C(L) ≤ B. The (expected) social welfare of L is SW (L) =
∫ 1
0 u(x, λL(x))dx. We denote by Lopt

the optimal lottery scheme, that is, Lopt ∈ argmaxL is budget-feasible SW (L). For each x ∈ [0, 1], we

denote by λopt(x) = (popt1 (x), . . . , poptm (x), wopt(x)) the choice of consumer x under Lopt.
A stable allocation A = (a,w) is defined as before, except a is now a function on [0, 1]. It is

easy to see that A is equivalent to a lottery scheme L which is the convex hull of a set of lotteries
{λ1, . . . , λm}: for each j ∈ [m], λj = (p1, . . . , pm, wj), pj = 1 and pj′ = 0 for any j′ 6= j. Given L,
each consumer x chooses λa(x), which corresponds to being assigned to a(x) with probability 1 after
waiting wa(x). Thus we have SW (Lopt) ≥ SW (Aopt), where Aopt is the optimal stable allocation.

Besides stable allocations, another class of lottery schemes is of particular interest: those with
waiting time 0. Such a lottery scheme L reduces to a single lottery (p1, . . . , pm, 0) whose expected
quality

∑
j∈[m] pjqj is the maximum in L, since this lottery maximizes all consumers’ utilities over

L. We call a lottery scheme of this form a randomized allocation, formally defined below.

Definition 8. A randomized allocation R is a tuple of non-negative reals, R = (p1, . . . , pm), such
that

∑
j∈[m] pj ≤ 1.

According to R, each consumer is assigned to each provider j with probability pj and waiting

time 0. The expected social welfare of R is SW (R) =
∫ 1
0

∑
j∈[m] pjqjv(x)dx, and the expected

cost is C(R) =
∑

j∈[m] pjcj . We denote by Ropt the optimal randomized allocation, that is, Ropt ∈
argmaxR is budget-feasible SW (R). It is immediate that SW (Lopt) ≥ SW (Ropt), as a randomized
allocation is a special lottery scheme.

3.1 Optimal Lottery Schemes

The structure of the optimal lottery scheme is hard to characterize in general, but as we show in
the following theorem, for a large sub-class of the problem, the optimal randomized allocation is
actually optimal among all lottery schemes.

Theorem 4. For any v(x) such that (1− x)v′(x) is non-increasing, SW (Ropt) = SW (Lopt).

The proof of Theorem 4 is in Appendix C. The following shows that the class of valuation func-
tions satisfying Theorem 4 is very broad: in particular it includes all concave valuation functions.

Corollary 1. For any concave valuation function v(x), SW (Ropt) = SW (Lopt).

Proof. Letting g(x) = (1− x)v′(x), we have g′(x) = −v′(x) + (1− x)v′′(x). Since v(x) is concave,
v′′(x) ≤ 0. Since v′(x) > 0 and x ∈ [0, 1], we have g′(x) ≤ 0. Thus g(x) is non-increasing.

Clearly Theorem 4 applies to many other valuation functions that are not concave. For example,
letting v(x) = ex − 1, we have (1− x)v′(x) = (1− x)ex, which is non-increasing on [0, 1]. Thus the
optimal randomized allocation is optimal among all lottery schemes in this case. It is not hard to
see that Ropt can be computed by a linear program, and can be implemented so that the budget
constraint is satisfied with probability 1. Further more, when Theorem 4 applies, the ratio between
SW (Ropt) and SW (Aopt) can be arbitrarily large. We elaborate these properties in Appendix D.
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Theorem 4 in Terms of Monotone Hazard Rate. Interestingly, the condition in Theorem 4
has a very natural interpretation from another viewpoint. Consider an allocation problem where
there is a single consumer and multiple providers. The planner’s budget is lower than the cost of
the consumer’s favorite provider, thus he cannot simply be assigned there with probability 1. There
is a distribution D from which the consumer’s value is drawn: in particular, his “type” is uniformly
distributed over [0, 1] and his value at type x is v(x). All the concepts we have defined can be
defined naturally for this Bayesian allocation problem. Letting y = v(x), it is easy to see that
for any value v0 and x0 = v−1(v0), the cumulative distribution function is F (v0) = Pr[y ≤ v0] =
Pr[v−1(y) ≤ x0] = x0 = v−1(v0), and the probability density function is f(v0) = F ′(v0) = 1

v′(x0)
.

Accordingly, (1− x0)v′(x0) = 1−F (v0)
f(v0)

= 1
h(v0)

, where h(v) , f(v)
1−F (v) is the hazard rate of D. Recall

that a distribution has monotone hazard rate (MHR) if the function h is non-decreasing. Thus
(1− x)v′(x) is non-increasing if and only if D has MHR, and we immediately have the following.

Corollary 2. For any value distribution D that has MHR, SW (Ropt) = SW (Lopt).

3.2 Randomized Allocations v.s. Stable Allocations

We now extend our approach to settings where the consumers’ values are not proportional to
the providers’ qualities, but there are still orders among the providers and the consumers. More
precisely, for each j ∈ [m], let function vj(x) be the value that consumer x ∈ [0, 1] receives when
assigned to provider j. Again by shifting each function vj(x) down by vj(0), we assume without
loss of generality that vj(0) = 0 for each j. We consider the cases where each vj(x) is strictly
increasing and v1(x) ≤ v2(x) ≤ · · · ≤ vm(x) for each x.

As will become clear in the analysis, the key factors affecting the social welfare are actually not
the consumers’ values, but the differences among their values at different providers. Accordingly,
for each j ∈ [m], letting fj(x) be a function on [0, 1] that is strictly increasing, twice differentiable

and fj(0) = 0,8 we consider the consumers’ values such that vj(x) =
∑j

k=1 fk(x) for any x ∈ [0, 1].
Notice this setting includes that of Section 3.1 as a special case: by renaming the providers we have
q1 ≤ q2 ≤ · · · ≤ qm, and we can take f1(x) = q1v(x) and fj(x) = (qj − qj−1)v(x) for any j > 1. All
concepts we have considered can be naturally extended to this more general setting.

In this more general setting it is unclear how to compare the optimal lottery scheme and the
optimal randomized allocation, but we still have the following.

Theorem 5. If (1− x)f ′j(x) is non-increasing for every j ∈ [m], then SW (Ropt) ≥ SW (Aopt).

The proof of Theorem 5 uses related but different ideas from those for Theorem 4, and is
provided in Appendix E. We have the following corollary.

Corollary 3. If fj(x) is concave for every j ∈ [m], then SW (Ropt) ≥ SW (Aopt).

Again, Ropt can be computed by a linear program, and when the conditions in Theorem 5 hold
the ratio between SW (Ropt) and SW (Aopt) can be arbitrarily large. When the conditions do not
hold, the relation between randomized allocations and stable allocations depend on the budget and
the providers’ costs, as shown in Appendix F. As a future direction, it would be interesting not only
to characterize the conditions under which the optimal stable allocation does better, but also to
quantify the ratio and/or difference between the social welfare of the two. Moreover, it is easy to see
the FPTAS in Section 2.2 can be generalized to the setting of Section 3 with discrete consumers.
Therefore whenever the optimal stable allocation is more preferable, one can approximate the
optimal stable allocation efficiently. Finally, the conditions in Theorem 5 can also be interpreted
as monotone hazard rate in the corresponding single-player Bayesian allocation problem.

8Again our approach works as long as each fj(x) is non-decreasing and piece-wise differentiable, but in such
settings the analysis is unnecessarily complicated. Therefore we focus on the current setting.
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A Proof of Theorem 1

We need the following two claims and an extra lemma to prove Theorem 1.

Claim 1. For any stable allocation A = (a,w) and consumers i and i′ with vi > vi′, we have
qa(i) ≥ qa(i′).

Proof. By the definition of stable allocations, we have

viqa(i) − wa(i) ≥ viqa(i′) − wa(i′) and vi′qa(i′) − wa(i′) ≥ vi′qa(i) − wa(i).

Adding the two inequalities side by side and rearranging terms, we have (vi− vi′)(qa(i)− qa(i′)) ≥ 0.
Since vi > vi′ , we have qa(i) ≥ qa(i′) as desired.

Claim 2. For any stable allocation A = (a,w) and consumers i and i′ with qa(i) ≥ qa(i′), we have
wa(i) ≥ wa(i′).

Proof. Again by the definition of stable allocations we have vi′qa(i′)−wa(i′) ≥ vi′qa(i)−wa(i), which
together with qa(i) ≥ qa(i′) implies wa(i) −wa(i′) ≥ vi′(qa(i) − qa(i′)) ≥ 0 —that is, wa(i) ≥ wa(i′).

The lemma below shows that without loss of generality we can focus on stable allocations with
ordered allocation functions.

Lemma 4. Given any stable allocation A = (a,w), in polynomial time it can be modified so that:
a is ordered, A is still stable, and the total cost and the utility of each consumer remain the same.

Proof. Assume a(i) > a(i + 1) for some i ∈ [n]. By Inequality 1 we have qa(i) ≤ qa(i+1) and
vi ≥ vi+1. If vi = vi+1 then

viqa(i) − wa(i) = vi+1qa(i) − wa(i) ≤ vi+1qa(i+1) − wa(i+1) = viqa(i+1) − wa(i+1) ≤ viqa(i) − wa(i),

where the inequalities are by the definition of stable allocations. Since the left end is the same as
the right end, both inequalities above must be equalities. In particular, consumer i has the same
utility at a(i) and a(i+1), and so does consumer i+1. Thus we can switch their assigned providers
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and the resulting A is stable, has the same total cost as before, the utility of each consumer remains
the same, and yet a(i) ≤ a(i+ 1).

If vi > vi+1 then by Claim 1 it must be qa(i) = qa(i+1). By the definition of stable allocations
we have

viqa(i) − wa(i) ≥ viqa(i+1) − wa(i+1) = viqa(i) − wa(i+1)

and
vi+1qa(i+1) − wa(i+1) ≥ vi+1qa(i) − wa(i) = vi+1qa(i+1) − wa(i),

which together imply wa(i) = wa(i+1). Accordingly,

viqa(i) − wa(i) = viqa(i+1) − wa(i+1) and vi+1qa(i+1) − wa(i+1) = vi+1qa(i) − wa(i).

Thus again we can switch i and i + 1’s assigned providers and the resulting A is stable, has the
same total cost as before, the utility of each consumer remains the same, and yet a(i) ≤ a(i+ 1).

With the discussion above, we have the following Algorithm 1 to make a ordered.

Algorithm 1: Making a Ordered

1 for k from n to 2 do
2 i = max{i′ : i′ ≤ k, a(i′) = maxj≤k a(j)};
3 while i 6= k do
4 tmp = a(i), a(i) = a(i+ 1), a(i+ 1) = tmp;
5 i = i+ 1;

6 end while

7 end for

In Algorithm 1, in each loop k, variable i is initialized to be the largest consumer in {1, . . . , k}
with the largest provider. If i 6= k, then i + 1 ≤ k and a(i) > a(i + 1). As we have discussed, by
switching a(i) and a(i+ 1), the resulting A is still stable, has the same total cost as before, and the
utility of each consumer remains the same, yet the desired largest consumer becomes i+ 1. When
i = k, we have a(k) ≥ a(i) for any i ≤ k. Notice that loop k does not change a(k + 1), . . . , a(n).
Thus when loop k is finished we further have a(k) ≤ a(k + 1) ≤ · · · ≤ a(n). Accordingly, at the
end of Algorithm 1 we have that: a is ordered, A is still stable, and the total cost and the utility
of each consumer remain the same. This algorithm clearly runs in polynomial time, and Lemma 4
holds.

Lemma 1 (restated). For any ordered allocation function a, let A = (a,w) be an allocation such
that, A is tight at a and wj = v1q1 for any j 6∈ a({1, . . . , n}). Then A is stable.

Proof. We start by showing that for any i ∈ [n], provider a(i) maximizes consumer i’s utility given
the waiting times. We first compare i’s utility at a(i) and his utility at a(i′) for any i′ 6= i.

For any i′ < i, since A is tight at a, we have wa(i′) = (qa(i′) − qa(i′+1))vi′+1 + wa(i′+1), that is,

qa(i′)vi′+1 − wa(i′) = qa(i′+1)vi′+1 − wa(i′+1). (5)

Since i′ + 1 ≤ i, by Inequality 1 we have vi′+1 ≥ vi. Since qa(i′) ≥ qa(i′+1) by Inequality 2,

qa(i′)(vi′+1 − vi) ≥ qa(i′+1)(vi′+1 − vi). (6)

Subtracting corresponding sides of Inequality 6 from those of Equation 5, we have

qa(i′)vi − wa(i′) ≤ qa(i′+1)vi − wa(i′+1).
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Since this holds for all i′ < i, we have

qa(1)vi − wa(1) ≤ qa(2)vi − wa(2) ≤ · · · ≤ qa(i−1)vi − wa(i−1) = qa(i)vi − wa(i),

where the equality is by Equation 5 with i′ = i − 1. Thus i’s utility at any a(i′) with i′ < i is no
larger than his utility at a(i).

Similarly, for any i′ > i we have vi′ ≤ vi and

qa(i′−1)vi′ − wa(i′−1) = qa(i′)vi′ − wa(i′). (7)

Since qa(i′−1) ≥ qa(i′),
qa(i′−1)(vi′ − vi) ≤ qa(i′)(vi′ − vi). (8)

Subtracting corresponding sides of Inequality 8 from Equation 7, we have

qa(i′−1)vi − wa(i′−1) ≥ qa(i′)vi − wa(i′).

Since this holds for all i′ > i, we have

qa(i)vi − wa(i) ≥ qa(i+1)vi − wa(i+1) ≥ · · · ≥ qa(n)vi − wa(n). (9)

Thus i’s utility at any a(i′) with i′ > i is no larger than his utility at a(i).
It remains to show that for any provider j 6∈ a({1, . . . , n}), qa(i)vi − wa(i) ≥ qjvi − wj . Since

v1 ≥ vi, q1 ≥ qj , and wj = v1q1 by the construction of A, we have

qjvi − wj = qjvi − q1v1 ≤ 0.

Since vi ≥ vn and wa(n) = 0 by Definition 4, we have qa(n)vi−wa(n) ≥ qa(n)vn ≥ 0. Thus Inequality
9 further implies

qa(i)vi − wa(i) ≥ 0 ≥ qjvi − wj ,

as desired. Thus provider a(i) maximizes i’s utility given the waiting times. Notice that the
inequality above also implies that consumer i’s utility at a(i) is non-negative.

In sum, A is stable and Lemma 1 holds.

Lemma 2 (restated). For any ordered allocation function a and any stable allocation A = (a,w),
A is optimal with respect to a if and only if it is tight at a.

Proof. We start by proving the “only if” part, and let A = (a,w) be a stable allocation optimal
with respect to a.

First, assume for the sake of contradiction that wa(n) > 0. For any j ∈ [m] such that there exists
i ∈ [n] with a(i) = j, let w′j = wj − wa(n), which is non-negative by the second part of Inequality
2. For any other j, let w′j = wj . It is easy to see that the allocation A′ = (a,w′) is still stable:
for each consumer i, the waiting time of a(i) decreases by wa(n) and the waiting time of any other
provider either decreases by the same amount or remains unchanged, thus a(i) still maximizes i’s
utility under A′. Yet

SW (A′) =
∑
i∈[n]

qa(i)vi − w′a(i) =
∑
i∈[n]

(
qa(i)vi − wa(i) + wa(n)

)
= SW (A) + nwa(n) > SW (A),

contradicting the optimality of A. Thus wa(n) = 0 as desired.
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Second, notice that if wa(i) < (qa(i) − qa(i+1))vi+1 + wa(i+1) for some i < n, then

qa(i+1)vi+1 − wa(i+1) < qa(i)vi+1 − wa(i),

and a(i + 1) does not maximize consumer i + 1’s utility, contradicting the fact that A is stable.
Thus for any i < n

wa(i) ≥ (qa(i) − qa(i+1))vi+1 + wa(i+1).

To prove that the two sides of the above inequality are actually equal, assume for the sake of
contradiction that for some i < n

wa(i) > (qa(i) − qa(i+1))vi+1 + wa(i+1).

Letting δ = wa(i)−(qa(i)−qa(i+1))vi+1−wa(i+1), we have δ > 0. Since qa(i) ≥ qa(i+1) by Inequality 2,
we have δ ≤ wa(i).

For any provider j ∈ a({1, 2, . . . , i}), letting w′j = wj − δ, we have 0 ≤ w′j < wj . For any other
j, let w′j = wj . Letting A′ = (a,w′), we show that A′ is stable.

To begin with, for any consumer i′ ≤ i and provider j ∈ [m],

qa(i′)vi′ − w′a(i′) = qa(i′)vi′ − wa(i′) + δ ≥ qjvi′ − wj + δ ≥ qjvi′ − w′j , (10)

where the first inequality is because A is stable and the second is because w′j ≥ wj−δ. Accordingly,
the utility of i′ is maximized at a(i′) in A′.

Now arbitrarily fix a consumer i′ ≥ i+ 1. For any provider j 6∈ a({1, . . . , i}), we have

qa(i′)vi′ − w′a(i′) ≥ qa(i′)vi′ − wa(i′) ≥ qjvi′ − wj = qjvi′ − w′j , (11)

where the first inequality is because w′a(i′) ≤ wa(i′) and the equality is because w′j = wj .

It is left to consider i′’s utility in A′ at an arbitrary provider j ∈ a({1, . . . , i}). Applying
Inequality 10 to consumer i, we have

qjvi − w′j ≤ qa(i)vi − w′a(i). (12)

Since j = a(i′′) for some i′′ ≤ i, by Inequality 2 we have qj ≥ qa(i). Since i < i′, by Inequality 1 we
have vi ≥ vi′ . Thus

qj(vi − vi′) ≥ qa(i)(vi − vi′). (13)

Subtracting corresponding sides of Inequality 13 from those of Inequality 12, we have

qjvi′ − w′j ≤ qa(i)vi′ − w′a(i), (14)

that is, i′’s utility at j is no larger than his utility at a(i) in A′. We shall show that i′’s utility at
a(i) is no larger than his utility at a(i′) in A′. To do so, by definition we have

w′a(i) = wa(i) − δ = (qa(i) − qa(i+1))vi+1 + wa(i+1),

namely,
qa(i)vi+1 − w′a(i) = qa(i+1)vi+1 − wa(i+1). (15)

By the hypothesis,
qa(i+1)vi+1 − wa(i+1) > qa(i)vi+1 − wa(i),
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implying a(i + 1) 6= a(i). Since a is ordered, it must be a(i + 1) > a(i). Again since a is ordered,
a({1, . . . , i}) ⊆ {1, . . . , a(i)}. Thus

a(i+ 1) 6∈ a({1, . . . , i}) and w′a(i+1) = wa(i+1), (16)

where the second part together with Equation 15 implies

qa(i)vi+1 − w′a(i) = qa(i+1)vi+1 − w′a(i+1). (17)

Since i′ ≥ i+ 1, by Inequality 1 we have vi+1 ≥ vi′ . By Inequality 2 we have qa(i) ≥ qa(i+1). Thus

qa(i)(vi+1 − vi′) ≥ qa(i+1)(vi+1 − vi′). (18)

Subtracting corresponding sides of Inequality 18 from those of Equation 17, we have

qa(i)vi′ − w′a(i) ≤ qa(i+1)vi′ − w′a(i+1).

Since a(i + 1) 6∈ a({1, . . . , i}) according to the first part of Statement 16, by Inequality 11 with
j = a(i+ 1) we have

qa(i′)vi′ − w′a(i′) ≥ qa(i+1)vi′ − w′a(i+1).

Combining the two inequalities above, we have

qa(i′)vi′ − w′a(i′) ≥ qa(i)vi′ − w
′
a(i), (19)

that is, i′’s utility at a(i) is no larger than his utility at a(i′) in A′.
Combining Inequalities 14 and 19, we have that for any j ∈ a({1, . . . , i}),

qa(i′)vi′ − w′a(i′) ≥ qjvi′ − w
′
j . (20)

Combining Inequalities 10, 11 and 20, we have that A′ is stable.
However,

SW (A′) =
∑
i′∈[n]

qa(i′)vi′ − w′a(i′)

=
∑
i′≤i

[
qa(i′)vi′ − wa(i′) + δ

]
+
∑
i′≥i+1

[
qa(i′)vi′ − wa(i′)

]
≥ SW (A) + δ > SW (A),

contradicting the fact that A is optimal with respect to a. Therefore the hypothesis is false, and
wa(i) = (qa(i) − qa(i+1))vi+1 + wa(i+1) for any i < n, implying the “only if” part.

To prove the “if” part, notice that for any consumer i, the tightness of A at a has uniquely
pinned down wa(i) and thus the utility of i at a(i). Accordingly, all allocations (perhaps not even
stable) that have allocation function a and are tight at a have the same social welfare. Thus any
such allocation that is stable must be optimal with respect to a, as desired.

In sum, Lemma 2 holds.

Lemma 3 (restated). For any ordered allocation function a and any stable allocation A = (a,w)
optimal with respect to a, SW (A) =

∑
i<n i · qa(i) · (vi − vi+1) + n · qa(n) · vn.
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Proof. For any k < n, let Uk =
∑n−1

i=k

[
qa(i)vi − wa(i)

]
. By Lemma 2, A is tight at a. Thus by

Definition 4 we have

Un−1 = qa(n−1)vn−1 − wa(n−1) = qa(n−1)vn−1 − (qa(n−1) − qa(n))vn − wa(n)
= qa(n)vn + qa(n−1)(vn−1 − vn),

and for any k < n− 1,

Uk =

n−1∑
i=k

qa(i)vi −
n−1∑
i=k

wa(i) =

n−1∑
i=k

qa(i)vi −
n−1∑
i=k

[
(qa(i) − qa(i+1))vi+1 + wa(i+1)

]
=

n−1∑
i=k

qa(i)(vi − vi+1) +
n∑

i=k+1

qa(i)vi −
n∑

i=k+1

wa(i)

= qa(n)vn +
n−1∑
i=k

qa(i)(vi − vi+1) +
n−1∑
i=k+1

qa(i)vi −
n−1∑
i=k+1

wa(i)

= qa(n)vn +
n−1∑
i=k

qa(i)(vi − vi+1) + Uk+1.

Thus

SW (A) =
∑
i∈[n]

qa(i)vi − wa(i) = qa(n)vn + U1 = · · ·

= nqa(n)vn +

n−1∑
k=1

n−1∑
i=k

qa(i)(vi − vi+1) = nqa(n)vn +

n−1∑
i=1

i∑
k=1

qa(i)(vi − vi+1)

=
n−1∑
i=1

i · qa(i) · (vi − vi+1) + n · qa(n) · vn,

and Lemma 3 holds.

Now we are ready to proof Theorem 1.

Proof of Theorem 1. Consider the decision version of the resource allocation problem:

DRA = {(q1, . . . , qm, c1, . . . , cm, v1, . . . , vn, B, V ) :

there exists a stable budget-feasible allocation A s.t. SW (A) ≥ V }.

It is clear that if one can find an optimal stable allocation for every instance of the resource allocation
problem then one can decide DRA. We shall show that DRA is NP-complete by a reduction from
the Subset-Sum problem:

SubsetSum =

{
(s1, . . . , sn, T ) : there exists S ⊆ [n] s.t.

∑
i∈S

si = T

}
.

Given an instance α = (s1, . . . , sn, T ) of SubsetSum, we assume without loss of generality that
s1 ≥ s2 ≥ · · · ≥ sn, and construct an instance γ = (q1, . . . , qm, c1, . . . , cm, v1, . . . , vn, B, V ) of DRA
as follows. Notice that we use the same symbol for both a variable and its binary representation,
and the 1st bit refers to the rightmost bit.
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• There are m = 2n providers and n consumers.

• For each i ∈ [n], qi = ci = si · 2n(dlogne+1) + 2(n−i)(dlogne+1). That is, qi and ci are obtained by
appending n(dlog ne+ 1) bits of 0’s to the right of the binary representation of si, and then
set the (n− i)(dlog ne+ 1) + 1st bit to 1.

• For each i ∈ [n], qn+i = cn+i = 2(n−i)(dlogne+1). That is, qn+i and cn+i consist of one bit of 1
followed by (n− i)(dlog ne+ 1) bits of 0’s. Notice that the unique bit of 1 in qn+i and cn+i is
aligned with the unique bit of 1 after si in qi and ci.

• B = V = T ·2n(dlogne+1)+
∑

i∈[n] 2
(n−i)(dlogne+1). That is, B and V are obtained by appending

n(dlog ne + 1) bits of 0’s to the right of the binary representation of T , and then set the
(n− i)(dlog ne+ 1) + 1st bit to 1 for each i ∈ [n].

• For each i ∈ [n], vi =
∑n

k=i
1
k .

It is easy to see that the construction takes polynomial time and that γ satisfies Inequality 1.
We have the following two lemmas.

Lemma 5. γ ∈ DRA⇒ α ∈ SubsetSum.

Proof. Let A = (a,w) be an optimal stable allocation of γ. By definition, A is optimal with respect
to a. By Claim 1 we assume without loss of generality that a is ordered. Thus by Lemma 3 we
have

SW (A) =
∑
i<n

i · qa(i) · (vi − vi+1) + n · qa(n) · vn =
∑
i<n

i · qa(i) ·
1

i
+ n · qa(n) ·

1

n

=
∑
i∈[n]

qa(i).

Since qj = cj for any j ∈ [m] and since A is budget-feasible,

SW (A) =
∑
i∈[n]

ca(i) = C(A) ≤ B = V.

Since γ ∈ DRA, we have SW (A) ≥ V and thus

SW (A) = V.

In particular, for any j ∈ [n], SW (A) has a 1 at the (n − j)(dlog ne + 1) + 1st bit preceded by
dlog ne bits of 0’s. We now show that for any j ∈ [n],

|{i ∈ [n] : a(i) ∈ {j, n+ j}}| = 1, (21)

that is, there is exactly one consumer assigned to either provider j or provider n+ j.
To see why Equation 21 is true, notice that for any k ∈ [n] there are dlog ne bits of 0’s between

the (n−k+1)(dlog ne+1)+1st bit and the (n−k)(dlog ne+1)+1st bit in the binary representation
of any qj . Since there are n consumers, there is no carry to the (n − k + 1)(dlog ne + 1) + 1st bit
when computing SW (A). Further notice that the only providers whose qualities contribute a 1 to
the (n− j)(dlog ne+ 1) + 1st bit of SW (A) are providers j and n+ j.

If more than one consumers are assigned to either j or n + j, then the dlog ne bits preceding
the (n − j)(dlog ne + 1) + 1st bit of SW (A) cannot be all 0’s, and SW (A) 6= V . If no consumer
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is assigned to either j or n + j, then the (n − j)(dlog ne + 1) + 1st bit of SW (A) cannot be a 1,
and again SW (A) 6= V . Thus there must be exactly one consumer assigned to either provider j or
provider n+ j, and Equation 21 holds.

By Equation 21, the two sets S = {j ∈ [n] : j ∈ a({1, . . . , n})} and S′ = {j ∈ [n] : n + j ∈
a({1, . . . , n})} form a partition of [n], and

SW (A) =
∑
i∈[n]

qa(i) =
∑
j∈S

qj +
∑
j∈S′

qn+j

=
∑
j∈S

[
sj · 2n(dlogne+1) + 2(n−j)(dlogne+1)

]
+
∑
j∈S′

2(n−j)(dlogne+1)

=
∑
j∈S

sj · 2n(dlogne+1) +
∑
j∈[n]

2(n−j)(dlogne+1).

Since SW (A) = V = T · 2n(dlogne+1) +
∑

i∈[n] 2
(n−i)(dlogne+1), we have

∑
j∈S sj = T . Thus α ∈

SubsetSum and Lemma 5 holds.

Lemma 6. α ∈ SubsetSum⇒ γ ∈ DRA.

Proof. Since α ∈ SubsetSum, there exists S ⊆ [n] such that∑
i∈S

si = T. (22)

Let k = |S| and S = {j1, . . . , jk}, with j1 ≤ j2 ≤ · · · ≤ jk. Further, let S′ = [n]\S = {jk+1, . . . , jn},
with jk+1 ≤ jk+2 ≤ · · · ≤ jn. We construct an allocation A = (a,w) as follows.

• a(i) = ji for any i ≤ k, and a(i) = n+ ji for any i ≥ k + 1.

• wa(n) = 0, wa(i) = (qa(i) − qa(i+1))vi+1 + wa(i+1) for any i < n, and wj = v1q1 for any
j 6∈ a({1, . . . , n}).

Notice that
a(1) ≤ a(2) ≤ · · · ≤ a(n) = n+ jn ≤ m. (23)

Thus a is a well defined function from [n] to [m] and is ordered. Also notice that A is tight at a.
The cost of A is

C(A) =
∑
i∈[n]

ca(i) =
∑
i≤k

cji +
∑
i≥k+1

cn+ji

=
∑
i≤k

sji · 2n(dlogne+1) + 2(n−ji)(dlogne+1) +
∑
i≥k+1

2(n−ji)(dlogne+1)

=
∑
j∈S

sj · 2n(dlogne+1) +
∑
j∈S

2(n−j)(dlogne+1) +
∑
j∈S′

2(n−j)(dlogne+1)

= T · 2n(dlogne+1) +
∑
j∈[n]

2(n−j)(dlogne+1) = B, (24)

where the fifth equality is by Equation 22 and the last is by the definition of B. Thus A is
budget-feasible.
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Since A is tight at a, by Lemma 1, A is stable. By Lemma 2, A is optimal with respect to a.
Thus

SW (A) =

n−1∑
i=1

i · qa(i) · (vi − vi+1) + n · qa(n) · vn

=

n−1∑
i=1

i · qa(i) ·
1

i
+ n · qa(n) ·

1

n
=
∑
i∈[n]

qa(i) =
∑
i∈[n]

ca(i) = C(A) = B = V,

where the first equality is by Lemma 3, the sixth by Equation 24 and the others by the construction
of γ. Therefore A is a stable budget-feasible allocation with SW (A) ≥ V . Accordingly, γ ∈ DRA
and Lemma 6 holds.

By Lemmas 5 and 6, α ∈ SubsetSum if and only if γ ∈ DRA. Therefore DRA is NP-complete
and Theorem 1 holds.

B Proof of Theorems 2 and 3

According to the discussion in Section 2.3, Theorem 2 depends on Theorem 3, therefore, we prove
Theorem 3 first.

To prove Theorem 3, we first derive some lower/upper-bounds for SW (aopt). For any player i,
letting ji be the smallest item that i can be assigned to in any budget-feasible allocation, we have

ji = min{j ∈ [m] : icj + (n− i)cm ≤ B}.

Indeed, if i is assigned to some item j′ < ji, then by definition the minimum cost of such allocations
is achieved by assigning players 1, . . . , i to item j′ and all others to item m, leading to cost icj′ +
(n− i)cm > B by the definition of ji. Notice that ji is always well defined, as assigning all players
to item m is budget-feasible.

For each i ∈ [n], let ai be the allocation which assigns players 1, . . . , i to item ji and all others
to item m. We have that all the ai’s are budget-feasible and ai(1) ≤ · · · ≤ ai(n). Thus for each
i ∈ [n], by definition we have

SW (aopt) ≥ SW (ai) ≥ uiji .

Also, by the definition of the ji’s we have aopt(i) ≥ ji, and thus for any i,

uiaopt(i) ≤ uiji .

Accordingly, letting V = maxi∈[n] uiji , we have

nV ≥
∑
i

uiji ≥
∑
i

uiaopt(i) = SW (aopt) ≥ V. (25)

The following lemma shows the existence of a pseudo-polynomial time algorithm for ordered
Knapsack.

Lemma 7. There exists a dynamic program that runs in time O((n+m)n2mV ) and computes an
optimal allocation for the ordered Knapsack problem.
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Proof. For any allocation a and player i, let

SW (a, i) =
n∑
i′=i

ui′a(i′)

be the contribution of players i, . . . , n to SW (a). For any i ∈ [n], j ∈ [m], and s ∈ {0, 1, . . . , nV },
we are interested in the minimum cost, denoted by C(i)(j)(s), needed for players i, . . . , n to make
contribution s to the social welfare, when player i is assigned to item j. More precisely, letting

SW (i, j) =
n∑
i′=i

ui′j

be the contribution of players i, . . . , n when they are all assigned to j,

C(i)(j)(s) =


cj + min

a:j=a(i)≤a(i+1)≤···≤a(n),
SW (a,i)≥s

∑
i′>i ca(i′) if SW (i, j) ≥ s,

+∞ otherwise.

(26)

Notice that C(i)(j)(s) = +∞ means it is impossible for players i, . . . , n to make contribution s to
the social welfare even if all of them are assigned to j, and thus impossible to make such contribution
at j and providers after j. In practice, +∞ can be replaced by B + 1 (or any number larger than
B and of polynomial length).

Also notice that, for any s ≤ nV , minj∈[m]C(1)(j)(s) is the minimum cost of any allocation
whose social welfare is at least s. Thus we immediately have the following claim whose proof is
omitted.

Claim 3. For any optimal allocation a,

SW (a) = max{s : min
j∈[m]

C(1)(j)(s) ≤ B}.

In order to compute the C(i)(j)(s)’s, we prove the following.

Claim 4. C(n)(j)(s) = cj for any j ∈ [m] and s ≤ unj; C(i)(j)(0) = cj + (n− i)cm for any i < n
and j ∈ [m]; and for any i < n, j ∈ [m] and 0 < s ≤ SW (i, j),

C(i)(j)(s) = cj + min
j′≥j

C(i+ 1)(j′)(max{s− uij , 0}). (27)

Finally, C(i)(j)(s) = +∞ in all other cases.

Proof. We only prove Equation 27, since other equalities follow directly from the definition of
the C(i)(j)(s)’s. Notice that for any allocation a with a(i) = j, SW (a, i) ≥ s if and only if
SW (a, i+ 1) ≥ max{s− uij , 0}. For any j′ ≥ j, let

Sj′ =
{
a : j = a(i), j′ = a(i+ 1) ≤ · · · ≤ a(n), SW (a, i+ 1) ≥ max{s− uij , 0}

}
.

We have
{a : j = a(i) ≤ a(i+ 1) ≤ · · · ≤ a(n), SW (a, i) ≥ s} = ∪j′≥jSj′

and

C(i)(j)(s) = cj + min
a:j=a(i)≤a(i+1)≤···≤a(n),
SW (a,i)≥s

∑
i′>i

ca(i′) = cj + min
j′≥j

min
a∈Sj′

(
cj′ +

∑
i′>i+1

ca(i′)

)
, (28)
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where min
a∈Sj′

(
cj′ +

∑
i′>i+1 ca(i′)

)
is defined to be +∞ whenever Sj′ = ∅. Notice that Sj′ = ∅ implies

SW (i+ 1, j′) < max{s− uij , 0}, and thus by Equation 26

C(i+ 1)(j′)(max{s− uij , 0}) = +∞ = min
a∈Sj′

(
cj′ +

∑
i′>i+1

ca(i′)

)
. (29)

Also notice that Sj′ 6= ∅ for some j′. In fact, s ≤ SW (i, j) implies SW (i+1, j) ≥ max{s−uij , 0},
and thus Sj 6= ∅. For any Sj′ 6= ∅, we have SW (i+ 1, j′) ≥ max{s− uij , 0}, and

C(i+ 1)(j′)(max{s− uij , 0}) = cj′ + min
a:j′=a(i+1)≤···≤a(n),
SW (a,i+1)≥max{s−uij ,0}

∑
i′>i+1

ca(i′)

= min
a∈Sj′

(
cj′ +

∑
i′>i+1

ca(i′)

)
, (30)

where the second equality is because that, given a(i+ 1) = j′ ≥ j = a(i), neither SW (a, i+ 1) nor∑
i′>i+1 ca(i′) depends on a(i).
Combining Equations 28, 29 and 30, we have

C(i)(j)(u) = cj + min
j′≥j

C(i+ 1)(j′)(max{s− uij , 0}),

and Claim 4 holds.

Equation 27 immediately leads to a dynamic program computing all C(i)(j)(s)’s, with other
equations in Claim 4 as initialization conditions. Since it takes O(n) time to compute each SW (i, j),
by Claim 4 it takes O(n + m) time to compute each C(i)(j)(s) given the C(i + 1)(j′)(s′)’s. Thus
the dynamic program takes space O(n2mV ) and runs in time O((n+m)n2mV ). By Claim 3, given
the C(i)(j)(s)’s, the social welfare of the optimal allocation can be computed in time O(mnV ).

Moreover, the dynamic program can keep track of the optimal j′’s when computing the C(i)(j)(s)’s
according to Equation 27. Once the C(1)(j)(s) corresponding to the optimal social welfare is found,
the dynamic program can trace back the stored j′’s and recover the assigned item for each player,
and thus compute the corresponding optimal allocation. The total space is still O(n2mV ) and the
running time is still O((n+m)n2mV ).

We present the dynamic program in Algorithm 2, where for each i < n, j ∈ [m] and s ≤ nV ,
â(i)(j)(s) represents the item to which player i + 1 is assigned to, in order for players i, . . . , n to
make contribution s at cost C(i)(j)(s). The correctness and the running time of Algorithm 2 follow
from Claim 4 and the discussion above.

Accordingly, Lemma 7 holds.

By scaling the players’ values and running Algorithm 2 on the scaled input, we obtain an FPTAS
for the ordered Knapsack problem, see below.

Theorem 3 (restated). There exists an algorithm for the ordered Knapsack problem such that,
given any ε > 0, it runs in time O((n+m)n3m/ε) and outputs an allocation a with C(a) ≤ B and
SW (a) ≥ (1− ε)SW (aopt).

Proof. Given c1, . . . , cm, u11, . . . , unm, B and ε > 0, our algorithm oKnapsack works as follows.
Let the ji’s and V be defined as before, K = εV

n , and u′ij = buijK c for any i ∈ [n] and j ∈ [m]. Run
Algorithm 2 with input (c1, . . . , cm, u

′
11, . . . , u

′
nm, B) and return its output a.
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Algorithm 2: A Dynamic Program for Ordered Knapsack

Input : cost cj for each j ∈ [m], value uij for each i ∈ [n] and j ∈ [m], and budget B.
Output: an optimal allocation a.

1 Initialization:
2 for i from 1 to n do
3 ji = min{j ∈ [m] : icj + (n− i)cm ≤ B};
4 end for
5 V = maxi∈[n] uiji ;

6 for j from 1 to m and s from 0 to nV do
7 if s ≤ unj then
8 C(n)(j)(s) = cj ;
9 else

10 C(n)(j)(s) = B + 1;
11 end if

12 end for
13 for i from 1 to n− 1 and j from 1 to m do
14 C(i)(j)(0) = cj + (n− i)cm; â(i)(j)(0) = m;
15 end for

16 Compute C(i)(j)(s) and â(i)(j)(s):
17 for i from n− 1 to 1 do
18 for j from 1 to m do
19 SW (i, j) =

∑n
i′=i ui′j ;

20 for s from 1 to nV do
21 if s ≤ SW (i, j) then

22 ĵ = argminj′≥j C(i+ 1)(j′)(max{s− uij , 0}), with ties broken

lexicographically;

23 C(i)(j)(s) = cj + C(i+ 1)(ĵ)(max{s− uij , 0});
24 â(i)(j)(s) = ĵ;

25 else
26 C(i)(j)(s) = B + 1; (It doesn’t matter what â(i)(j)(s) is in this case.)
27 end if

28 end for

29 end for

30 end for

31 Compute a:
32 for s from nV to 0 do

33 ĵ = argminj∈[m]C(1)(j)(s), with ties broken lexicographically;

34 if C(1)(ĵ)(s) ≤ B then

35 a(1) = ĵ; break;
36 end if

37 end for
38 for i from 1 to n− 1 do

39 a(i+ 1) = â(i)(ĵ)(s); s = max{s− uiĵ , 0}; ĵ = a(i+ 1);

40 end for
41 return a
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Since ui1 ≥ · · · ≥ uim for any i ∈ [n], we have u′i1 ≥ · · · ≥ u′im for any i, and thus the input to
Algorithm 2 is a valid instance of ordered Knapsack. Since the budget and the costs do not change,
the ji’s computed on the scaled input are still the same as before. Let V ′ = maxi∈[n] u

′
iji

be the

counterpart of V for the scaled input. We have V ′ ≤ maxi∈[n]
uiji
K = V

K = n
ε . Thus Algorithm 2

runs in time O((n+m)n2mV ′) = O((n+m)n3m/ε), and so does the algorithm oKnapsack.
Below we analyze the approximation ratio. For any allocation a′, let SW (a′) and SW ′(a′)

respectively be the social welfare of a′ in the original ordered Knapsack problem and in the scaled
input to Algorithm 2. We have

SW (a) =
∑
i∈[n]

uia(i) ≥ K
∑
i∈[n]

u′ia(i) = K · SW ′(a) ≥ K · SW ′(aopt) = K
∑
i∈[n]

u′iaopt(i)

≥ K
∑
i∈[n]

(uiaopt(i)
K

− 1
)

=
∑
i∈[n]

uiaopt(i) − nK = SW (aopt)− εV

≥ SW (aopt)− εSW (aopt) = (1− ε)SW (aopt),

where the first and the third inequalities are by the definition of u′ij ’s, the second is because a is
optimal under the scaled input, and the last is by Inequality 25.

In sum, Theorem 3 holds.

Finally we can prove Theorem 2.

Proof of Theorem 2. It is easy to see that algorithm oKnapsack constructed in the proof of
Theorem 3 can be applied to the resource allocation problem. Indeed, given an instance γ =
(q1, . . . , qm, c1, . . . , cm, v1, . . . , vn, B) of resource allocation, for any j ∈ [m], we can take

uij = iqj(vi − vi+1) for any i < n and unj = nqjvn.

Then κ = (c1, . . . , cm, u11, . . . , unm, B) is a valid instance of ordered Knapsack. Moreover, any
allocation a of κ is an ordered allocation function of γ with the same cost and the same social welfare,
and vice versa. Thus aopt is an optimal allocation function for γ and SW (Aopt) = SW (aopt). By
Theorem 3, the allocation a output by oKnapsack with input κ is budget-feasible and SW (a) ≥
(1− ε)SW (aopt). Let A = (a,w) be the allocation for γ that is tight at a and as defined by Lemma
1. We have that A is stable, budget-feasible, and optimal with respect to a, where the optimality
follows from Lemma 2. Thus SW (A) = SW (a) ≥ (1− ε)SW (aopt) = (1− ε)SW (Aopt).

It takes O(mn) time to construct κ from γ, and O(n + m) time to construct A from a. Thus
in total A can be computed in time O(mn + (n + m)n3m/ε + n + m) = O((n + m)n3m/ε), and
Theorem 2 holds.

C Proof of Theorem 4

To prove Theorem 4, we start by showing several properties of lottery schemes. Recall that for
any lottery scheme L, λL(x) = (pL1 (x), . . . , pLm(x), wL(x)) denotes the lottery chosen by consumer
x. The lemma below is the counterpart of Claim 1: the expected quality received by the consumers
increases together with their values.

Lemma 8. For any lottery scheme L, the function
∑

j∈[m] p
L
j (x)qj is non-decreasing.
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Proof. Let x, x′ ∈ [0, 1] be such that x < x′. By Inequality 4,

u(x, λL(x)) ≥ u(x, λL(x′)) and u(x′, λL(x′)) ≥ u(x′, λL(x)).

That is, ∑
j∈[m]

pLj (x)qjv(x)

− wL(x) ≥

∑
j∈[m]

pLj (x′)qjv(x)

− wL(x′) (31)

and ∑
j∈[m]

pLj (x′)qjv(x′)

− wL(x′) ≥

∑
j∈[m]

pLj (x)qjv(x′)

− wL(x). (32)

Adding the two inequalities side by side and rearranging the terms, we have∑
j∈[m]

pLj (x)qj −
∑
j∈[m]

pLj (x′)qj

 (v(x′)− v(x)) ≤ 0.

Since v(x) is strictly increasing, we have v(x) < v(x′) and thus
∑

j∈[m] p
L
j (x)qj ≤

∑
j∈[m] p

L
j (x′)qj .

That is, the function
∑

j∈[m] p
L
j (x)qj is non-decreasing and Lemma 8 holds.

Notice that the utility of consumer x depends on x only indirectly through v(x), thus λL(x)
can be written as a vector of functions on v(x): λL(v(x)) = (pL1 (v(x)), . . . , pLm(v(x)), wL(v(x))). We
have the following.

Lemma 9. For any lottery scheme L and any consumer x ∈ [0, 1],

u(x, λL(x)) =

∫ v(x)

0

∑
j∈[m]

qjp
L
j (v̂)dv̂.

Proof. Similar as before, by Inequalities 31 and 32 with x′ = x+ ∆, we have

v(x)

∑
j∈[m]

qj
(
pLj (x+ ∆)− pLj (x)

) ≤ wL(x+ ∆)− wL(x)

and

v(x+ ∆)

∑
j∈[m]

qj
(
pLj (x+ ∆)− pLj (x)

) ≥ wL(x+ ∆)− wL(x).

Combining the two inequalities and letting ∆→ 0, we have

v(x)
∑
j∈[m]

qj · dpLj (x) = dwL(x).

Accordingly,

du(x, λL(x)) =

∑
j∈[m]

qj · d
(
pLj (x)v(x)

)− dwL(x)

=
∑
j∈[m]

qjp
L
j (x) · dv(x) + v(x)

∑
j∈[m]

qj · dpLj (x)− v(x)
∑
j∈[m]

qj · dpLj (x)

=
∑
j∈[m]

qjp
L
j (x) · dv(x) =

∑
j∈[m]

qjp
L
j (v(x))v′(x)dx.
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Integrating the first and the last terms with respect to x and changing variables, we have

u(x, λL(x)) =

∫ x

0
du(x̂, λL(x̂)) =

∫ x

0

∑
j∈[m]

qjp
L
j (v(x̂))v′(x̂)dx̂ =

∫ v(x)

0

∑
j∈[m]

qjp
L
j (v̂)dv̂.

Thus Lemma 9 holds.

Now we are ready to prove our theorem.

Proof of Theorem 4. Since SW (Lopt) ≥ SW (Ropt) by definition, it suffices to show

SW (Ropt) ≥ SW (Lopt). (33)

To do so, for any budget-feasible lottery scheme L, let R = (p1, . . . , pm) be the randomized
allocation where for any j ∈ [m],

pj =

∫ 1

0
pLj (x)dx.

That is, each pj is the average of pLj (x) over [0, 1]. It is easy to see
∑

j∈[m] pj =
∫ 1
0

∑
j∈[m] p

L
j (x)dx ≤

1, thus R is well defined. Also we have C(R) =
∑

j∈[m] pjcj =
∫ 1
0

∑
j∈[m] p

L
j (x)cjdx = C(L) ≤ B,

thus R is budget-feasible. Below we show

SW (R) ≥ SW (L), (34)

which, when applied to L = Lopt, implies Inequality 33.
Since v(x) is strictly increasing and twice differentiable, v−1(v̂) is well defined for any v̂ ∈

[0, v(1)]. Thus we have

SW (L) =

∫ 1

0
u(x, λL(x))dx =

∫ 1

0

∫ v(x)

0

∑
j∈[m]

qjp
L
j (v̂)dv̂dx =

∫ v(1)

0

∑
j∈[m]

qjp
L
j (v̂)

∫ 1

v−1(v̂)
dx

 dv̂

=

∫ v(1)

0

∑
j∈[m]

qjp
L
j (v̂)(1− v−1(v̂))dv̂ =

∫ 1

0

∑
j∈[m]

qjp
L
j (x)(1− x)v′(x)dx, (35)

where the second equality is by Lemma 9, the last is by taking v̂ = v(x), and all others are by
definition or basic calculus. Moreover, letting p =

∑
j∈[m] qjpj , we have

SW (R) =

∫ 1

0
pv(x)dx =

∫ 1

0

∫ v(x)

0
pdv̂dx =

∫ v(1)

0

∫ 1

v−1(v̂)
pdxdv̂ =

∫ v(1)

0
p(1− v−1(v̂))dv̂

=

∫ 1

0
p(1− x)v′(x)dx. (36)

By Lemma 8,
∑

j∈[m] qjp
L
j (x) is non-decreasing. Thus

∑
j∈[m]

qjp
L
j (0) =

∫ 1

0

∑
j∈[m]

qjp
L
j (0)dx ≤

∫ 1

0

∑
j∈[m]

qjp
L
j (x)dx = p ≤

∫ 1

0

∑
j∈[m]

qjp
L
j (1)dx =

∑
j∈[m]

qjp
L
j (1),

and there exists xp ∈ [0, 1] such that∑
j∈[m]

qjp
L
j (x) ≤ p ∀x ∈ [0, xp) and

∑
j∈[m]

qjp
L
j (x) ≥ p ∀x ∈ [xp, 1].
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Following Equations 35 and 36 we have

SW (R)− SW (L) =

∫ 1

0

p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x)dx

=

∫ xp

0

p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x)dx+

∫ 1

xp

p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x)dx. (37)

The value of
∑

j∈[m] qjp
L
j (xp) does not affect the value of the integration, and without loss of

generality we assume it equals p.
For any x ∈ [0, xp], since (1− x)v′(x) is non-increasing and v′(x) > 0, we have

(1− x)v′(x) ≥ (1− xp)v′(xp) ≥ 0.

Moreover, for any such x, since p−
∑

j∈[m] qjp
L
j (x) ≥ 0, we havep− ∑

j∈[m]

qjp
L
j (x)

 (1− x)v′(x) ≥

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp). (38)

Similarly, for any x ∈ [xp, 1] we have 0 ≤ (1− x)v′(x) ≤ (1− xp)v′(xp) and p−
∑

j∈[m] qjp
L
j (x) ≤ 0,

and thus p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x) ≥

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp). (39)

Combining Equation 37 with Inequalities 38 and 39, we have

SW (R)− SW (L)

≥
∫ xp

0

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp)dx+

∫ 1

xp

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp)dx

= (1− xp)v′(xp)
∫ 1

0

p− ∑
j∈[m]

qjp
L
j (x)

 dx = (1− xp)v′(xp)

p− ∫ 1

0

∑
j∈[m]

qjp
L
j (x)dx


= (1− xp)v′(xp)(p− p) = 0,

implying Inequality 34. Thus Theorem 4 holds.

D Important Properties of the Optimal Randomized Allocation

In this section we highlight several important properties of the optimal randomized allocation
compared with general lottery schemes.
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Computability. In general resource allocation problems, there may not be an efficient algorithm
for finding an optimal lottery scheme. But the optimal randomized allocation is always defined by
the following linear program.

max
p1,...,pm

∑
j∈[m]

pjqj

∫ 1

0
v(x)dx

s.t. pj ≥ 0 ∀j ∈ [m],∑
j∈[m]

pj ≤ 1,

∑
j∈[m]

pjcj ≤ B.

If
∫ 1
0 v(x)dx has a closed form and can be computed in polynomial time, then Ropt can be computed

in polynomial time. Otherwise, by computing
∫ 1
0 v(x)dx numerically, Ropt can also be computed

numerically. Thus when Theorem 4 applies, the optimal lottery scheme can be computed either
analytically in polynomial time, or numerically.

Ex-post Budget-feasibility. A lottery scheme in general only satisfies the budget constraint in
expectation, and it is possible that under some realization of the lotteries the total cost is much
higher than the budget. Yet, given a randomized allocation R = (p1, . . . , pm), the planner can first
choose an ordering of the consumers uniformly at random, and then assign the first p1 fraction of
them to provider 1, the next p2 fraction to provider 2, and so on. By doing so, each consumer
is assigned to the providers according to the correct distribution (p1, . . . , pm), thus the expected
social welfare is that of R. While in any realized allocation the total cost is

∑
j∈[m] pjcj , exactly

the expected cost of the randomized allocation, and thus the budget constraint is satisfied with
probability 1.9

Advantage in Generating Social Welfare. When Theorem 4 applies, not only the social
welfare of the optimal randomized allocation is greater than or equal to that of the optimal stable
allocation, but the ratio between them can be arbitrarily large, since in the latter a lot of social
welfare may be burnt by letting the consumers wait. As an example, consider the case where v(x) =
v0 is a positive constant, q1 = ε � 1, 1 � q2 < · · · < qm, B � 1, c1 = 1, c2 = · · · = cm = B−ε

1−ε .
It is easy to see that one particular optimal stable allocation is to assign all consumers to provider
1 with waiting time 0, where the social welfare is q1

∫ 1
0 v(x)dx = εv0 (assigning some consumers

to better providers won’t help, since all consumers must have the same utility anyway). While
there is a randomized allocation that assigns each consumer to provider m with probability 1 − ε
and to provider 1 with probability ε, resulting in total cost (1− ε)cm + εc1 = B and social welfare
((1− ε)qm + εq1)

∫ 1
0 v(x)dx = ((1− ε)qm + ε2)v0 ≥ (1− ε)v0 � εv0.

To make v(x) strictly increasing, just take v(x) = αx with some arbitrarily small α > 0. The
analysis is essentially the same as when v(x) is a constant.

E Proof of Theorem 5

To prove Theorem 5 we first have the following claims.

9How to implement lotteries so that the desired constraints are satisfied ex-post is an important research topic in
the Economics literature, see, e.g., [14].
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Claim 5. For any stable allocation A = (a,w) and x, x′ ∈ [0, 1] with x < x′, we have a(x) ≤ a(x′)
and wa(x) ≤ wa(x′).

Proof. By the definition of stable allocations, we have

va(x)(x)− wa(x) ≥ va(x′)(x)− wa(x′) and va(x′)(x
′)− wa(x′) ≥ va(x)(x′)− wa(x).

Summing up the two inequalities side by side and rearranging terms, we have

va(x′)(x
′)− va(x′)(x) ≥ va(x)(x′)− va(x)(x),

that is
a(x′)∑
k=1

fk(x
′)− fk(x) ≥

a(x)∑
k=1

fk(x
′)− fk(x).

Notice that fj(x
′)− fj(x) > 0 for any j ∈ [m], since fj(x) is strictly increasing and x < x′. Thus

a(x) ≤ a(x′)

as desired. By definition, this inequality further implies va(x)(x) ≤ va(x′)(x). Thus wa(x) ≤ wa(x′),
otherwise consumer x has better utility at a(x′) than at a(x), contradicting the stability of A.
Therefore Claim 5 holds.

Claim 5 is the counterpart of Claims 1 and 2 in the current setting.

Claim 6. For any stable allocation A = (a,w), there exists x0, · · · , xm with 0 = x0 ≤ x1 ≤ x2 ≤
· · · ≤ xm−1 ≤ xm = 1, such that for any j ∈ [m] and x ∈ (xj−1, xj), a(x) = j.

Moreover, if A is optimal with respect to a, then w1 = 0 and for any j > 1,

wj = vj(xj−1)− vj−1(xj−1) + wj−1 = fj(xj−1) + wj−1 = · · · =
j∑

k=1

fk(xk−1).

Notice that when A is optimal with respect to a, for any j > 1, consumer xj−1 is indifferent
between providers j−1 and j. Claim 6 is the counterpart of Lemmas 4, 1, and 2: to find the optimal
stable allocation it suffices to focus on the choices of x0, . . . , xm and allocations whose waiting times
are “tight” with respect to them. The first part of Claim 6 follows directly from Claim 5, the first
equality of the second part is similar to the analysis of Lemma 2, and the remaining of the second
part is by induction. Thus we omit the detailed proof here.

Now we are ready to prove our theorem.

Proof of Theorem 5. Let A = (a,w) be a stable allocation that is budget-feasible and optimal with
respect to a, and x0, . . . , xm as specified in Claim 6. That is, for each j ∈ [m], consumers in
(xj−1, xj) are assigned to provider j. Since there is a continuous population of consumers, it does
not matter where consumers x0, x1, . . . , xm are assigned to. Moreover, the cost of A is

C(A) =
∑
j∈[m]

cj(xj − xj−1) ≤ B.

Consider the randomized allocation R = (p1, . . . , pm) where pj = xj − xj−1 for each j ∈ [m].
Notice that pj ≥ 0 for each j, and

∑
j∈[m] pj =

∑
j∈[m] xj − xj−1 = xm − x0 = 1. Thus R is well

defined. Moreover, the cost of R is

C(R) =
∑
j∈[m]

pjcj =
∑
j∈[m]

cj(xj − xj−1) = C(A) ≤ B,
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and R is budget-feasible.
Similar to the proof of Theorem 4, we now show

SW (R) ≥ SW (A), (40)

which, when applied to A = Aopt, implies Theorem 5.
To prove Inequality 40, notice that

SW (A) =

∫ 1

0
va(x)(x)− wa(x)dx =

m∑
j=1

∫ xj

xj−1

vj(x)− wjdx

=
m∑
j=1

∫ xj

xj−1

[
j∑

k=1

fk(x)−
j∑

k=1

fk(xk−1)

]
dx =

m∑
j=1

∫ xj

xj−1

j∑
k=1

[fk(x)− fk(xk−1)]dx

=
m∑
k=1

m∑
j=k

∫ xj

xj−1

[fk(x)− fk(xk−1)]dx =
m∑
k=1

∫ 1

xk−1

[fk(x)− fk(xk−1)]dx, (41)

where the third equality is by the definition of vj(x) and Claim 6.
Moreover, by definition the social welfare of R is

SW (R) =

∫ 1

0

m∑
j=1

pjvj(x)dx =

∫ 1

0

m∑
j=1

(xj − xj−1)
j∑

k=1

fk(x)dx =

m∑
k=1

∫ 1

0

 m∑
j=k

(xj − xj−1)

 fk(x)dx

=

m∑
k=1

∫ 1

0
(1− xk−1)fk(x)dx. (42)

We shall show ∫ 1

0
(1− xk−1)fk(x)dx ≥

∫ 1

xk−1

[fk(x)− fk(xk−1)]dx (43)

for every k ∈ [m], which together with Equations 41 and 42 implies Inequality 40. To do so, for
any k ∈ [m], consider the following function

gk(y) =

∫ 1

0
(1− y)fk(x)dx−

∫ 1

y
[fk(x)− fk(y)]dx =

∫ 1

0
(1− y)fk(x)dx−

∫ 1

y
fk(x)dx+ (1− y)fk(y)

for y ∈ [0, 1]. It suffices to show that gk(xk−1) ≥ 0.
First, notice that

gk(0) =

∫ 1

0
fk(x)dx−

∫ 1

0
[fk(x)− fk(0)]dx = 0,

as fk(0) = 0 by definition. Also,

gk(1) =

∫ 1

0
0dx−

∫ 1

1
[fk(x)− fk(1)]dx = 0.

Moreover,

g′k(y) = −
∫ 1

0
fk(x)dx+ fk(y)− fk(y) + (1− y)f ′k(y) = (1− y)f ′k(y)−

∫ 1

0
fk(x)dx.

Because (1 − y)f ′k(y) is non-increasing as required by Theorem 5, and because
∫ 1
0 fk(x)dx is a

constant, we have that g′k(y) is non-increasing, that is, gk(y) is concave on [0, 1]. Since gk(0) =
gk(1) = 0, we have gk(y) ≥ 0 for all y ∈ [0, 1]. Accordingly, gk(xk−1) ≥ 0 and Inequality 43 holds.
Thus Inequality 40 holds, and so does Theorem 5.
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F An Example where Stable Allocations Can Do Better

Consider two providers, 0 and 1, with costs c0 = 0 and c1 > 0 respectively. The valuation functions
are v0(x) = 0 and v1(x) = e2x − 1, and the budget is B ∈ [0, c1]. (Strictly speaking we should take
v0(x) = εx with some arbitrarily small ε > 0, so that v0(x) is strictly increasing. But the idea is
the same.)

First of all, f0(x) = 0, f1(x) = v1(x)− v0(x) = e2x − 1, and (1− x)f ′1(x) = 2(1− x)e2x which is
increasing when x ≤ 1/2 and decreasing otherwise. Thus Theorem 5 does not apply here (neither
does Theorem 4 as one can verify). Second, it is easy to see that the optimal randomized allocation
is Ropt = (p0, p1) where p1 = B

c1
and p0 = 1− p1. We have C(Ropt) = B and

SW (Ropt) =
B

c1

∫ 1

0
(e2x − 1)dx =

B(e2 − 3)

2c1
.

For any stable allocation A = (a,w) that is budget-feasible and optimal with respect to a, by Claim
6 there exists x1 ∈ [0, 1] such that consumers in (0, x1) are assigned to provider 0, consumers in
(x1, 1) are assigned to provider 1, w0 = 0 and w1 = f1(x1) = e2x1−1. Thus C(A) = c1(1−x1) ≤ B
and

SW (A) =

∫ 1

x1

v1(x)− w1dx =

∫ 1

x1

e2x − e2x1dx =
e2 + e2x1(2x1 − 3)

2
.

Accordingly, the optimal stable allocation Aopt is such that x1 = 1− B
c1

. Letting r = B
c1

, we have

SW (Ropt) =
(e2 − 3)r

2
and SW (Aopt) =

e2 − e2(1−r)(1 + 2r)

2
.

It is easy to see (e.g., using Mathematica) that there exists r0 ≈ 0.8 such that SW (Ropt) ≥
SW (Aopt) if r ≤ r0 and SW (Ropt) < SW (Aopt) otherwise. That is, if the budget is enough to
serve 80 percent of the consumers at provider 1 then the optimal stable allocation has better social
welfare, otherwise the optimal randomized allocation does better. Figure 1 shows the difference
between the two for r ∈ [0, 1]. In this example, the optimal stable allocation only has a small
advantage when r > r0: maxr SW (Aopt)/SW (Ropt) ≈ 1.005, which occurs at r ≈ 0.9.
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Figure 1: SW (Ropt)− SW (Aopt) as a function of r = B
c1

.
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