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Large distributed control systems typically can be modeled by a hierarchical structure with two physical
layers: console level computers (CLCs) layer and front end computers (FECs) layer. The control system of
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) consists of more
than 500 FECs, each acting as a server providing services to a large number of clients. Hence the
interactions between the server and its clients become crucial to the overall system performance. There are
different scenarios of the interactions. For instance, there are cases where the server has a limited processing
ability and is queried by a large number of clients. Such cases can put a bottleneck in the system, as heavy
traffic can slow down or even crash a system, making it momentarily unresponsive. Also, there are cases
where the server has adequate ability to process all the traffic from its clients. We pursue different goals in
those cases. For the first case, we would like to manage clients’ activities so that their requests are processed
by the server as much as possible and the server remains operational. For the second case, we would like to
explore an operation point at which the server’s resources get utilized efficiently. Moreover, we consider a
real-world time constraint to the above case. The time constraint states that clients expect the responses
from the server within a time window. In this work, we analyze those cases from a game theory perspective.
We model the underlying interactions as a repeated game between clients, which is carried out in discrete
time slots. For clients’ activity management, we apply a reinforcement learning procedure as a baseline
to regulate clients’ behaviors. Then we propose a memory scheme to improve its performance. Next,
depending on different scenarios, we design corresponding reward functions to stimulate clients in a proper
way so that they can learn to optimize different goals. Through extensive simulations, we show that first,
the memory structure improves the learning ability of the baseline procedure significantly. Second, by
applying appropriate reward functions, clients’ activities can be effectively managed to achieve different
optimization goals.
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I. INTRODUCTION

The control system of the Relativistic Heavy Ion Collider
(RHIC) at BNL is a large distributed discrete system. It
provides operational interfaces to the collider and injection
beam lines [1]. The architecture consists of two hierarchical
physical layers: console level computers (CLCs) layer
and front end computers (FECs) layer, as shown in
Fig. 1. The console level is the upper layer of the control
system hierarchy, which consists of operator consoles,

physicist workstations and server processors that provide
shared files, database, and general computing resources.
The front end system contains more than 500 FECs,
running on VxWorks™ real-time operating system. Each
of them consists of a VME chassis with a single-board
computer,1 network connection, and I/O modules. FECs
are distributed around 38 locations, including the control
center, service buildings and 18 equipment alcoves acces-
sible only via the ring tunnel. Along with data links and
hardware modules, they are the control systems’ interface
to accelerator devices.
One of the most fundamental concepts in RHIC control

system is the accelerator device object (ADO) [1]. ADOs
are instances of Cþþ or Java classes which abstract
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1They can have different processor architectures, e.g.,
POWER3E, MV2100, MV3100, XILINX, etc.
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features from underlying control hardware into a collection
of collider control points known as parameters, and each
parameter can possess one or more properties to better
describe characteristics of devices. The number of param-
eters and names of parameters are determined by ADO
designers to meet the needs of the system. The most
important ADO class methods for device control are the
set() and get() methods. They are processed by the ADO
that acts as the interface to device drivers in order to access
control hardware. The collider is controlled by users or
applications which sets and gets the parameters in instances
of these classes using a suite of interface routines.
There is a fundamental performance issue in the front

end system, where every FEC acts as a server which holds
different kinds of ADOs, providing services to a potentially
large number of clients. Depending on the traffic load on
the server, the system exhibits different behaviors. For
example, when the number of clients in an FEC reaches its
limit, the system slows down or even crashes. When the
system crashes, all current applications’ communications
are lost and it takes time to restore them. In other cases
where the server’s traffic is moderate, there may exist a
working load range where the server works very efficiently.
In the current system, working load2 is balanced3 to

prevent heavy traffic from crashing FECs. Another way of
dealing with heavy traffic is to use what is called a reflected
server (basically like a proxy server) that is built on a more
robust and higher performance Linux system. However,
those approaches do not eliminate the fundamental design
limitation of the system.
In this work, we consider this practical issue from a

different perspective. We analyze it quantitatively using
game theory. Figure 2 shows the results of an experiment
conducted on one of the FECs, which demonstrates how its
performance changes with its traffic load. In this example,

the arrival procedure of clients’ requests is represented by a
Poisson process [2] with various message rates. For each of
those different arrival rates, we measure the ratio of the time
spent by the server4 to process requests between the case
where the server has a certain message arrival rate and the
case where the server has no arrival messages. The result
indicates how well the system behaves for different server
load. We can see that in the early stages, the curve is
relatively flat, which means that the server’s utilization rate
does not grow much with the increasing message rate. On
the contrary, as shown in the later part of the curve, when
the number of clients approaches the server’s capacity,5 the
performance of the system deteriorates dramatically.
This clearly demonstrates how the interactions between

clients and the server is critical to the overall system
performance. In this paper, we mainly study two possible
scenarios in the system. As shown in Fig. 2, first, we focus
on the later section of the curve. We study the case where
the server does not have enough resources to process all the
incoming requests. Specifically, the server’s total capacity
is some proportion of the total amount of traffic. The goal in
this case is to adjust clients’ behaviors in a distributed way
so that the server does not crash and the server’s throughput
is maximized. Second, we focus on the front part of the
curve, where the server has enough resources to process all
the requests. The goal in this case is to guide the clients to
explore around in their strategy space, so that their combi-
nation of strategies keeps the server working at an efficient
operation point.6 We propose management schemes follow-
ing both centralized and distributed methodologies.
Additionally, we consider the temporal dependencies in
the client communications. The clients have a time constraint
for when to expect responses from the server.

FIG. 2. Illustration of the client-server problem.FIG. 1. RHIC system hardware architecture.

2Tasks are processed by FECs according to their priorities,
higher priority tasks are processed earlier.

3If an FEC has many clients, the data size transmitted each time
is relatively small. On the other hand, if the data size is large, then
that FEC tends to have fewer clients. In other cases where the
FECs already have heavy traffic, working load are split to other
FECs.

4From now on, we will use the word “server” and “FEC”
interchangeably.

5Here we assume one client only sends one request at each time.
Depending on the size of clients’ requests and hardware spec-
ifications of the server, the maximum number of clients the server
can hold varies, in this example it is around 98.

6We will define the server’s working efficiency more formally
in the later section. Intuitively, it represents how much amount of
traffic the server can process per unit time.
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In general, we model the basic interactions as a repeated
game between clients, and formulate it as an integer
programming problem.7 In our solution, we adopt a
reinforcement learning procedure as an underlying routine,
and propose a memory scheme to improve its learning
ability. Next, depending on different scenarios, we coor-
dinate the reward mechanisms to correctly encourage the
clients, so that they can learn appropriate strategies to
optimize different goals. Through extensive simulations,
we prove that first, the memory scheme boosts the learning
ability of the reinforcement procedure greatly, especially in
a dynamic environment. Second, the activity management
schemes can properly adjust clients’ behaviors, so that
different optimization goals are achieved.
The motivation of this work can be seen from the

following point of view. First, since currently the perfor-
mance limitation mentioned above does not affect the
system significantly, there is no need to change the control
system’s infrastructure for this reason. However, analyzing
it quantitatively brings insights into this issue, which also
impacts how distributed control systems will be built in the
future. Second, the accelerator control systems are designed
to be highly reliable and should have a fast recovery in the
event of some disruptions in operation, improving the
dependability of the systems is crucial. This work aims to
focus on methods to increase dependability of client-server
communications in the systems.
The main contributions of this work can be summarized

as follows. First, we take a game theory approach along
with integer programming formulation to study realistic
scenarios in accelerator control systems. Second, we
introduce a reinforcement learning procedure as a basic
routine to regulate clients’ behaviors, and provide a way to
enhance its performance. Third, we propose several client
activity management schemes to accomplish various opti-
mization goals in the system.
The rest of this work is organized as follows: Sec. II

introduces the underlying game model, a literature review
on game dynamics, as well as other basic assumptions and
definitions. Section III analyzes the scenario where the
server does not have enough resources to hold all clients’
traffic and proposes a memory based activity management
scheme. Section IV studies the scenario where the server
has adequate resources to process all clients’ traffic, and
proposes both centralized and distributed activity manage-
ment schemes. Moreover, a real-world time constraint
and corresponding activity management schemes are also
discussed in Sec. IV. Section V validates the correctness
and evaluates the performance of the proposed schemes.
Finally, Sec. VI summarizes this work.

II. PRELIMINARIES

In this section, we present some basic assumptions and
definitions. First, the game theory model of the system is
given, followed by a literature review about game dynam-
ics. Next, to facilitate the illustration in the simulation
section, we briefly introduce the Markov decision process
(MDP) and a reinforcement learning procedure known as
Q-learning [3].

A. Game theory model

Since in our system, the information on FECs are all
different and FECs usually do not share information
between each other, clients need to talk to a single FEC
each time to get a particular kind of information. We build
the model for single server serving multiple clients, then it
can be applied to all the communication cases in the
system.
We model the basic interactions between clients as a

repeated game [4], which is played over discrete time slots
among n clients8 (players). During each time slot, a stage
game is played in which all n clients simultaneously decide
whether to Send(S) or Hold(H) their traffic to a server.
Depending on the result of the stage game as a consequence
of clients’ actions, payoffs will be assigned to each client.
For the scenario where the server does not have enough

resources to process all clients’ requests, payoffs are
assigned in the following way: At any time t, if the traffic
coming from clients (Li for client i) exceeds the server’s
capacity Ct (which stands for the capacity value at time t),
then the server is crashed and clients get punishment
payoff −c. Otherwise, they get payoff 1 as the profit of
a successful traffic transmission. The payoff function for
client i can be expressed as:

uiðLi; aiÞ ¼
�
1 if the server is alive

−c if the server crashes
ð1Þ

where ai is client i’s action, with value 1 standing for action
Send and 0 for Hold.
Table I summarizes these notations.
For the scenario where the server has enough resources

to process all the incoming traffic and the time constraint
case, the payoff function will be introduced in details in the
later section.

B. Game dynamics

Game dynamics study how a game evolves when players
interact with each other repeatedly. Learning procedures
have been developed to achieve some overall optimization
goals or convergence to the game’s equilibrium.

7An integer programming problem is a mathematical optimi-
zation or feasibility program in which some or all of the variables
are restricted to be integers.

8Since in our system, FECs do not share information between
each other, this allows us to model each FEC separately by using
the same game model.
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In work [5], the authors proposed a multiagent learning
algorithm through gradient ascent method, and showed that
in the simple setting of two-player, two-action repeated
general-sum games, it either leads the agents to play a Nash
equilibrium, or leads the agents’ payoffs to Nash equilib-
rium payoffs. Work [6] extended [5] by introducing a
varying learning rate to “win or learn fast,” and proved
convergence in the same game settings as [5]. Work [7]
generalized the convergence results of [5] to games with
more than two actions, and proved all clients’ regrets are
bounded by a constant number. Work [8] proposed a
discrete procedure which achieves the no-regret result in
work [7] and part of the convergence result in work [6], and
proved convergence in two-player, two-action games.
There are also many works that study game dynamics for

convergence to equilibrium. Work [9] introduced a hypoth-
esis testing procedure in which, the joint mixed strategy
profiles are within distance ϵ of the set of Nash equilibria in
a fraction of at least 1 − ϵ of time, though almost sure
convergence is not achieved. Work [10] proposed the
calibrated learning dynamics leading to correlated equilib-
ria, in which every player computes “calibrated forecasts”
on the behavior of the other players, and then plays a best
reply to these forecasts. Work [11] offered a class of
adaptive procedures called “calibrated smooth fictitious
play”, which guaranteed almost sure convergence to the set
of correlated approximate equilibria. Another interesting
line of works [12,13] proposed a simple adaptive learning
procedure: “regret-matching.” It is a discrete algorithm
which does not require sophisticated updating or predic-
tion. The procedure has the property that it requires neither
global information about the game nor the observation of
other opponents’ actions, and converges to the game’s set
of correlated equilibria [4].

C. Markov decision process

Markov decision process (MDP) [14] is a classical
formalization of sequential decision making. It is a
straightforward formulation of the problems which focus
on how to learn from interactions to achieve a goal. The
actions in MDPs influence not only immediate rewards,
but also subsequent states through future rewards. Future

rewards are usually discounted by a discount factor γ
(0 ≤ γ ≤ 1). In general, the learner or decision maker is
called the agent, and the thing it interacts with is called the
environment.
More specifically, the agent and environment interact in

discrete time slots. At each time step t, the agent makes an
action at ∈ AðsÞ based on the environment’s state St ∈ S.
At the next time step, the agent receives a reward
Rtþ1 ∈ R ⊂ R, and the environment moves to the next
state Stþ1. Hence, an MDP can be expressed as a sequence
or trajectory: S0; A0; R1; S1; A1; R2; � � �.
According to the discounting concept, at each time step t,

the agent tries to select actions so that the sum of the
discounted rewards it receives over the future periods is
maximized. In particular, it chooses at at time t to
maximize the expected discounted return:

Gt ¼ Rtþ1 þ γRtþ2 þ γ2Rtþ3 þ � � � ¼
X∞
k¼0

γkRtþkþ1 ð2Þ

where 0 ≤ γ ≤ 1 is the discount rate.
The discount rate represents how much the agent values

the future states: A reward received k steps later is only
worth γk−1 proportion of what it would be worth if it were
received immediately. In the extreme case of γ ¼ 0, the
agent is “myopic” in the sense that it only concerns the
immediate reward. In general, “myopic” behavior can
reduce access to future rewards resulting in a reduced
return. As γ approaches 1, the agent takes future reward into
account more strongly, it becomes more “farsighted.”

D. Q-learning

MDPs can be solved by reinforcement learning algo-
rithms, such as Q-learning [3], which belongs to the family
of temporal-difference (TD) learning [14]. Q-learning is a
procedure that tries to optimize Q values. The Q values
QðSt; AtÞ at time t are updated as:

QðSt; AtÞ þ α½Rtþ1 þ γmax
a

QðStþ1; aÞ −QðSt; AtÞ� ð3Þ

where 0 < α ≤ 1 is the learning rate, which determines
the degree to which newly learned information overrides
old information.
Q values approximate the optimal values of state-action

pairs.9 Q values can be iteratively computed by Eq. (3),
and the more times they are updated the more accurate
their approximations are. Intuitively, Q values measure the
quality of state-action pairs. The control policy derived
from Q-learning will be choosing the action that maximizes
the Q value for each given state, which is a direct

TABLE I. Notations.

Notation Definition

N; jNj ¼ n Set of clients
Ai ¼ fS;Hg Action set for client i
Li, 0 < Li ≤ LMAX Amount of traffic client i possesses
1 Benefit of a successful

traffic transmission
Ct Server’s capacity at time t
−c; c > 0 Cost of server crash
ui Payoff function for client i

9The optimal value of a state-action pair ðS; AÞ is the total
expected return for taking action A in state S and thereafter
following an optimal policy.
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approximation of optimal policies. A general Q-learning
control scheme [14] is shown in Algorithm 1, where
ϵ-greedy policy means that most of the time the actions
that maximize Q values are selected, but with probability
ϵ actions are selected randomly.

III. TRAFFIC THROUGHPUT OPTIMIZATION

In this section, we study the problem of traffic through-
put optimization. Specially, we consider the scenario where
the server does not have enough capacity to hold all the
clients’ traffic, and wewant to regulate clients’ behaviors so
that the server does not crash and the server’s throughput is
maximized. Moreover, in our system, there are asynchro-
nous processes residing on FECs. Those processes will
share FECs’ resources when their required information is
updated by FECs, resulting in a varying server capacity
circumstance. One difficulty with this scenario is how to
regulate clients’ behaviors so that they can learn the server’s
limitations and adjust their strategies properly.

A. Problem formulation

We use the same notations as shown in Table I. As
specified by the game model in the previous section,
suppose the stage game is repeatedly played among n
clients for T periods. The server’s capacity at time t, Ct, is a
portion of the clients’ total traffic. Denote as ati the action
played by client i at time t. Our goal is to safely and
efficiently route clients’ traffic so that the server’s through-
put is maximized:

Max∶
XT
t¼1

Xn
i¼1

atiLi ð4Þ

Subject to

Xn
i¼1

atiLi ≤ Ct; ∀ t ¼ 1; 2;…; T ð5Þ

Ct <
Xn
i¼1

Li; ∀ t ¼ 1; 2;…; T ð6Þ

ati ∈ f0; 1g; ∀ i ¼ 1; 2;…; n; ∀ t ¼ 1; 2;…; T ð7Þ

Li ∈ ð0; LMAX�; ∀ i ¼ 1; 2;…; n ð8Þ

where constraint (5) restricts that the server does not crash
during the game. Constraint (6) indicates that the server
does not have enough resources to hold all clients’ traffic.
Constraint (7) specifies that clients’ actions are binary
variables, where 1 stands for action Send, and 0 for Hold.
Constraint (8) states that the maximum traffic load a client
can have is greater than 0 and below a threshold LMAX > 0.
Note that a special case of the optimization problem

above is to keep the server’s capacity constant all the time,
then the problem is equivalent to the Knapsack problem,
which is a well-known NP-hard problem (see, for example,
[15]). This reduction along with the dynamic aspect of the
problem make it very difficult to seek any optimal solution
directly. In the remaining parts of this section, we propose a
heuristic scheme to address it.

B. A regret-based learning procedure

In this part, we describe the discrete adaptive learning
procedure proposed in work [12,13] which leads to the
game’s set of correlated equilibria. This procedure is used
as the basis for the clients’ behaviors control scheme
proposed next.
The basic idea of the procedure is as follows: At each

period, a player may either continue playing the same
strategy as in the previous period, or switch to other
strategies, with probabilities that are proportional to how
much higher his accumulated payoff would have been had
he always made that change in the past. Specifically, let U
be his total payoff up to now. For each strategy k different
from his last period strategy j, let VðkÞ be the total payoff
he would have received if he had played k every time in
the past that he chose j (and everything else remained
unchanged). Then only those strategies k with VðkÞ larger
than U may be switched to, with probabilities that are
proportional to the differences VðkÞ − U, which is called
the “regret” for having played j rather than k. These
probabilities are normalized by a fixed factor, so that they
add up to strictly less than 1; with the remaining proba-
bility, the same strategy j is chosen as in the last period.
It is worthwhile to point out two properties [12,13] of

this procedure. First, each player only needs to know the
payoffs he received in past periods. He needs not know the
game he is playing—neither his own payoff function nor
the other players payoffs.10 Second, due to the discrete

Algorithm 1. Q-learning (off-policy TD control) for estimating
π ≈ π�.

1: Initialize Qðs; aÞ, for all s ∈ S; a ∈ A, arbitrarily, and
Qðterminal-state; ·Þ ¼ 0

2: for each episode do
3: Initialize S
4: while S is not terminal-state do
5: Choose A from S using policy derived from Q (e.g.,
ϵ-greedy)

6: Take action A, observe R; S0
7: QðS; AÞ ← QðS; AÞ þ α½Rþ γmaxaQðS0; aÞ −QðS; AÞ�
8: S ← S0
9: end while
10: end for

10Which is equivalent to saying that clients may not even be
aware that there is a game going on.
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nature of this algorithm, all regret values are calculated
based on realized information. Thus an exogenous stat-
istical “noise” is needed to make sure every action is played
with some minimal frequency.

C. Employment of extra memory

The procedure [12,13] can be seen as a “stimulus-
response” procedure, in the sense that clients will choose
strategies which bring them more profits in the play history
with higher probability. Though the idea is straightforward
and intuitive, and the procedure does not require sophis-
ticate information structure, it leads the game to converge to
its set of correlated equilibria.
Notice that in the algorithm, clients make decisions only

based on their realized payoffs, which depends on the
server’s capacity in real time. In a dynamic environment, if
the server’s capacity changes over time, clients need to
adjust their strategies correspondingly, otherwise it could
affect the learning performance of the algorithm. The idea
of the proposed memory scheme is that if the client can
check the server’s throughput periodically and record the
parameter values corresponding to any increase of the
server’s throughput, and uses those parameters in later
learning, then the clients can adapt better to a dynamic
environment in the sense that only more profitable values
get preserved into future rounds of the game. This memory
scheme should give the algorithm a better learning ability.
In general, the regulation of the clients’ strategies in the

memory scheme is carried out through adjusting the clients’
server crash costs (value c, see Table I). If during a specific
period the server has a smaller capacity, then at the same
time each client modifies its crash cost to be larger, and vice
versa. The reason is that a larger crash cost alters clients’
realized payoffs, causes it to decrease whenever the server
is crashed (and everything else remains unchanged). Then
by applying the regret-based procedure [12,13], clients’
intentions of sending traffic to the server will be sup-
pressed, resulting in fewer server crashes, and vice versa.
This should render the original algorithm a better perfor-
mance in the circumstance of varying server capacity.
We allow clients to modify their own crash costs. More

precisely, we leverage a parameter called crash cost factor
(CCF), denoted by α, to perform the server crash cost
adaptation, and the server crash cost is set to be α times the
benefit value from a successful traffic transmission.11

Intuitively, the parameter describes how many times the
punishment value a client gets from a server crash is as
large as the benefit value it gets from a successful traffic
transmission. Note that each client has an α, and they
update their α separately.
In practice, each client maintains a history of profitable

crash cost factor values in a memory with H entries (as

shown in Fig. 3). The definition of profitable values and the
steps of the procedure are explained below:
In the beginning, each client randomly chooses a crash

cost factor α from an unified cost factor options (denoted
by Cset, e.g., Cset ¼ f1; 5; 10;…; 95; 100g) as their initial
crash cost.
Then during the game, each client collects statistics

about its average amount of effective traffic12 “eff_traffic_
avg” periodically.13 If in any period i, compared with
period i − 1, the client’s average (over the time slots in
period i) amount of effective traffic increases, then the
crash cost factor used in period i is recorded in the memory
as a successful value SCCF, and the corresponding incre-
ment in “eff_traffic_avg” is recorded as its weight Swt. An
index k (1 ≤ k ≤ H) determines the position in the memory
to update. At the beginning, k is initialized to 1. Then k is
increased whenever a new pair of elements, SCCF;k and
Swt;k, are inserted. If k > H, k is set to 1. If there is no
increment in “eff_traffic_avg”, the memory is not updated.
Clients update their crash cost factors after they analyze

the statistics. Before the memory is filled up, each client
updates its crash cost factor using the random selection
method. Once all H entries in the memory are filled, with
probability p each client generates the next crash cost as a
weighted mean of all values in the memory, as indicated in
Eq. (9), and with probability 1 − p they randomly select a
value from Cset.

α ¼ meanCCFðSCCFÞ ð9Þ

where meanCCFðSCCFÞ is the weighted mean of all values in
the historical memory of SCCF, and defined as:

meanCCFðSCCFÞ ¼
XH
k¼1

wk · SCCF;k ð10Þ

wk ¼
Swt;kP
H
i¼1 Swt;i

ð11Þ

The complete adaptive procedure is shown in
Algorithm 2, note that the algorithm is for per client.

FIG. 3. Memory structure for each client.

11Which is 1, so the server crash cost here is equal to α.

12The amount of effective traffic of one client is defined as the
amount of traffic it successfully routes to the server (note that this
value is usually smaller than the total amount of traffic a client
intends to route).

13A period is composed of a number of time slots.
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We can expect an improvement of the algorithm’s
adaptability to the dynamic server capacity based on the
following properties. First, by using the amount of effective
traffic as a metric to guide the parameter adaptation
process, it properly integrates server throughput with server
crash probability. Only more profitable candidate values are
retained, which eventually optimizes the objective in (4).
Moreover, different server capacities usually need different
sets of crash cost factors to cope with. The algorithm forces
the clients to compare the amount of effective traffic with
previous period’s and keep those successful candidates,
which preserves the trend of changes on the sets of crash
cost factors as a result of varying server capacity. This gives
the algorithm more robust adaptability. Second, at the end
of each statistic period, each client has at least probability
1 − p to explore new options, which increases the chances
for the algorithm to find new appropriate values after server
capacity changes. Third, by applying the weighted mean
operation, the amount of improvement is used in order to
influence the parameter adaptation. The weighted mean is
therefore helpful to propagate high quality candidates
under the current server capacity, which in turn facilitates
the progress rate.

IV. WORKING EFFICIENCY OPTIMIZATION

In this section, we study the problem of server working
efficiency optimization. Specially, we consider the scenario

where the server has enough capacity to hold all the clients’
traffic. From Fig. 2 we can see that there exists a critical
point (somewhere between 60 to 80) after which the server
grows busier much more quickly. A server operating
around that point gets its resources utilized more effi-
ciently.14 Therefore, the goal in this section is to design
activity management schemes for the clients, so that by
following which clients can learn the server’s critical point
and adjust their behaviors to let the server work around that
efficient point.

A. Problem formulation

As discussed above, we leverage a parameter called
server ratio (SR) to measure the server’s working effi-
ciency, which is defined as the ratio between the total traffic
on the server and the corresponding time delay incurred
by the traffic. Intuitively, the parameter represents the
server’s processing ability. Since in this scenario we are
not focusing on the relations between clients’ total traffic
and the server’s capacity, we use C to denote the server’s
capacity all the time, and C ≥

P
n
i¼1 Li. Our goal is to

maximize the server ratio over the entire time:

Algorithm 2. Traffic throughput optimization scheme.

Input: Game length T, statistics period length Ts, memory size H, probability p, cost factor options Cset.
1: Initialize average amount of effective traffic Leff;0 to be 0, initialize memory updating index k ¼ 1.
2: Randomly uniformly select a value α from Cset as the initial crash cost.
3: for t ¼ 1; 2;…; T do
4: Make strategies according to the regret-based procedure [12,13].
5: if it is time to collect statistics and update crash cost factor then
6: Calculate average amount of effective traffic Leff;j in current statistic period j.
7: if Leff;j is greater than Leff;j−1 then
8: if memory updating index is H then
9: Reset memory updating index k ¼ 1.
10: end if
11: Store statistic period j’s crash cost factor and corresponding weight Leff;j − Leff;j−1 into the memory location k.
12: Increase memory index by 1: k ¼ kþ 1.
13: end if
14: if memory is not full then
15: Randomly uniformly select a value from Cset as a new crash cost factor.
16: else
17: Randomly uniformly select a value x in [0, 1].
18: if x < p
19: Calculate new α according to Eq. (9).
20: else
21: Randomly uniformly select a value from Cset as a new crash cost factor.
22: end if
23: end if
24: end if
25: end for

14Compared with working around the critical point, a server
operating beyond that point needs to invoke much more of its
resources to process the same amount of traffic.
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Max∶
XT
t¼1

P
n
i¼1 a

t
iLi

dt
ð12Þ

Subject to

Xn
i¼1

atiLi ≤ C; ∀ t ¼ 1; 2;…; T ð13Þ

C ≥
Xn
i¼1

Li; ∀ t ¼ 1; 2;…; T ð14Þ

dt ¼ F
�Xn

i¼1

atiLi

�
; ∀ t ¼ 1; 2;…; T ð15Þ

ati∈f0;1g; ∀ i¼1;2;…;n; ∀ t¼1;2;…;T ð16Þ

Li ∈ ð0; LMAX�; ∀ i ¼ 1; 2;…; n ð17Þ

where constraint (14) states that the server has enough
resources to process all clients’ requests. Constraint (15)
specifies the time delay dt at time t depends on the total
traffic on the server at that time, according to the server’s
crowdedness function F .
Note that the NP-hardness of this problem can also be

obtained by a reduction from the knapsack problem, as the
same shown in the previous section. In the next part, we
propose both centralized and discrete adaptive activity
management schemes to address it.

B. Activity management schemes

The proposed activity management schemes are based
on the reinforcement learning procedure [12,13], in which
the reward function acts as an essential role.
In general, designing an appropriate reward function is

crucial to make reinforcement learning work. The reward
function needs to capture exactly what the goal is. One
difficulty of designing such a reward function is trying to
design one that encourages the desired behaviors while still
being learnable [16].
For the working efficiency optimization scenario, the

reward function should encourage clients’ actions that
improve the server’s SR, which is equivalent to optimizing
the objective (12).

1. Centralized approach

In a straightforward approach, the server monitors its
server ratio at each time step. Then depending on the value,
the server assigns payoff 1 to all clients whenever it sees an
increase in its SR, and payoff −1 when its SR drops. This
reward function simply informs clients which action to take
under what circumstance is profitable or otherwise bringing
punishment. The issuing of profit or punishment depends
on the increase or decrease of the SR values. In other

words, the changings of SR values control the incentives
for clients to take certain actions in certain circumstances.
Therefore, through time this reward function will gradu-

ally instruct clients to take more actions which improves the
SR and prevent more actions which reduces the SR, and
hence eventually optimize the objective (12). We call this
algorithm the centralized SR optimization scheme, as
shown in Algorithm 3. Though the idea is simple and
intuitive, the algorithm gives a high and steady level of
SR values with fast convergence, as shown in the simu-
lation Sec. V.

2. Distributed approach

The straightforward centralized approach targets directly
at the server ratio, therefore has a good optimization value.
However, the centralized nature of the algorithm limits its
scalability (as shown in the simulation Sec. V). In this part,
we consider a distributed scheme which only uses local
information.
The important part of optimizing the server’s working

efficiency is the optimization of the server’s SR value,
which is equal to the total amount of traffic divided by the
time delay incurred by the traffic. The overall traffic is
composed of individual traffic coming from each client.
This indicates that each client can use its own amount of
traffic divided by the time delay15 as an approximation of
the server’s SR value. However, if the policy of how to
assign reward or punishment totally resembles the central-
ized one, clients will hold their traffic all the time, resulting
in a very inefficient server utilization rate. The reason is that
by choosing to hold traffic, the total amount of traffic in the
server drops and hence incurs a smaller time delay. The
clients’ estimated SR values (which is the ratio between
their traffic load and current time delay) raise, which by the

Algorithm 3. Centralized SR optimization scheme.

Input: Game length T, the server’s crowdedness function F .
1: Initialize all clients’ strategies randomly for time step 1 as

set A1.
2: Calculate server ratio SR according to F , and make a copy

SRold ¼ SR.
3: for t ¼ 2; 3;…; T do
4: All clients play the regret-based procedure [12,13].
5: Calculate server ratio SR according to F .
6: if SR > SRold then
7: Assign payoff 1 to all clients.
8: else
9: Assign payoff −1 to all clients.
10: end if
11: Update SRold ¼ SR.
12: end for

15Which can be observed from clients’ side.
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centralized reward function, will give clients more positive
payoffs.
Therefore, to compensate for this Hold bias trend, a

payoff 0 is assigned to clients whenever they take the action
Hold. The resulting algorithm is called the distributed SR
optimization scheme, as shown in Algorithm 4 (for per
client). It enjoys the distributed algorithm’s good scalability
while possessing a high average SR value and fast con-
vergence, as shown in the simulation section.

C. Time window constraint

Occasionally in real communication scenarios, clients
usually expect to receive responses from the server within a
time window. This puts a time constraint on the problem.
In this part, we study the time constraint version of the
working efficiency optimization problem.

1. Time constraint formulation

Denote the length of the time window as Tw. The time
constraint implicates that ideally for all clients, the time
intervals between every two adjacent Send actions should be
no longer than Tw during the entire time. Mathematically,
denote as Bi the set of time steps at which client i takes
action Send. Then ideally, the difference between every two
adjacent elements in set Bi should be no longer than Tw for
every client i. Hence:

bjþ1 − bj ≤ Tw; ∀ j ¼ 1; 2;…; jBij − 1; ∀ i ∈ N

ð18Þ

where jXj denotes the size of set X.
In order to ensure the above time constraint, alternatively

we try to minimize the amount of time that exceeds the time

window Tw between every two adjacent Send actions for all
clients. Naturally, define the part of time that goes beyond
Tw as penalty value for violating the time constraint (18).
For client i, the penalty value at time t is:

Pt
i ¼ t − bj − Tw; ∀ i ∈ N; ∀ t ¼ 1; 2;…; T ð19Þ

where bj ∈ Bi satisfies:

bj ≤ t < bjþ1 ð20Þ

According to the penalty’s definition, we have:

Pt
i ≥ 0; ∀ i ∈ N; ∀ t ¼ 1; 2;…; T ð21Þ

Therefore, the goal of the working efficiency optimiza-
tion problem with time constraint is to maximize the SR
value as well as minimize the total penalty:

Max∶
XT
t¼1

P
n
i¼1 a

t
iLi

dt
; Min∶

XT
t¼1

Xn
i¼1

Pt
i ð22Þ

Subject to

Xn
i¼1

atiLi ≤ C; ∀ t ¼ 1; 2;…; T ð23Þ

C ≥
Xn
i¼1

Li; ∀ t ¼ 1; 2;…; T ð24Þ

dt ¼ F
�Xn

i¼1

atiLi

�
; ∀ t ¼ 1; 2;…; T ð25Þ

Pt
i ¼ t − bj − Tw; bj ≤ t < bjþ1; bj; bjþ1 ∈ Bi;

∀ i ∈ N; ∀ t ¼ 1; 2;…; T ð26Þ

Pt
i ≥ 0; ∀ i ∈ N; ∀ t ¼ 1; 2;…; T ð27Þ

ati∈f0;1g; ∀ i∈N; ∀ t¼1;2;…;T ð28Þ

Li ∈ ð0; LMAX�; ∀ i ∈ N ð29Þ

The multiobjective optimization problem (22) is NP-
hard, which can be easily seen by setting Tw ¼ ∞, and then
we get a reduction from the single-objective optimization
problem (12) (which is also a NP-hard problem by a
reduction from the knapsack problem). Next, we propose
both a centralized and a distributed scheme to tackle it.

2. Activity management schemes with time
window constraint

The general idea is to modify the reward functions in the
Algorithm 3 and 4, so that the second optimization goal in

Algorithm 4. Distributed SR optimization scheme.

Input: Game length T.
1: Initialize time step 1’s strategy a1 randomly.
2: Observe the server’s time delay, calculate an estimated SR, and
make a copy SRold ¼ SR.

3: for t ¼ 2; 3;…; T do
4: Take an action based on the regret-based procedure [12,13].
5: Observe the server’s time delay, and calculate an estimated

SR.
6: if client chooses Hold at time t then
7: It gets payoff 0.
8: else
9: if SR > SRold then
10: It gets payoff 1.
11: else
12: It gets payoff −1.
13: end if
14: end if
15: Update SRold ¼ SR.
16: end for
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objective (22) is also incorporated into the optimization
process. Therefore, the new reward functions need to
control both the SR value and the total penalty value.
For a centralized approach, the server keeps track of the

SR value and total penalty at each time step. In the case
where the penalty value at time t is no greater than the
penalty value at time t − 1, the server uses the same reward
function as in the Algorithm 3 to optimize the SR value.
Otherwise, the server checks the SR value at time t. If the
SR value drops, then that means the current combination
of clients’ actions does not optimize objective (22) at all,
hence all clients get payoff −1. On the other hand, if the SR
value grows, then that means that the combination opti-
mizes the SR value. The server needs to adjust clients’
strategies so that it also optimizes the total penalty value.
Note that in this case, the increment of total penalty at time
t only comes from the clients who hold a positive penalty
value at time t, so those clients get payoff −1. The rest of
the clients who have 0 penalty at time t get payoff 1.
Similarly, for a distributed approach, each client keeps

track of their own penalty values. In the case where the
penalty does not grow at time t, the client uses the same

reward function as in the Algorithm 4. On the other hand, if
the client’s penalty increases at time t, it gets punishment
payoff −1.
The centralized and the distributed schemes are shown

in Algorithm 5 and 6, respectively. Though just adding a
simple layer of time constraint to the reward function, it
significantly improves the results in terms of reducing
excess waiting time, as shown in the simulation section.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the
algorithms for both server throughput optimization and
working efficiency optimization scenarios with parameters
from the accelerator control system. Specially, for the
second scenario we compare the centralized algorithm 3
with the Q-learning procedure [3], and show a prominent
improvement on both optimization value and convergence
rate aspects.
For both scenarios, we assume there are 500 clients, they

send get() requests to an FEC to query their interested
machine parameters at a constant rate. The specific FEC
used is equipped with a MVME2100 VME processor
module [17]. The largest parameter size clients can get
from that FEC is an array with 256 integers. All message
sizes are generated randomly uniformly between 0 and the

Algorithm 5. Centralized SR optimization scheme with time
constraint.

Input: Game length T, the server’s crowdedness function F ,
time window Tw.

1: Initialize all clients’ strategies randomly for time step 1 as
set A1.

2: Calculate server ratio SR according to F , and make a copy
SRold ¼ SR.

3: Calculate penalty values based on the time window Tw for
every client, and store them in set P.

4: Make a copy of the total penalty value Pold ¼
P

P.
5: for t ¼ 2; 3;…; T do
6: All clients play the regret-based procedure [12,13].
7: Calculate server ratio SR according to F .
8: Calculate penalty value set P based on Tw.
9: if

P
P ≤ Pold

10: if SR > SRold
11: Assign payoff 1 to all clients.
12: else
13: Assign payoff −1 to all clients.
14: end if
15: else
16: if SR > SRold then
17: Assign payoff 1 to clients with Pi ¼ 0, i ∈ N.
18: Assign payoff −1 to clients with Pi > 0, i ∈ N.
19: else
20: Assign payoff −1 to all clients.
21: end if
22: end if
23: Update SRold ¼ SR.
24 Update Pold ¼

P
P.

25: end for

Algorithm 6. Distributed SR optimization scheme with time
constraint.

Input: Game length T, time window Tw.
1: Initialize time step 1’s strategy a1 randomly.
2: Observe the server’s time delay, calculate an estimated SR,
and make a copy SRold ¼ SR.

3: Calculate penalty value P based on the time window Tw, and
make a copy Pold ¼ P.

4: for t ¼ 2; 3;…; T do
5: Take an action based on the regret-based procedure [12,13].
6: Observe the server’s time delay, and calculate an estimated

SR.
7: Calculate penalty value P based on Tw.
8: if P ≤ Pold then
9: if client chooses Hold at time t then
10: It gets payoff 0.
11: else
12: if SR > SRold then
13: It gets payoff 1.
14: else
15: It gets payoff −1.
16: end if
17: end if
18: else
19: It gets payoff −1.
20: end if
21: Update SRold ¼ SR.
22: Update Pold ¼ P.
23: end for
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maximum size.16 We run the simulations for 12 hours, and
each stage game’s duration is 1 second. Table II summa-
rizes those global parameter settings.

A. Server throughput optimization—Performance
enhancement by the memory structure

For the server throughput optimization scenario, we
show that the adopting of the memory structure improves
the learning ability of the original procedure [12,13]
significantly.
We assume the server changes capacity every 3 hours.

Theway the server changes capacity is as follows: Since the
total amount of traffic Lsum from clients is known, every
3 hours a fraction between 0 and 1 is picked and multiplied
with Lsum, then the result is the server’s new capacity for
the next period. Since the simulation length is 12 hours, the
server has 4 capacity periods. In this simulation, we assume
the server alternates between low and high capacity values.
Without loss of generality, we use fraction values of
0.3,0.8,0.2,0.5.
Note that there are several parameters in the proposed

scheme need to be set that will influence the overall
performance in different ways. Next, we discuss the effects
of the parameters in the memory scheme on the system
performance, then present the simulation results. It also
remains an interesting topic for future study to experiment
with different combinations of those parameters, and verify
their impacts on the system performance.

1. Effects of the parameters

a. Crash cost factor options Cset Clients use a random
selection method which chooses values from a predefined
cost factor set Cset to update their historical memory. The
values in the available set will decide the overall values in
their memory. Generally, a set with larger values causes
more holding requests among clients, hence reducing the
server’s throughput and crash probability, and vice versa.
According to experiments and history of the system, in
this simulation we use a cost factor set of increasing
values from 1 to 100 with 5 as the step size, i.e., Cset ¼
f1; 5; 10;…; 95; 100g.
b. Memory size H and statistic period length Ts As

mentioned above, clients collect statistics about their

effective amount of traffic in every statistic period with
length Ts, and adaptively update their memory with sizeH.
If Ts andH are small, then only recent cost factors are used
(since older values are rapidly overwritten as a result
of frequent memory updates and limited memory size),
which makes clients learn the current circumstance faster.
However, it could also make clients short sighted. Since
Ts is small, the information clients gathered from that
short period of time may inaccurately reflect the real
situation in the long run. Moreover, a small memory
buffer can only store recent values that are only suitable
for the current short period, some potentially more
profitable values for the long run could get eliminated.
Those factors may result in degraded system performance.
On the other hand, if Ts and H are large, the system
performance could get improved due to more accurate
statistic data, but the convergence rate of the algorithm is
expected to slow down because older parameters continue
to have influence for a long time. In this simulation,
clients collect statistics every 5 minutes, and each has a
memory size of 20.
c. Adaptive probability p The adaptive probability

decides how likely the algorithm uses the weighted mean
method to update server crash cost for the next period. A
large value causes clients to do adaptive updates frequently,
resulting in fast learning to the current situation. However,
due to the small chance of introducing new individuals,
it may cause slow responses among clients to a server
capacity variation. On the other hand, a small adaptive
probability will impair the adaptive learning process, make
it more dominated by random “noise.” In this simulation,
we use an adaptive probability of 0.9.
Table III summarizes the parameter settings for this

scenario.

2. Simulation results

In this part, we present the simulation results and
demonstrate that, first, both the adopted regret-based
procedure and the proposed memory scheme can effec-
tively manage clients’ behaviors. Moreover, the proposed
scheme can better handle the dynamic server capacity in
our system, resulting in a higher server throughput and
lower crash probability. For simplicity, we refer to the
original regret-based procedure as RR scheme and the

TABLE II. Global parameter settings.

Parameter Value

Number of clients n 500
Simulation length T 12 hours
Stage game length (one time slot) 1 second
Clients’ message rate 1 msgs= sec
Maximum traffic load LMAX 256 � 8 bytes

TABLE III. Memory scheme parameter settings.

Parameter Value

Server capacity period 3 hours
Server capacity volume fraction 0.3,0.8,0.2,0.5
Crash cost factor options Cset 1; 5; 10;…; 100
Memory size H 20
Statistic period Ts 5 minutes
Adaptive probability p 0.916

256 � 8 bytes.
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proposed memory based traffic throughput optimization
procedure as TTO scheme.
Figures 4–6 show the comparison results [18] of various

system performances achieved by clients, when there is no
regulation on their behaviors, when they apply the RR
scheme, and when they apply the TTO scheme.
Figure 4 shows the comparison results on effective

amount of traffic routed by clients to the server. As we
can see, first, both the adopted regret-based scheme and
our proposed memory based scheme achieve a significant
improvement over the naive case (plotted in diamonds),
where there is no regulation on clients’ behaviors.17

Second, for both cases clients are able to adapt their
strategies properly to the capacity changes so that the
server’s extent of usage is consistent with the amount of
resources it possesses. Third, with the memory based
scheme (plotted in circles), clients adapt their strategies
better to the capacity changes compared with the case
where they use the regret-based scheme (plotted in
squares), which demonstrates that our proposed scheme

can more effectively adjust clients’ behaviors so that the
server’s resources are utilized in a more efficient way.
Figure 5 shows the comparison results on the server alive

time during the entire simulation. The downward spikes
represent the server is crashed at the corresponding time
periods. We can see that, most of the time both cases
achieve a robust server performance, which is a huge
improvement over the no regulation case where the server
crashes all the time (plotted in diamonds). Furthermore,
Fig. 5(b) exhibits a smaller server crash probability, which
proves that the proposed memory based scheme can better
accommodate the dynamic server capacity scenario and
hence provide a more reliable server operation.
Figure 6 shows the comparison results of the statistic plot

on the counts of “Send” for every client. The count of
“Send” for a client is the number of times a client chooses
to route its traffic to the server. It implies how many times a
client has been serviced by the server during the entire time
(if the server is not crashed by a heavy traffic). As shown
in the plot, Fig. 6(b) reveals a less intense variation across
the whole population, which indicates that the proposed
memory based scheme helps to promote a more equitable
user experience. From Table IV, we can see that the
standard deviation for the counts of “Send” among all
clients is reduced by 45.5% on average.

FIG. 4. Comparison results of effective amount of traffic routed
by clients. The star line at the top is the sum value of all clients’
traffic (this is also the minimal capacity value required for a server
to hold all clients’ traffic). The triangle line is the actual server’s
capacity, which changes every 3 hours (the exact capacity is listed
in Table III). The circle line and square line indicate the actual
amount of traffic clients manage to route to the server using
different schemes. Without using any activity regulation, clients
send their traffic all the time, hence the server crashes all the time
(the star line is above the triangle line all the time), resulting in an
all-0 effective amount of traffic (plotted in diamonds). On the
other hand, with the activity regulations (plotted in circles and
squares), clients learn to send their traffic depending on the
current volume of the server’s capacity, hence they successfully
route their traffic to the server. Moreover, clients under the TTO
scheme exhibit a better learning ability than under the RR
scheme, hence route more traffic (the circle line is above the
square line). The exact statistics are summarized in Table V.

(a) 

(b) 

FIG. 5. Comparison results of server alive time. The diamond
line at the bottom indicates that if there is no activity manage-
ment, the server crashes all the time. Furthermore, the TTO
scheme [Fig. (b)] results in a clearly less crashes than the RR
scheme [Fig. (a)]. The exact crash probabilities are summarized
in Table V.

17As shown by the star line on top, the actual amount of traffic
clients route to the server will always be greater than the server’s
capacity, since clients tend to send their traffic all the time when
there is no regulation, resulting in an all-0 effective amount of
traffic.
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Table V summarizes the performance statistics during
each server capacity period and the whole simulation time
from both the cases where the proposed TTO scheme is
applied and where the RR scheme is applied. In periods 2
and 4 where the server has higher capacities, neither
algorithm causes any crash. Besides, the TTO scheme
helps clients adapt faster to the capacity changes than the
RR scheme, hence has 18.8% and 22% improvement on the
server throughput, respectively. In periods 1 and 3 where
the server has lower capacities, both schemes utilize the
server to its full capacity, and the TTO scheme results in a
30.6% and 52% less crash probability than the RR scheme,
respectively. On average, the TTO scheme reduces server
crash probability by 46%, while at the meantime increasing
the server’s throughput by 12.7%. It validates that the TTO
scheme can more effectively accommodate the dynamic
server capacity circumstance in our system than the RR
scheme.

B. Server working efficiency optimization

In this part, we evaluate the Algorithms 3 and 4 in terms
of optimization value and scalability. First, we demonstrate
that both schemes are very effective on optimizing the
server’s working efficiency, and the scheme 4 has a better
scalability than the scheme 3, especially when the number
of clients in the system is large. Second, we compare the
optimization results from the scheme 3 with the results
obtained from the Q-learning procedure [3], and show that
the scheme 3 has a much higher optimization value and
faster convergence rate.

1. The centralized scheme and the distributed scheme

The performances of Algorithms 3 and 4 are evaluated
and compared. First, we show the effective learning ability
of both algorithms. Next, we analyze their optimization
procedures on SR values in details. Then, we compare their
scalability through considering them in cases with different
number of clients.
a. Effective optimization area Figure 7 shows the effective

working area18 (plotted in circles) of the Algorithm 3
(compare with Fig. 2). As we can see the algorithm
successfully avoids the high crowdedness area and devotes
its optimization efforts to the middle part, where high SR
values are more likely to appear. It implies that with a proper
reward function the algorithm has the learning ability to
understand what the server’s working efficiency means and
how to optimize it.
b. Optimized SR values Figure 8 shows the comparison

results of the SR values produced by the centralized scheme
(plotted in circles) and the distributed scheme (plotted in
squares) during the whole simulation time. As we can see,
first, both schemes are very effective on optimizing the
server’s working efficiency. Specially, the average SR
value in the centralized scheme is 0.7% less than the
optimal value.19 The difference comes from the variations
in the resulting SR values which comes from the nature

TABLE IV. Variation of “Send.”

Scheme “Send” Count standard
deviation

TTO 6326.699
RR 11599.990

(a)

(b)

FIG. 6. Comparison results of counts of “Send.” The TTO
scheme [Fig. (b) [produces a much less variation than the RR
scheme [Fig. (a)], which means it gives clients more equal
opportunities to send their traffic.

TABLE V. Comparison results of system metrics.

Scheme

Crash probability period #

1 2 3 4 All

TTO 0.0446 0.0 0.0815 0.0 0.0315
RR 0.0643 0.0 0.1693 0.0 0.0584

Scheme

Effective traffic average (×105) period #

1 2 3 4 All

TTO 1.295 2.700 0.795 1.495 1.569
RR 1.285 2.273 0.778 1.225 1.393

18Algorithm 4 has a similar property.
19The optimal value can be calculated by Monte Carlo simu-

lation [14].
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of the underlying procedure.20 Second, compared with the
centralized scheme, the distributed scheme maintains a
competitively high level of SR values (1.8% less than the
centralized value and 2.5% less than the optimal value on
average) with a fast convergence rate, which proves that
although lacking of global information, the distributed
scheme is still able to optimize the server’s working
efficiency to a satisfied extent.
c. Scalability For comparing the scalability between the

two schemes, we compare the convergence time of SR
values in both schemes among cases with different number
of clients.
Specifically, the number of clients n in each case is

doubled from case to case starting21 from 100 to 3200.
Then for each scheme in each case, we record the time steps
at which the SR value is no less than the optimized SR
value,22 and store them in a set Tc. Then the 100th element
of Tc is considered as an estimation of the scheme’s
convergence time.23 We also record the corresponding
optimized SR values in each case for both algorithms.
The results are shown in Fig. 9, as we can see from 9(a),

the convergence time of the centralized scheme grows
linearly with the number of clients, and becomes much
higher than the distributed scheme’s after n ¼ 800. On the
other hand, the distributed scheme manages to maintain its
convergence time almost in a same level regardless of the
number of clients.
As shown in 9(b), the optimized SR value in the

distributed scheme is on average 1.92% less than the value
produced by the centralized scheme for the first 5 cases, and
2.16% higher for the last case. The reason for the higher

optimized SR value in the last case is that for cases with a
large number of clients (say, 3200), the centralized scheme
takes a much longer time to converge, which in turn impacts
its resulting overall average value (optimized SR value).

FIG. 7. The effective area of the working efficiency optimiza-
tion algorithm.

FIG. 8. Comparison result of the SR values between the
centralized scheme and the distributed scheme.

(a) 

(b) 

FIG. 9. Comparison results between two schemes.

FIG. 10. The client-server interaction in the MDP model.

20The procedure [12,13] requires an exogenous statistical “noise”
to “tremble” over every action to make sure the contingent payoffs
can be estimated using only the realized payoffs.

21So n ¼ 100, 200, 400, 800, 1600, 3200. The simulation result
also applies to cases with client number higher than 3200. Here
just an illustration.

22The optimized SR value is the average SR value over the
entire simulation time.

23Since SR values are fluctuated during the procedure, hitting
the optimized SR value a few times does not necessarily
guarantee the convergence of the scheme.

GAO, CHEN, ROBERTAZZI, and BROWN PHYS. REV. ACCEL. BEAMS 22, 014601 (2019)

014601-14



This provides us a guideline of how to choose between
schemes, which depends on the number of clients in the
system. In general, for a system with relatively small
number of clients (say, less than 800), the centralized
scheme is preferred for a faster convergence rate and higher
optimized SR value. However, for a system with large
number of clients (say, greater than 800), the distributed
scheme wins out for its better scalability.

2. Comparison with Q-learning

To enable the employment of Q-learning, the working
efficiency optimization problem can alternatively be for-
mulated as an Markov decision process (MDP) [14].
Specially, the MDP is denoted as a 3-tuple ðS;A;RÞ.
The set of states S is the server’s utilization degree, the
set of actions A is fSendðSÞ; HoldðHÞg, and the set of
rewards R is the server ratio assigned by the server. The
process goes as follows: At each time step, each client
chooses an action S or H, and depending on the total traffic
being routed to the server, the server calculates the server
ratio and sends it back to the clients as the reward.24 Then
the MDP moves to the next state represented by a different
utilization rate of the server.25 The interactions between
the clients and the server in the MDP model is shown in
Fig. 10.
Note that there are several control paradigms that can

solve MDPs, such as dynamic programming, Monte Carlo
Method, or temporal-difference learning (including some
well-known reinforcement learning algorithms, such as
Sarsa [14], Q-learning [3], or double Q-learning [19],
etc.). Those methods will converge to the optimum policy
with the condition that all state-action pairs will be visited
an infinite number of times. However in our game, the total
number of states is 2N , where N is the number of clients.26

It will be impractical to apply any of those methods directly
to acquire an optimum control policy within a reasonable

amount of time when the number of clients is relatively big
(say, 500).
In order to make the Q-learning feasible to run for the

comparison, the state space is simplified. Specially, the
server’s possible utilization range 0–100% is divided27

into 10 equal intervals (0; 10;…; 100%). At each time
step, the actual server’s utilization rate is calculated and
rounded to the nearest state in the simplified state space.
Then we can apply the Algorithm 1 to get the Q-learning
control policy. The parameter settings28 for this part of the
simulation is shown in Table VI.
Since the Q-learning control scheme used here is a

centralized scheme, we compare it with the Algorithm 3.
Even now the MDP has only 11 states, it still takes time
for the Q-learning to get good enough approximations
of the optimal values of the 22 state-action pairs29 for
all 500 clients. Consequently, as shown in Fig. 11, the
Q-learning procedure does not get enough time to do the
updates, so it gets a degraded performance (but we can still
see that it gradually converges to the optimal value). On the
other hand, the centralized algorithm 3 converges much
faster and produces a much higher and steadier level of
SR values—11.6% larger on average, which further dem-
onstrates its strong learning ability.

C. Working efficiency optimization with time
window constraint

In this part, we evaluate the Algorithms 5 and 6, and
compare them with the Algorithms 3 and 4 to demonstrate
their ability to control the average total penalty value. Here,
we use a time window30 value of Tw ¼ 20 s.

TABLE VI. Q-learning parameter settings.

Parameter Value

State space 0; 10;…; 100%
Learning rate α 0.3
Discount factor γ 0.9
Exploration probability ϵ 0.05

FIG. 11. Comparison result of the SR values between the
centralized scheme and the Q-learning scheme.

24From the model, we can see that the control policy is a
centralized scheme.

25We can clearly see that the reward function here captures
the optimization goal accurately—to maximize the SR value
(reward), which is equivalent to optimize the server’s working
efficiency.

26Each client’s choice of sending or holding its traffic can
change the utilization degree of the server. In general, for n clients
there will be 2n different resulting utilization rates of the server.

27We can divide the range into smaller intervals to be more
accurate, but it renders the algorithm a lower optimization value
and slower convergence rate. The reason is explained below.

28Other parameters (i.e., α, γ, ϵ) are decided by conducting ex-
periments and picking the value returns the best results.

29Since each client only has 2 actions, Send or Hold.
30This is the GPIB bus protocol’s communication timeout value

[20], which is used to conduct the experiment shown in Fig. 2.
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Figure 12 presents the comparison results of SR values
and total penalty values between the schemes without the
time constraint (the Algorithms 3, 4 plotted in circles) and
the schemes with the time constraint (the Algorithms 5, 6
plotted in diamonds). As shown in Fig. 12(a) and 12(c), the

schemes 3, 4 maintain a slightly higher level of SR values
than the schemes 5, 6. The reason is that the schemes 5, 6
also spend some optimization efforts on minimizing the
total penalty values. Consequently, the total penalty values
in the schemes 5, 6 are much lower than the values in the
schemes 3, 4, as shown in Fig. 12(b) and 12(d).
The exact performance statistics (in terms of the average

total penalty values and SR values) are summarized in
Table VII. As we can see, by adding the time constraint to
the algorithms, it only affects the average SR value a little
while reducing the average total penalty value greatly. For
the centralized and the distributed scheme, by considering
the time window constraint, the average SR values drop by
0.16% and 1.9%, while the average total penalty values
are reduced by 30.1 and 130.1 times, respectively. This
illustrates the big benefits of introducing the time window
constraint to the algorithms. Specially, the penalty value for
the scheme 6 indicates that on average for every client, the
time intervals between each of its adjacent Send actions
exceed the time window (20 s) by 4.78 s (compared with
more than 10 minutes excess waiting time in the scheme 4)
over the entire simulation time (12 hours), which demon-
strates the algorithm’s strong effectiveness on handling the
time window constraint.

VI. CONCLUSIONS

In this work, we study a practical scenario related to
server performance in the RHIC control system using game
theory and reinforcement learning. We divide the scenario
into two cases. In the first case where the server does not
have enough resources to hold all clients’ traffic, our goal
is to safely and efficiently route clients’ traffic so that the
server does not crash and the server’s throughput is
maximized. We adopt a regret-based learning procedure
as a base routine to regulate clients’ behaviors, and then
propose a memory structure to improve the procedure’s
learning ability, especially in a dynamic environment. In
the second case where the server has enough resources to
hold all clients’ traffic, our goal is to manage clients’
activities so that the server’s resources get utilized effi-
ciently. We propose both centralized and distributed
schemes to address it. Additionally, we handle the real-
world time constraints existing in the system. Through
extensive simulations, we demonstrate that, for the first
case the proposed memory structure significantly improves
the base procedure’s performance, leading to a higher

TABLE VII. Comparison results among schemes.

Algorithm

3 4 5 6

Average penalty
(×104 sec)

14.1988 31.1312 0.4719 0.2393

SR (×105 byte) 3.23322 3.17526 3.22819 3.11532

(a)

(b)

(c)

(d)

FIG. 12. Comparison results of SR values and total penalty
values.
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server throughput and lower crash probability. For the
second case, both the centralized and the distributed
schemes can manage clients’ activities effectively so that
the server’s working efficiency is maximized. Moreover,
the time window constraint can be effectively handled by
the schemes, which in turn brings the system a promising
performance improvement.
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