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Abstract

We study mechanism design in non-Bayesian settings of incomplete information, when the designer has
no information about the players, and the players have arbitrary, heterogeneous, first-order, and possibilistic
beliefs about their opponents’ payoff types.

Using such beliefs, in auctions of a single good, we

• define a revenue benchmark at least as high as the second-highest valuation, and sometimes much
higher;

• prove that it is not meaningfully achievable via traditional notions of implementation; and
• prove that it is achievable via a notion of implementation based only on mutual belief of rationality.
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1. Introduction

We focus on settings of incomplete information. Here, a player i knows precisely θi , his own
(payoff) type, but not θ−i , the type subprofile of his opponents. Accordingly, he may have all
kinds of beliefs (even wrong ones) about θ−i . We refer to such beliefs as i’s external beliefs, and
to θi as his internal knowledge.

Motivation. For achieving a desired outcome, a mechanism designer should in general consider
leveraging both the players’ internal knowledge and their external beliefs. Mechanisms working
in dominant or undominated strategies leverage the former, but not the latter.1

Mechanisms using Bayesian Nash equilibrium as their underlying solution concept leverage
both, but under a strong assumption: namely, that the type profile θ is drawn by nature from a
distribution D that is common knowledge to the players (the “common-prior assumption”).

A weaker assumption is that the players have heterogeneous beliefs: namely, each player i

has his own distribution, Di , from which he subjectively believes nature has drawn θ . Although
weaker than the common-prior one, this assumption presupposes that, even when the number of
players is high and the size of the type space is large, i is sure, for every two type profiles θ ′
and θ ′′, how much more likely is – say – θ ′ than θ ′′.

A player’s belief, however, need not be so detailed. For example, in an auction of a house,
a player valuing the house for 500,000 dollars may believe (possibly erroneously) that one of his
opponents values it for more than one million dollars, without having the vaguest idea about who
such a high-valuing player might be, or what the probabilities for her valuation being $1,000,001,
$1,000,002, etc., might be.

Goal. In sum, classical mechanisms exploit two extremes: (1) the players have no external be-
liefs and (2) the players have probabilistic external beliefs. We instead wish to explore what
mechanism design can and cannot do when the players hold possibilistic beliefs. Specifically we
wish to understand which new social choice correspondences we may implement, which solution
concepts do not work, and which do.

Contributions. We let the conservative belief of a player i consist of a set Bi : the set of all
possible candidates for θ in i’s mind. In particular, player i may have no idea about the relative
likelihood of any two type profiles in Bi .

In auctions of a single good we use these conservative beliefs to define a revenue benchmark
that is always at least as high as the second-highest valuation and sometimes much higher.

We prove that our revenue benchmark cannot be meaningfully achieved under classical non-
Bayesian solution concepts, such as implementation in undominated strategies (and thus imple-
mentation in dominant strategies), or implementation in ex-post equilibrium. These impossibility
results hold even if the designer is allowed to elicit information about the players’ beliefs (rather
than just their own valuations).

We prove, however, that the players’ conservative beliefs can be leveraged, and that our bench-
mark can be virtually achieved by a simple mechanism without having any a priori information
about the players’ valuations or beliefs. Although not used before, the solution concept under-
lying our mechanism is natural and compelling. In particular, it relies on the players’ mutual –
rather than common – belief of rationality.

1 Whenever such mechanisms exist, they achieve their goals no matter what external beliefs the players may have.
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Our mechanism leverages the players’ conservative beliefs in a very resilient manner. That is,
it virtually achieves our revenue benchmark no matter what additional beliefs the players may
have, as long as such beliefs do not contradict the above-mentioned ones.

After presenting our results, in Section 8 we compare them with prior ones.

Finiteness. While our framework is very general, our theorems focus solely on single-good auc-
tions where all valuations are non-negative integers upperbounded by some value V , and all
mechanisms provide each player with a finite number of pure strategies.

2. Conservative beliefs

In a context of incomplete information, we denote by N = {1, . . . , n} the set of players; by Ω

the finite set of outcomes; by Θ = Θ1 × · · · × Θn the set of all possible (payoff) type profiles;
by u the profile of utility functions (where each ui maps Θi × Ω into R); and by θ ∈ Θ the
profile of true types. If ti ∈ Θi and ω is a distribution over Ω , then ui(ti ,ω) is the expected
utility induced by ω. As usual, N , Ω , Θ , and u are common knowledge to the players and the
mechanism designer, and each player i individually knows θi .

In such a context, we model a player i’s beliefs as a set, the set Bi of all possible candidates
for the true type profile in player i’s view. Since i knows his own type, the ith component of each
element of Bi coincides with θi . More formally:

Definition 1. The (conservative) belief profile of a context is a profile B such that, for each
player i,

Bi ⊂ Θ1 × · · · × Θi−1 × {θi} × Θi+1 × · · · × Θn and i individually knows Bi .

We say that Bi is correct if θ ∈ Bi , and that B is correct if each Bi is correct.

Conservative beliefs are deliberately simple. They can specify, as a special case, every context
of complete information, but cannot specify even a single non-degenerate Bayesian context. In
addition, they do not include the players’ higher-order beliefs (i.e., their beliefs about their op-
ponents’ beliefs, etc.). Accordingly, ti ∈ Bi is not a full type of player i in the sense of Harsanyi,
whether represented as sets or distributions.

Each set Bi , of course, can be described in traditional economic terms. Following Savage and
Harsanyi, players have subjective beliefs over the moves of Nature, which include picking full
types for the players. For each player i this corresponds to a distribution Di over his opponents’
payoff types, their beliefs, beliefs about beliefs, etc. Thus the set Bi corresponds to the support
of Di|θ−i

(i.e., i’s subjective marginal distribution over the payoff types of his opponents). Let us
now clarify four points about conservative beliefs.

1. Arbitrary additional beliefs. Each Bi consists of all candidates for θ in player i’s mind,
but NOT of all beliefs of i about his opponents. The players (or the mechanism designer)
may have arbitrary additional knowledge or beliefs, even of a probabilistic nature. In no
case, however, can the additional beliefs of a player i contradict Bi . For example, i may
additionally believe that another player j ’s type is θ ′

j with a probability between 1/3 and
2/3, but then there must exist t ∈ Bi such that tj = θ ′

j .
2. Conservative beliefs can be wrong. It may even be the case that θ /∈ Bi for each player i.
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3. Leveraging conservative beliefs. A mechanism M leveraging B should work even when
every Bi is wrong. In addition, to be resilient, M should not assume that B captures all
beliefs of the players, but should achieve its desired outcomes no matter what additional
beliefs the players might have.

4. Conservative beliefs always exist. Conservative beliefs are more a model than an assumption.
As traditional in mechanism design, each player i is assumed to know his true type θi , but
we make no requirement about his external beliefs. For instance, i may have no external
belief whatsoever. In this case, Bi = Θ1 ×· · ·×Θi−1 ×{θi}×Θi+1 ×· · ·×Θn. On the other
extreme, he may have no external uncertainty whatsoever. In this case, Bi = {t} for some
type profile t (not necessarily equal to θ ).2

Conservative beliefs and extended social choice correspondences. We find it natural to let
social choice correspondences map conservative-belief profiles, rather than type profiles, to
(distributions over) sets of outcomes. Since “conservative beliefs always exist”, each context
implicitly has a conservative-belief profile B, and from every such profile one can compute the
true type profile θ . Thus, for each traditional correspondence f there exists an extended corre-
spondence F such that “f (θ) = F(B)”, but not vice versa.

Extended social choice correspondences legitimately and usefully enlarge the set of possi-
ble “targets” in mechanism design. By implementing an extended social choice correspondence
that is not expressible in terms of θ alone, a mechanism designer might be able to produce ei-
ther outcomes that are more desirable, or, when the “originally desired” ones are impossible to
implement (e.g., under a given solution concept), alternative outcomes that are reasonably good.

3. The second-belief revenue benchmark

Our revenue benchmark applies to (finite) single-good auctions with at least two players.
In such an auction, a possible type (or valuation) is an integer in {0,1, . . . , V } for some V ,
representing a player’s possible value for the good for sale. Accordingly, each conservative belief
Bi is a subset of {0,1, . . . , V }n.

Intuitively, our benchmark is so described: the highest number v such that there are at least
two players believing that there exists a player (whose identity need not be known) valuing the
good v.

Definition 2. Let B be the conservative belief profile of a single-good auction. Then relative to B

smvi � min
t∈Bi

max
j∈N

tj and 2nd(B)� the second highest value in {smvi : i ∈ N}.

We refer to the function 2nd(·) as the second-belief benchmark.

Naturally, our revenue benchmark defines an extended social choice correspondence which
maps B to the set of outcomes with revenue at least 2nd(B).

Let us now reconcile the intuitive description of our benchmark with that of Definition 2. If t

were the true valuation profile, then maxj tj would be the maximum valuation a player has for
the good. Accordingly, since player i believes that Bi is the set of all possible candidates for
the true valuation profile, it follows that smvi , “the sure maximum value according to i”, is the

2 If the context were one of complete information, then necessarily Bi = {θ} for all i.
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maximum value which i is sure some player (possibly i himself or a player whose identity is not
precisely known to i) has for the good. Thus the second highest of the smvi ’s indeed coincides
with the benchmark intuitively described above.

A simple example. Consider an auction with three players where θ = (100,80,60) and

B1 = {
(100, x, y): x � 0, y � 0

}
,

B2 = {
(100,80, x), (y,80,100): x � 0, y � 0

}
, and

B3 = {
(150,0,60)

}
.

Here, the beliefs of players 1 and 2 are correct, but that of player 3 is wrong. Player 1 has no
external beliefs: in his eyes, all valuations are possible for his two opponents. Player 2 believes
that either player 1 or player 3 has valuation 100, but cannot tell whom. Player 3 has no external
uncertainty: in his eyes, (150,0,60) is the true valuation profile. According to B, smv1 = smv2 =
100 and smv3 = 150. Thus 2nd(B) = 100, which in this specific case happens to be the highest
valuation.

Our benchmark clearly satisfies the following properties.

1. It is never lower than the second highest valuation. (Indeed smvi � θi for all i.)
2. It cannot exceed the highest valuation when the players’ beliefs are correct.
3. It may exceed the highest valuation when the beliefs of at least two players are wrong.

4. Notation

An auction is a game G consisting of a (conservative-belief) auction context C (describing
the players, the outcomes, the players’ preferences over outcomes, and the players’ beliefs) and
a mechanism (describing the strategies available to the players and how strategies lead to out-
comes): G = (C,M). All our auctions are (finite and) for a single good.

Auction contexts. A conservative-belief auction context is a tuple (n,Ω,Θ,u, θ,B) where

• Θ = {0,1, . . . , V }n, for some V referred to as the valuation bound;
• Ω = {0,1, . . . , n} ×R

n;
• For any ti ∈ Θi , ui(ti , (a,P )) equals ti − Pi if i = a, and −Pi otherwise; and
• B is a conservative-belief profile.

If (a,P ) ∈ Ω , then P is the price profile and a the allocation. If a = 0 then the good is unal-
located, else a is the player getting the good. If ω = (a,P ) ∈ Ω , then player i’s utility for ω,
ui(ω), is ui(θi,ω); and the revenue of ω, REV(ω), is

∑
i Pi .

Notice that such a context C is identified by just n, V , θ and B alone: that is, C = (n,V, θ,B).

Auction mechanisms. A mechanism M for a conservative-belief auction context with n players
and outcome set Ω specifies

• for each player i, the set of all pure strategies of i, Si , and
• a function from S = S1 × · · ·× Sn to Ω , typically (although a bit ambiguously) also denoted

by M .



82 J. Chen, S. Micali / Journal of Economic Theory 156 (2015) 77–102
If s ∈ S, then M(s) denotes the outcome (the distribution over outcomes if M is probabilistic)
generated by M , and ui(M(s)) – or more simply ui(s) if the underlying mechanism M is clear –
the corresponding utility (expected utility if M is probabilistic) of player i.

An auction mechanism M is interim individually rational (IIR) if, for each player i and pos-
sible true type ti of i, there exists a strategy outi ∈ Si such that ui(M(outi , s−i )) = 0 for every
strategy subprofile s−i ∈ S−i .

Domination. Consider an auction (more generally, a game) G = (C,M), and denote as usual by
�(A) the set of probabilistic distributions over a set A.

A strategy si ∈ Si is weakly dominated by another (possibly mixed) strategy σi ∈ �(Si)

if ui(σi, s−i ) � ui(si , s−i ) for every strategy subprofile s−i of the others, and ui(σi, s
′−i ) >

ui(si , s
′−i ) for some strategy subprofile s′−i . A strategy si is undominated if it is not weakly

dominated by any strategy. A strategy si is purely undominated if it is not weakly dominated by
any pure strategy.

A strategy si ∈ Si is strictly dominant if for every other strategy s′
i , ui(si , s−i ) > ui(s

′
i , s−i )

for every strategy subprofile s−i . Strategy si is weakly dominant if for every other strategy s′
i ,

s′
i is weakly dominated by si . Strategy si is very weakly dominant if for every other strategy s′

i ,
ui(si , s−i ) � ui(s

′
i , s−i ) for every s−i .

5. The impossibility of implementing 2nd(·) in undominated strategies

Implementation in undominated strategies – which includes implementation in dominant
strategies as a special case – is a classical choice for non-Bayesian settings of incomplete in-
formation. In this section we prove that the second-belief benchmark cannot be implemented
according to this notion. We note that this impossibility result is trivial when the players’ be-
liefs are wrong.3 Accordingly, we state our result directly for contexts with correct conservative
beliefs.

We actually prove an impossibility result that is stronger in two ways. First, we prove that no
undominated-strategy mechanism M can even approximately implement our benchmark. That
is, we prove that M cannot guarantee (no matter what the number n of players and the valuation
bound V may be) a fraction ε of our revenue benchmark: specifically, no fraction greater than 1/2
for probabilistic undominated-strategy mechanisms, no fraction greater than 0 for deterministic
ones. Second, we prove that this stronger impossibility result applies even if one adopts a weaker
notion of implementation in undominated strategies.4

Theorem 1. For all ε ∈ ( 1
2 ,1], n > 1, V > � 1

ε−1/2�, and probabilistic IIR mechanisms M , there
exist

3 This is so because, when more than one player’s beliefs are not correct, it is trivial to construct contexts for which
the second-belief benchmark is much greater than the highest valuation. And no classical notion of implementation can
guarantee revenue greater than the highest valuation.

4 Note that the traditional notion of (full) implementation in undominated strategies – see Jackson [19] – requires not
only that every profile of undominated strategies yields an outcome satisfying the desired social choice correspondence,
but also that, conversely, for each desired outcome there exists a profile of undominated strategies yielding that outcome.
By removing the latter requirement we weaken the notion of implementation and thus strengthen the impossibility result
of Theorem 1.
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(1) an auction context C with n players, valuation bound V , and a correct conservative-belief
profile B, and

(2) a profile s of undominated strategies in the auction (C,M) such that

REV
(
M(s)

)
< ε · 2nd(B).

Theorem 2. For all ε ∈ (0,1], n > 1, V > � 1
ε
�, and deterministic IIR mechanisms M , there exist

(1) an auction context C with n players, valuation bound V , and a correct conservative-belief
profile B, and

(2) a profile s of purely undominated strategies in the auction (C,M) such that

REV
(
M(s)

)
< ε · 2nd(B).

We prove Theorem 1 in Section 5.1. The proof of Theorem 2 is not only similar but simpler,
and is thus omitted. These theorems have two immediate consequences about implementation in
strictly/weakly/very weakly dominant strategies.

Corollary 1. For all ε ∈ ( 1
2 ,1], n > 1, V > � 1

ε−1/2�, and probabilistic IIR mechanisms M , there
exists an auction context C with n players, valuation bound V , and correct conservative beliefs
B such that either

• there is no profile of strictly/weakly/very weakly dominant strategies, or
• there is a profile s of strictly/weakly/very weakly dominant strategies such that REV(M(s)) <

ε · 2nd(B).

Corollary 2. For all ε ∈ (0,1], n > 1, V > � 1
ε
�, and deterministic IIR mechanisms M , there

exists an auction context C with n players, valuation bound V , and correct conservative beliefs
B such that either

• there is no profile of strictly/weakly/very weakly dominant strategies, or
• there is a profile s of strictly/weakly/very weakly dominant strategies such that REV(M(s)) <

ε · 2nd(B).

(Of course, in the above corollaries s is unique if composed of strictly or weakly dominant
strategies.)

Note that, in the absence of Theorems 1 and 2, these two corollaries would be trivial if the
players were restricted to bid valuations only. In such a case, in fact, the second-price mechanism
is “the only” (weakly) dominant-strategy mechanism for auctions of a single good. And since
the revenue it generates is precisely equal to the second-highest valuation, no other dominant-
strategy mechanism can generate second-belief revenue. QED.

We thus wish to emphasize that:

All our impossibility results hold without any restrictions on the strategy spaces (in particular
when the players are allowed to report their conservative beliefs).

Implementation in dominant strategies and implementation in undominated strategies ulti-
mately fail to achieve our benchmark because they do not require that the players believe that
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their opponents are rational. The absence of the latter requirement is a strength, but only if the
desired social choice correspondence is implementable. Else it is a “weakness”. As we shall see,
the solution concept underlying our mechanism relies on mutual belief of rationality (but not on
higher-order beliefs of rationality).

5.1. Proof of Theorem 1

In the analysis below we solely focus on the case n = 2 (the analysis for arbitrary n > 2 is very
similar and thus omitted). For sake of contradiction, assume that there exist a value ε ∈ (1/2,1],
an integer V > � 1

ε−1/2�, and a probabilistic IIR mechanism M such that for all contexts C with
2 players, valuation bound V , and a correct conservative-belief profile B, and for all profiles s of
undominated strategies in the auction (C,M), we have

REV
(
M(s)

)
� ε · 2nd(B)

(that is, M implements ε2nd in undominated strategies for contexts with 2 players, valuation
bound V , and correct conservative beliefs). To derive the desired contradiction, letting H be an
integer such that

V � H >
1

ε − 1/2
,

we construct two games, G and G′, as follows.

1. G = (C,M), where C = (2,V , θ,B) with θ = (H,0) and B1 = B2 = {(H,0)}.
Note: Each belief Bi is correct, and 2nd(B) = H because smv1 = smv2 = H .

2. G′ = (C′,M), where C′ = (2,V , θ ′,B′) with θ ′ = (1,0) and B′
1 = B′

2 = {(1,0)}.
Note: Each belief B′

i is correct and 2nd(B′) = 1.

After analyzing the (auxiliary) game G′, we derive our desired contradiction for G. To clarify
the game to which a given quantity refers, we shall use the superscripts G and G′.

Let UDG′ = UDG′
1 ×UDG′

2 , where each UDG′
i is player i’s set of undominated strategies in G′.

Then, by hypothesis:

∀s′ ∈ UDG′
, REV

(
M

(
s′))� ε2nd(B′) = ε. (1)

We now prove the following statement:

There exists a strategy σ ′
1 ∈ �

(
UDG′

1

)
such that

∀ strategy s2 of player 2, uG′
1

(
M

(
σ ′

1, s2
))

� 0. (2)

Because M is IIR, player 1 has a strategy out1 such that uG′
1 (M(out1, s2)) = 0 ∀s2. If out1 ∈

UDG′
1 then statement (2) follows by taking σ ′

1 = out1. Otherwise, by the finiteness of M there

exists σ ′
1 ∈ �(UDG′

1 ) such that out1 is weakly dominated by σ ′
1, which implies uG′

1 (M(σ ′
1, s2)) �

uG′
1 (M(out1, s2)) = 0 ∀s2, as desired.

Similarly, we have the following statement:

There exists a strategy σ ′
2 ∈ �

(
UDG′

2

)
such that

∀ strategy s1 of player 1, uG′(
M

(
s1, σ

′))� 0. (3)
2 2
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Combining statements (2) and (3), letting ω′ be the (possibly probabilistic) outcome M(σ ′
1, σ

′
2),

and letting p′
i and EP′

i respectively be the probability that player i gets the good and the expected
price that i pays according to ω′, we have that

uG′
1

(
ω′) = p′

1 − EP′
1 � 0 and uG′

2

(
ω′) = −EP′

2 � 0. (4)

Because of Eq. (1), and because σ ′
i ∈ �(UDG′

i ) for each i, we have

REV
(
ω′) = EP′

1 + EP′
2 � ε. (5)

Combining Eqs. (4) and (5), we have

p′
1 � EP′

1 � ε − EP′
2 � ε. (6)

Let us now analyze game G. Notice that, under the strategy profile (σ ′
1, σ

′
2), the (possibly

probabilistic) outcome of M is still ω′ in game G. Accordingly, following Eq. (6) we have that

uG
1

(
M

(
σ ′

1, σ
′
2

)) = uG
1

(
ω′) = p′

1H − EP′
1 � p′

1H − p′
1 � ε(H − 1),

where the second inequality holds further because H > 1.
Let UDG = UDG

1 × UDG
2 , where each UDG

i is player i’s set of undominated strategies in G.
We now argue that there exists a strategy σ̂1 ∈ �(UDG

1 ) such that

uG
1

(
M

(
σ̂1, σ

′
2

))
� ε(H − 1). (7)

To see why inequality (7) is true, notice that if σ ′
1 ∈ �(UDG

1 ) then we can take σ̂1 = σ ′
1. Other-

wise, for each strategy s′
1 which is in the support of σ ′

1 but not in UDG
1 , there exists σ ′′

1 ∈ �(UDG
1 )

weakly dominating s′
1 in game G (again because M is finite). Thus, we can construct σ̂1 from

σ ′
1 by replacing each such s′

1 with the corresponding σ ′′
1 , and the so-constructed σ̂1 satisfies

uG
1 (M(σ̂1, σ

′
2)) � uG

1 (M(σ ′
1, σ

′
2)) � ε(H − 1), as desired.

Because θ2 = θ ′
2, we have that player 2’s set of undominated strategies is the same in G

and G′, and so is his utility for each possible outcome. That is,

UDG
2 = UDG′

2 and uG
2 (·) = uG′

2 (·). (8)

Eqs. (3) and (8) directly imply the following statement:

σ ′
2 ∈ �

(
UDG

2

)
and uG

2

(
M

(
σ̂1, σ

′
2

))
� 0. (9)

Let ω = M(σ̂1, σ
′
2), and let pi and EPi respectively be the probability that player i gets the

good and the expected price that i pays according to ω. Following Eq. (7) and the inequality of
statement (9), we have

uG
1 (ω) = p1H − EP1 � ε(H − 1) and uG

2 (ω) = −EP2 � 0. (10)

Combining Eq. (10) with the facts that 0 � p1 � 1, 1/2 < ε � 1, and H > 1
ε−1/2 , we have

REV(ω) = EP1 + EP2 � EP1 � p1H − ε(H − 1)

= H

(
p1 − ε + ε

H

)
� H

(
1 − ε + 1

H

)

< H(1 − ε + ε − 1/2) = H/2 < εH.
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Accordingly, there exists a strategy profile ŝ such that: (1) ŝ1 is in the support of σ̂1 and ŝ2
is in the support of σ ′

2, which imply that ŝ ∈ UDG; and (2) REV(M(ŝ)) � REV(ω) < εH =
ε2nd(B). That is, we have finally reached the desired contradiction against the hypothesis that M

implements ε2nd in undominated strategies for contexts with correct conservative beliefs. Thus
Theorem 1 holds. �
6. The fragility of implementing 2nd(·) at ex-post equilibrium

In this section we analyze the possibility of achieving our revenue benchmark under two other
classical notions of implementation: at ex-post and at very weakly dominant equilibrium. (The
notions of ex-post and very weakly dominant strategy are almost the same, but do not coincide
for some games.) Both implementation notions require only the existence of one equilibrium at
which our benchmark is achieved. Thus, satisfying this requirement does not contradict the previ-
ously stated Corollaries 1 and 2, which only rule out the possibility of guaranteeing second-belief
revenue at all very weakly dominant equilibria.

Our analysis however shows that both notions are inadequate for implementing our bench-
mark. The nature of this inadequacy is a bit different than that for implementation in undominated
strategies. Indeed, truthfully reporting the conservative beliefs may easily be an ex-post (or very
weakly dominant) equilibrium generating the desired revenue. However, an extremely severe
equilibrium-selection problem arises. Consider the following auction mechanism for 2 players
whose possible valuations range between 0 and 100.

Mechanism NAIVE. For each player i, the strategy set Si consists of the set of all possible
conservative beliefs of i. That is, Si = {X ⊆ {0,1, . . . ,100}2: t, t ′ ∈ X ⇒ ti = t ′i }.
For a strategy profile (B′

1,B′
2), allegedly the true profile B, compute an outcome (a,P ) as

follows.
• For each i, let θ ′

i be the ith component of a profile in B′
i (i.e., let θ ′

i be the alleged true type
of i).

• Set w = argmaxi θ
′
i , breaking ties lexicographically, and p = mint∈B′−w

maxj tj .
• If θ ′

w � p, then a = w (i.e., the good is sold to player w), Pw = p and P−w = 0.
Else, a = 0 (i.e., the good is unallocated) and P = (0,0).

It is immediately clear that, in mechanism NAIVE, truthfully announcing one’s own conservative
beliefs is always an ex-post equilibrium. It is also clear that, when all beliefs are correct, the
truthful equilibrium guarantees our revenue benchmark. However, consider the following

Context C:

θ = (70,100), B1 = {
(70, x): x � 90

}
, and B2 = {

(x,100): x � 60
}
.

In this context,

• all beliefs are correct; and
• at the truthful equilibrium B = (B1,B2), REV(B) = 90 = 2nd(B), as desired.

Let us now illustrate why this equilibrium is far from satisfactory. To begin with, note that

B′ �
(
B′ ,B2

)
�

({
(70, x): x � 0

}
,B2

)

1
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is an alternative Nash equilibrium (corresponding to another ex-post equilibrium) whose revenue
is only 70.5

The existence of multiple equilibria is always problematic, but NOT necessarily crucial. In-
deed one is often able to argue that the players have good reasons to coordinate around the desired
equilibrium. But in our case B and B′ differ only at player 1’s strategy. Thus, even if player 1
believes that player 2 will play his truthful strategy, it is identically rational for player 1 to play
B′

1 instead of B1. Vice versa, even if player 2 believes that player 1 will play B′
1, it is still rational

for player 2 to stick to his own strategy in the truthful equilibrium, because in the above example
it coincides with his strategy in the alternative equilibrium.

In sum, whatever reasons player 1 has to play his truthful strategy B1, he has exactly the same
reasons to play his alternative strategy B′

1. And “even more so” for player 2! This being the case,

Which revenue should we expect from NAIVE for the above context C?

The answer is 90 if player 1 feels “generous” towards the seller and 70 otherwise.6 Dependency
on player generosity is of course hardly satisfactory in mechanism design.

Let us now prove that the above extreme “fragility” of the truthful equilibrium in NAIVE

applies to

(1) every mechanism M that ex-post implements (even in an approximate way) our benchmark,
and

(2) every ex-post equilibrium at which M implements our benchmark.

6.1. Formalization of fragility and statement of our results

The notions of ex-post equilibrium and implementation at ex-post equilibrium, originally de-
fined for Bayesian settings, readily apply to our setting. Namely:

Definition 3. Let C be a class of contexts, M a mechanism, and F an extended social choice
correspondence.

• An ex-post equilibrium of a mechanism M for C is a profile s of functions, where each si

maps player i’s conservative beliefs to his (possibly mixed) strategies in M , such that

s(B) �
(
s1(B1), . . . , sn(Bn)

)
is a Nash equilibrium of the game (C,M) for all contexts C ∈ C with conservative-belief
profile B.
If the range of each si only consists of pure strategies, then s is a pure ex-post equilibrium.

5 In fact, any strategy profile (B′′
1 ,B2) with B′′

1 = {(70, x): x � b} and b � 70 is a Nash equilibrium (and corresponding
to an ex-post equilibrium) whose revenue is only 70.

6 Notice that the truthful equilibrium actually specifies a very weakly dominant strategy for each player in each context,
and thus illustrates the lack of robustness for implementation at very weakly dominant equilibria as well. Such lack of
robustness was already pointed out by Saijo, Sjostrom, and Yamato theoretically [23] and by Casona, Saijo, Sjostrom,
and Yamato experimentally [5]. In [23] the authors also propose secure implementation: essentially, implementation via
mechanisms ensuring that (a) each player has a very weakly dominant strategy, and that (b) the desired property holds at
all Nash equilibria (and thus all very weakly dominant ones). As we have discussed, therefore, the second-belief revenue
benchmark is not securely implementable.
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• M implements F at ex-post equilibrium for C if there exists an ex-post equilibrium s for
C such that for all contexts C ∈ C with conservative-belief profile B

M
(
s(B)

) ∈ F(B).

If this is the case, we further say that M implements F at s.

(Note that, if for each player i and each strategy si there exists Bi such that si (Bi ) = si , then
for each B the strategy profile s(B) is also a very weakly dominant equilibrium. But otherwise it
is not. As already said, ex-post equilibrium and very weakly dominant equilibrium are different
notions.)

Let us now formalize the intuitively discussed notion of fragility for implementation at ex-
post equilibrium. The corresponding formalization for implementation at very weakly dominant
equilibrium is similarly defined.

Definition 4. Let M be a mechanism implementing an extended social choice correspondence F

at ex-post equilibrium for a class of contexts C . Then M is fragile if, for all ex-post equilibria s

at which M implements F , there is another ex-post equilibrium s′ satisfying the following two
properties:

(1) There exist a player i and a conservative belief Bi of i such that s′ and s differ only at Bi
7;

and
(2) M(s′(B′)) /∈ F(B′) for all contexts C ∈ C with conservative-belief profile B′ such that

B′
i = Bi .

Theorem 3. For all ε ∈ ( 1
2 ,1], n > 1, V > � 1

ε−1/2�, and probabilistic interim individually ra-

tional mechanisms M implementing ε · 2nd(·) at ex-post equilibrium for contexts with n players,
valuation bound V , and correct beliefs,

M is fragile.

The notion of implementation at pure ex-post equilibrium and the corresponding notion of
fragility are similarly defined, and we have the following theorem.

Theorem 4. For all ε ∈ (0,1], n > 1, V > � 1
ε
�, and deterministic interim individually rational

mechanisms M implementing ε · 2nd(·) at pure ex-post equilibrium for contexts with n players,
valuation bound V , and correct beliefs,

M is fragile.

These two theorems also hold for implementation at very weakly dominant equilibrium. Since
their proof is essentially the same, below we just prove Theorem 3.

7 That is, si (Bi ) �= s′ (Bi ); si (B′ ) = s′ (B′ ) for all B′ �=Bi ; and sj = s′ for all j �= i.

i i i i i j



J. Chen, S. Micali / Journal of Economic Theory 156 (2015) 77–102 89
6.2. Proof of Theorem 3

Similar to the proof of Theorem 1, we focus on the case n = 2, as the case n > 2 is very
similar. Let ε be a value in (1/2,1], V an integer greater than � 1

ε−1/2�, and M a probabilistic

IIR mechanism implementing ε2nd(·) at ex-post equilibrium s for the class C of contexts with 2
players, valuation bound V , and correct beliefs. To prove that M is fragile, let H be an integer
such that

V �H >
1

ε − 1/2
.

Again we are going to consider different contexts and thus different games, and we use super-
scripts to clarify the game to which a given quantity refers.

Let B∗
2 = {(H,0)}. Notice that there exist some contexts in C with player 2’s conservative

belief being B∗
2 – indeed, these are contexts where player 1’s true valuation is H , player 2’s

true valuation is 0, and player 2 believes that player 1’s true valuation is H (that is, player 1’s
belief about player 2 is the only undetermined part). Our goal is to show that there exists another
ex-post equilibrium s′ or C such that:

(1) s′ and s differ only at the conservative belief B∗
2 of player 2; and

(2) for every context C = (n,V, θ,B) ∈ C with B2 = B∗
2 , REV(M(s′(B))) < ε2nd(B).

To do so, we analyze two (classes of) related games, G and G′, as follows.

G = (C,M), where C = (2,V , θ,B) is an arbitrary context in C with B2 = B∗
2 .

In G we have that θ = (H,0), θ ∈ B1, smv1 = smv2 = H , and thus 2nd(B) = H no matter what
B1 is.

G′ = (C′,M), where C′ = (2,V , θ ′,B′) with θ ′ = (1,0),
B′

1 = {(1, x): (H,x) ∈ B1}, and B′
2 = {(x,0): x � 1}.

Notice that C′ ∈ C and 2nd(B′) = 1.
Let us now analyze game G′. Let ω′ = M(s(B′)), and p′

i and EP′
i respectively be the prob-

ability that player i gets the good and the expected price that player i pays according to ω′.
Because M is IIR, there exists strategy out′i for each player i such that uG′

i (M(out′i , s−i )) = 0 for
every s−i . Accordingly, and further because s is an ex-post equilibrium at which M implements
ε2nd(·), we have

uG′
1

(
ω′) = p′

1 − EP′
1 � 0, uG′

2

(
ω′) = −EP′

2 � 0, and EP′
1 + EP′

2 � ε2nd(B′) = ε.

Combining these three inequalities, we have

p′
1 � EP′

1 � ε − EP′
2 � ε. (11)

We construct the desired ex-post equilibrium s′ as follows:

s′ (B∗) = s2
(
B′ ),
2 2 2
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and s′ coincides with s everywhere else. Note that s′ satisfies property (1) of Definition 4 (with
i = 2). We now prove that the so-constructed s′ is indeed an ex-post equilibrium for C , and that
it satisfies property (2) of Definition 4.

By construction, for any context C′′ ∈ C with conservative belief profile B′′ such that B′′
2 �=

B∗
2 , s′(B′′) = s(B′′), and thus s′(B′′) is a Nash equilibrium of the game (C′′,M). Because C is

a generic context in C with player 2’s conservative belief being B∗
2 , it remains to show that s′

satisfies the following properties:

(A) s′(B) is a Nash equilibrium of G (which implies that s ′ is an ex-post equilibrium for C );
and

(B) REV(M(s ′(B))) < εH .

Proof of Property A. We do so by introducing another (auxiliary) game G′′.

G′′ = (C′′,M), where C′′ = (2,V , θ ′′,B′′) with θ ′′ = θ , B′′
1 = B1, and B′′

2 = B′
2.

Notice that C′′ ∈ C , and that C′′ differs from C only at player 2’s belief and from C′ only at
player 1’s true valuation (of course B′′

1 has to be consistent with θ ′′
1 which is H , and thus differs

from B′
1, but player 1’s beliefs about player 2 do not change).

Because s′
1 = s1, B2 = B∗

2 , B1 = B′′
1 , s′

2(B∗
2) = s2(B′

2), and B′
2 = B′′

2 , we have that

s′(B) = (
s′

1(B1), s
′
2(B2)

) = (
s1(B1), s

′
2

(
B∗

2

)) = (
s1

(
B′′

1

)
, s2

(
B′

2

))
= (

s1
(
B′′

1

)
, s2

(
B′′

2

)) = s
(
B′′).

Because s(B′′) is a Nash equilibrium of G′′ by the definition of s, s′(B) is also a Nash equilibrium
of G′′. Because G and G′′ have the same true valuation profile, s′(B) is a Nash equilibrium of G,
and Property A holds. Therefore s′ is an ex-post equilibrium for C . �
Proof of Property B. Notice that in game G, the outcome of strategy profile s(B′) is still ω′.
Thus

uG
1

(
M

(
s
(
B′))) = uG

1

(
ω′) = p′

1H − EP′
1 � p′

1H − p′
1 � ε(H − 1),

where the inequalities hold by Eq. (11).
Because s′(B) = (s1(B1), s

′
2(B∗

2)) = (s1(B1), s2(B′
2)) is a Nash equilibrium of G, we have

that

uG
1

(
M

(
s1(B1), s2

(
B′

2

)))
� uG

1

(
M

(
s
(
B′)))� ε(H − 1),

and

uG
2

(
M

(
s1(B1), s2

(
B′

2

)))
� uG

2

(
M

(
s1(B1),out2

)) = 0,

where out2 is the strategy of player 2 such that uG
2 (s1,out2) = 0 for every s1, and the existence

of such an out2 is guaranteed by M being IIR.
Let ω′′ = M(s1(B1), s2(B′

2)), and p′′
i and EP′′

i respectively be the probability that player i

gets the good and the expected price that player i pays according to ω′′. Combining with the
above two lines of equations, we have

uG
(
ω′′) = p′′H − EP′′ � ε(H − 1) and uG

(
ω′′) = −EP′′ � 0.
1 1 1 2 2
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Combining with the facts that 0 � p′′
1 � 1, 1/2 < ε � 1, and H > 1

ε−1/2 , we have

REV
(
M

(
s′(B)

)) = REV
(
ω′′) = EP′′

1 + EP′′
2

� EP′′
1 � p′′

1H − ε(H − 1) = H

(
p′′

1 − ε + ε

H

)

� H

(
1 − ε + 1

H

)
< H(1 − ε + ε − 1/2) = H/2 < εH.

Therefore Property B holds, and so does Theorem 3. �
7. The implementability of 2nd(·) in conservative strategies

In this section we prove that the second-belief benchmark is virtually implementable under a
natural solution concept. We do so in four steps. First we present the underlying solution concept,
then we exhibit our mechanism, analyze it, and address three concerns raised about it.

Notation. Given the set of all strategy profiles S = S1 × · · · × Sn and the true type profile θ , we
denote by U = U1 × · · · × Un the set of profiles of strategies that are not strictly dominated.

If T = Ti × T−i is a set of strategy profiles, ti ∈ Θi , si ∈ Ti , and σi ∈ �(Ti), then we say that
si is strictly dominated by σi with respect to ti and T , in symbols si <

ti
T σi , if ui(ti , (si , s−i )) <

ui(ti , (σi, s−i )) for all s−i ∈ T−i . (That is, si is strictly dominated by σi when the set of all
strategy profiles is assumed to be T and the true type of i to be ti .)

The set of strategies in Ti that are not strictly dominated with respect to ti and T is denoted
by Ui(ti , T−i ).

7.1. Conservative implementation

In an auction (C,M), we assume that every player is rational (i.e., never plays strictly domi-
nated strategies) and believes that his opponents are rational.

Accordingly, i confines his strategy choices to Ui . But to which set should he believe his op-
ponents to confine their strategy choices? Although i believes that all players in −i are rational,
he cannot compute U−i , because he does not know θ−i . However, given his conservative be-
lief Bi , i is sure that θ−i ∈ ⋃

t∈Bi
{t−i}, and that his opponents, for any t ∈ Bi , only play strategy

subprofiles in the set U−i (t) �
∏

j �=i Uj (tj , S−j ).
Therefore, player i can conservatively refine his set of undominated strategies by eliminating

every strategy si that is strictly dominated, by the same strategy σi , in every world he considers
possible. That is, he “conservatively” eliminates si ∈ Ui if and only if there exists a (possibly
mixed) strategy σi ∈ �(Ui) such that, for every t ∈ Bi , si <

θi

U−i (t)
σi . In this case, we say that si

is conservatively dominated by σi .
We refer to the strategies surviving the “cautious” elimination procedure above as conserva-

tive strategies. In sum, under mutual belief of rationality, only profiles of conservative strategies
will be played.

Definition 5. In a game (C,M) with conservative belief profile B, the set of conservative strat-
egy profiles is C � C1 × · · · × Cn, where

Ci �Ui \ {
si : ∃σi ∈ �(Ui) ∀t ∈ Bi , si <

θi σi

}
.
U−i (t)
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A mechanism M conservatively implements a social choice correspondence F for a class of
contexts C if, for all contexts C ∈ C with belief profile B, and all strategy profiles s ∈ C,

M(s) ∈ F(B).

In game theory it is well known that for any player i, a strategy si is not strictly dominated
if and only if it is a best response to some strategy subprofile of others (assuming that the other
players may play correlated strategy profiles). Therefore the above definition of conservative
strategies can be rephrased as follows:

Let BRi (ti , S−i ) be the set of best responses of each player i, with type ti , to the others’
strategy subprofiles in �(S−i ). Player i then uses his set of possible payoff types for the
others, Bi , to construct a restricted set of possible strategy subprofiles for the others,

S1−i (Bi ) =
⋃
t∈Bi

∏
j �=i

BRj (tj , S−j ),

which are the undominated strategies of the payoff types he considers possible. Player i then
plays only strategies in BRi (θi , S

1−i (Bi )). The set of conservative strategy profiles is C =∏
i∈[n] BRi (θi, S

1−i (Bi )), i.e., loosely speaking the set of twice subjective-best-responses.

7.2. The second-belief mechanism

For any ε ∈ (0,1], n, and V , the mechanism Mε,n,V chooses an outcome (a,P ) according
to the following steps. Note that the mechanism applies to any context with n players, valuation
bound V and correct beliefs, and that the players act simultaneously and only once, in Step 1.
Steps a through d are just “conceptual steps taken by the mechanism”.

Mechanism Mε,n,V

1: Each player i, publicly and simultaneously with the others, announces a pair (ei, vi) ∈
{0,1} × {0,1, . . . , V }.
Comment. Allegedly, vi = smvi , and ei indicates whether i’s announcement is about his
internal knowledge (allegedly ei = 0 signifies that vi = θi ), or about his external belief.

a: If vi = 0 for every i, then set a to be a randomly chosen player, set Pi = 0 for each player i,
and halt.

b: Order the announced n pairs according to v1, . . . , vn decreasingly, breaking ties in favor of
those with ei = 0. If there are still ties among some pairs, then break them according to the
corresponding players.
Comment. It does not matter whether the players are ordered lexicographically (increasingly
or decreasingly), or according to some other way.

c: Set a to be the player corresponding to the first pair, and Pa = max{ 1
2 ,maxj �=a vj }.

d: For each player i, Pi = Pi − δi , where δi = ε
4n

[ vi

1+vi
+ 1−ei

(1+V )2 ].
Comment. Each player i receives a (positive) reward δi .

Remark.

• Notice that Mε,n,V always sells the good.
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• Non-negative revenue. Notice that if Mε,n,V halts in Step a then its revenue is 0. Otherwise,
its revenue equals the price charged to player a in Step c minus the total rewards given
to the players in Step d. Because for each player i the reward that i receives in Step d is
δi < ε

4n
(1 + 1) = ε

2n
� 1

2n
, the total rewards given to the players in Step d is at most 1

2 .
Because the price charged to player a in Step c is at least 1

2 , we have that Mε,n,V always has
non-negative revenue.
In fact, Step a is needed solely to ensure that the revenue of the mechanism is non-negative.
If the seller can withstand a −ε revenue when all but one vi ’s are 0, then we can remove
Step a and make the mechanism deterministic.

• Uniform construction. As promised, it is clear that Mε,n,V is uniformly and efficiently con-
structible on inputs ε, n, and V . In addition, it is very simple. It essentially consists of the
second-price mechanism together with carefully designed rewards. In light of our impossi-
bility results about implementing ε2nd(·) under classical solution concepts, this simplicity
suggests that conservative implementation can be quite powerful.

• From additive to multiplicative ε. Notice that the reward each player gets in Step d is at
most ε

2n
. Thus if a player does not get the good, then his utility is at most ε

2n
. This is so

because we aim at achieving the second-belief revenue benchmark up to only an additive ε.
If we are willing to give up an ε fraction of the revenue benchmark, then each player could
receive a reward proportional to the second highest bid in the mechanism, so that his utility
may still be very high even if he does not get the good. For instance, we can use δi =
ε maxj �=a vj

4n
[ vi

1+vi
+ 1−ei

(1+V )2 ].
• Additional revenue. It is of course possible to generate additional revenue by punishing more

harshly a player with wrong beliefs. (E.g., when the winner is a player a announcing (1, va),
without anyone else announcing (0, v) for some v � va , we may ask him to pay 2 ·va instead
of maxj �=a vj .) But this does not achieve a benchmark higher than the second-belief one
when all beliefs are correct.

7.3. Analysis of the second-belief mechanism

Now we prove that conservative implementation succeeds where classical notions fail.

Theorem 5. For any ε ∈ (0,1], n > 1, and V > 0, Mε,n,V conservatively implements 2nd(·) − ε

for the class of contexts with n players and valuation bound V .

Proof. Arbitrarily fix ε, n, V , C = (n,V, θ,B), and a strategy profile s. Denoting Mε,n,V by
M for short, it suffices for us to prove that, if s is a profile of conservative strategies in the game
(C,M), then

REV
(
M(s)

)
� 2nd(B) − ε. (12)

Letting si � (ei, vi) for each i, we start by proving three claims.

Claim 1. ∀ player i and ∀ type ti ∈ {0,1, . . . , V } of i, if si ∈ Ui(ti , S−i ) then vi � ti .

Proof. Assume for sake of contradiction that si ∈ Ui(ti , S−i ) and vi < ti . We shall show that
si is strictly dominated by s′ = (0, ti) with respect to ti and S. By definition, this implies
i
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si /∈ Ui(ti , S−i ), a contradiction. For this purpose, letting s′−i be an arbitrary strategy subprofile
of −i, it suffices to show that

ui

(
ti ,

(
si , s

′−i

))
< ui

(
ti ,

(
s′
i , s

′−i

))
.

To do so, let s′
j = (e′

j , v
′
j ) for each j �= i. Moreover, in the plays of (si , s

′−i ) and (s′
i , s

′−i ) respec-
tively, let (a,P ) and (a′,P ′) be the outcomes, and δi and δ′

i the rewards that player i receives in
Step d.

Because vi � 0 by the construction of M and vi < ti by hypothesis, we have that ti � 1 and
M does not halt in Step a in the play of (s′

i , s
′−i ). Below we shall distinguish two exhaustive

cases, according to the play of (si , s
′−i ).

Case 1. M halts in Step a in the play of (si , s
′−i ).

In this case, by the construction of M we have vi = 0, v′
j = 0 for each j �= i, and

ui

(
ti ,

(
si , s

′−i

)) = ti

n
.

Now we consider the play of (s′
i , s

′−i ). Because ti � 1 > 0 = maxj �=i v
′
j , we have a′ = i, P ′

i =
max{ 1

2 ,maxj �=i v
′
j } − δ′

i = 1
2 − δ′

i , and δ′
i = ε

4n
[ ti

1+ti
+ 1

(1+V )2 ] > 0. Accordingly,

ui

(
ti ,

(
s′
i , s

′−i

)) = ti − P ′
i = ti − 1

2
+ δ′

i > ti − 1

2
� ti

n
,

where the second inequality holds because ti � 1 and n � 2. Therefore ui(ti , (si , s
′−i )) <

ui(ti , (s
′
i , s

′−i )) as desired.

Case 2. M does not halt in Step a in the play of (si , s
′−i ).

In this case, by the construction of M we have

δi = ε

4n

[
vi

1 + vi

+ 1 − ei

(1 + V )2

]
and δ′

i = ε

4n

[
ti

1 + ti
+ 1

(1 + V )2

]
.

Accordingly,

δ′
i − δi = ε

4n

[
ti

1 + ti
− vi

1 + vi

]
+ ε

4n

[
1 − (1 − ei)

(1 + V )2

]

= ε

4n

[
ti − vi

(1 + ti )(1 + vi)
+ ei

(1 + V )2

]
> 0,

where the inequality holds because vi < ti by hypothesis and ei � 0 by the construction of M.
Thus we have

δ′
i > δi .

Below we distinguish three exhaustive sub-cases.

Sub-case 2.1. a′ �= i.
In this sub-case, we also have a �= i, because vi < ti . Accordingly, Pi = −δi and P ′

i =
−δ′

i , and thus ui(ti , (si , s
′−i )) = δi and ui(ti , (s

′
i , s

′−i )) = δ′
i . Therefore ui(ti , (si , s

′−i )) <

ui(ti , (s
′
i , s

′−i )) as desired.
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Sub-case 2.2. a′ = i and a = i.
In this sub-case, we have P ′

i = max{ 1
2 ,maxj �=i v

′
j } − δ′

i and Pi = max{ 1
2 ,maxj �=i v

′
j } − δi .

Because δ′
i > δi , we further have Pi > P ′

i , which implies ui(ti , (si , s
′−i )) = ti − Pi < ti − P ′

i =
ui(ti , (s

′
i , s

′−i )) as desired.

Sub-case 2.3. a′ = i and a �= i.
In this sub-case, we have P ′

i = max{ 1
2 ,maxj �=i v

′
j } − δ′

i , Pi = −δi , and ti � maxj �=i v
′
j . As

ti � 1 by hypothesis, we further have ti � max{ 1
2 ,maxj �=i v

′
j }. Accordingly, ui(ti , (si , s

′−i )) =
−Pi = δi < δ′

i � (ti − max{ 1
2 ,maxj �=i v

′
j }) + δ′

i = ti − P ′
i = ui(ti , (s

′
i , s

′−i )) as desired.

In sum, ui(ti , (si , s
′−i )) < ui(ti , (s

′
i , s

′−i )) for any s′−i , and thus si is strictly dominated by s′
i

with respect to ti and S, contradicting the fact that si ∈ Ui(ti , S−i ). Therefore Claim 1 holds. �
Claim 2. ∀ player i and ∀ type ti ∈ {1,2, . . . , V } of i, if si = (1, ti ) then si /∈ Ui(ti , S−i ).

Proof. By definition, it suffices for us to show that si is strictly dominated by strategy s′
i = (0, ti)

with respect to ti and S. For this purpose, arbitrarily fixing a strategy subprofile s′−i of −i, it
suffices to show that

ui

(
ti ,

(
si, s

′−i

))
< ui

(
ti ,

(
s′
i , s

′−i

))
.

To do so, first notice that M does not halt in Step a in either the play of (si , s
′−i ) or the play of

(s′
i , s

′−i ), because ti � 1 by hypothesis. The analysis below is very similar to Case 2 of Claim 1.
Indeed, in the plays of (si , s

′−i ) and (s′
i , s

′−i ) respectively, we denote by δi and δ′
i the rewards that

player i receives in Step d, and by (a,P ) and (a′,P ′) the final outcomes. Letting s′
j = (e′

j , v
′
j )

for each player j �= i, we have

δ′
i = ε

4n

[
ti

1 + ti
+ 1

(1 + V )2

]
>

ε

4n
· ti

1 + ti
= δi,

and we distinguish three cases as before:

• If a′ �= i, then a �= i as well, and we have

ui

(
ti ,

(
si , s

′−i

)) = −Pi = δi < δ′
i = −P ′

i = ui

(
ti ,

(
s′
i , s

′−i

))
.

• If a′ = i and a = i, then Pi = max{ 1
2 ,maxj �=i v

′
j } − δi > max{ 1

2 ,maxj �=i v
′
j } − δ′

i = P ′
i , and

we have

ui

(
ti ,

(
si , s

′−i

)) = ti − Pi < ti − P ′
i = ui

(
ti ,

(
s′
i , s

′−i

))
.

• Otherwise, we have that a′ = i and a �= i, which implies

ui

(
ti ,

(
si , s

′−i

)) = −Pi = δi < δ′
i �

(
ti − max

{
1

2
,max

j �=i
v′
j

})
+ δ′

i

= ti − P ′
i = ui

(
ti ,

(
s′
i , s

′−i

))
.

In sum, si is strictly dominated by s′ with respect to ti and S, and Claim 2 holds. �
i
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Claim 3. ∀ player i, if si is a conservative strategy in game (C,M), then vi � smvi .

Proof. Assume for sake of contradiction that si is a conservative strategy and vi < smvi . By
definition we have si ∈ Ui and Ui = Ui(θi, S−i ), and thus by Claim 1 we have

vi � θi . (13)

Let s′
i = (1, smvi ). In order to reach a contradiction it suffices for us to prove the following

statement:

∀t ∈ Bi , ∀s′−i ∈ U−i (t), ui

(
θi,

(
si , s

′−i

))
< ui

(
θi,

(
s′
i , s

′−i

))
. (14)

To see why this is sufficient, notice that if s′
i ∈ Ui then statement (14) implies that si is conserva-

tively dominated by s′
i , contradicting the hypothesis that si is a conservative strategy. If s′

i /∈ Ui ,
then by definition it is strictly dominated with respect to θi and S. By well-known properties of
strict domination and by the finiteness of M, we have that there exists a strategy σ ′

i ∈ �(Ui)

such that s′
i is strictly dominated by σ ′

i , that is, the following statement holds:

∀s′−i ∈ S−i , ui

(
θi,

(
s′
i , s

′−i

))
< ui

(
θi,

(
σ ′

i , s
′−i

))
. (15)

Because U−i (t) ⊆ S−i for each t ∈ Bi , statements (14) and (15) together imply that

∀t ∈ Bi , ∀s′−i ∈ U−i (t), ui

(
θi,

(
si , s

′−i

))
< ui

(
θi,

(
σ ′

i , s
′−i

))
.

In turn, this implies that si is conservatively dominated by σ ′
i , again contradicting the hypothesis

that si is a conservative strategy.
Below we shall prove statement (14). Arbitrarily fixing a type profile t ∈ Bi and a strategy

subprofile s′−i ∈ U−i (t), it suffices to show that

ui

(
θi,

(
si , s

′−i

))
< ui

(
θi,

(
s′
i , s

′−i

))
.

To do so, let 
 = argmaxj∈[n] tj with ties broken lexicographically. Because t ∈ Bi and smvi =
mint∈Bi

maxj tj , we have

t
 � smvi .

Because smvi > vi � θi = ti by hypothesis and by Eq. (13), we have t
 > ti , and thus


 �= i.

Let s′
j = (e′

j , v
′
j ) for each j �= i. Because s′


 ∈ U
(t
, S−
), by Claim 1 we have that

v′

 � t
.

In sum, the following sequence of inequalities holds:

v′

 � t
 � smvi > vi � θi � 0. (16)

By sequence (16) we have v′

 � 1, thus M does not halt in Step a in the play of (si , s

′−i ) or in
the play of (s′

i , s
′−i ). Below we consider the outcomes of the two plays.

Let (a,P ) and (a′,P ′) be the final outcomes of (si , s
′−i ) and (s′

i , s
′−i ) respectively. If v′


 >

smvi , then by the construction of M we have that (e′

, v

′

) is ordered before (1, smvi ), and thus

is also ordered before (ei, vi). If v′

 = smvi , then by sequence (16) we have v′


 = t
 � 1. Thus by
Claim 2 we have e′


 = 0, which implies that (e′

, v

′

) is ordered before (1, smvi ), and thus is also

ordered before (ei, vi). Accordingly, no matter what v′

 is, we always have
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a �= i and a′ �= i,

therefore the utilities of player i only depend on his rewards in Step d in both plays.
Let δi and δ′

i be the rewards that player i receives in Step d, in the plays of (si , s
′−i ) and

(s′
i , s

′−i ) respectively. We have

δ′
i − δi = ε

4n
· smvi

1 + smvi

− ε

4n

[
vi

1 + vi

+ 1 − ei

(1 + V )2

]

= ε

4n

[
smvi − vi

(1 + smvi )(1 + vi)
− 1 − ei

(1 + V )2

]
� ε

4n

[
1

(1 + smvi )(1 + vi)
− 1

(1 + V )2

]

>
ε

4n

[
1

(1 + smvi )2
− 1

(1 + V )2

]
� ε

4n

[
1

(1 + V )2
− 1

(1 + V )2

]
= 0,

where the first inequality holds because vi < smvi and ei � 0, the second because vi < smvi , and
the last because smvi � V . Accordingly we have

δ′
i > δi,

which implies

ui

(
θi,

(
si , s

′−i

)) = δi < δ′
i = ui

(
θi,

(
s′
i , s

′−i

))
as we wanted to show. Therefore Claim 3 holds. �

Now we are ready to prove that if s is a profile of conservative strategies then inequality (12)
holds, which implies Theorem 5. Because s is a profile of conservative strategies, by Claim 3 we
have

vi � smvi for each i. (17)

If M halts in Step a, then vi = 0 for each i, which together with Eq. (17) implies that smvi = 0
for each i, and thus 2nd(B) = 0. Accordingly,

REV
(
M(s)

) = 0 = 2nd(B) > 2nd(B) − ε.

Otherwise, by Eq. (17) we have that the second highest value in {v1, . . . , vn} is greater than
or equal to the second highest value in {smv1, . . . , smvn}, which is precisely 2nd(B). By the
construction of M we have that for each reward δi in Step d,

δi = ε

4n

[
vi

1 + vi

+ 1 − ei

(1 + V )2

]
<

ε

4n
· (1 + 1) = ε

2n
.

Letting (a,P ) be the outcome of s, we have: (1) Pa = max{ 1
2 ,maxj �=a vj } − δa ; (2) ∀i �= a,

Pi = −δi ; and (3) maxj �=a vj is the second highest value in {v1, . . . , vn}, which implies
max{ 1

2 ,maxj �=a vj }� 2nd(B). Accordingly,

REV
(
M(s)

) = Pa +
∑
i �=a

Pi � 2nd(B) − δa −
∑
i �=a

δi > 2nd(B) − n · ε

2n
> 2nd(B) − ε.

Therefore Theorem 5 holds. �
Remark. If a player’s belief is not correct, then according to mechanism M his utility may be
negative and he may be “shocked” when seeing the final outcome. But when the game is played
he believes that his utility will be non-negative and thus behaves as specified by our solution
concept, in particular by Claim 3.
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7.4. Three concerns about the second-belief mechanism “in practice”

A concern raised about the second-belief mechanism is that “ε rewards” may not be enough
motivation for the players to participate. When the relevant players opt to “stay home”, the
second-belief benchmark cannot be guaranteed, and thus the second-price mechanism might in
practice generate higher revenue.

Let us have a closer look. First, it should be appreciated that any rational player prefers a pos-
itive utility, no matter how small, to 0 utility, which is the utility he would receive if he opted out
of the auction, both in the second-belief and in the second-price mechanism. (Saying otherwise
requires an alternative notion of rationality.8) Second, as we have already observed, conservative
beliefs are implicit in any context, whether or not a seller tries to leverage them. Accordingly,
to compare properly the second-belief and the second-price mechanism, one should consider the
same, underlying, conservative belief profile B. Consider a player i who does not believe that his
valuation is the highest. Then i concludes that he will receive “ε utility” under the second-belief
mechanism, and 0 utility under the second-price one. Therefore, according to any reasonable (tra-
ditional or not) notion of rationality, if i chooses to opt out in the second-belief mechanism, he
should also opt out in the second-price mechanism. In neither mechanism, therefore, can player
i be relied upon to achieve the corresponding revenue benchmark. Consider now a player i who
believes that he might be the one with the highest valuation. Then, in either mechanism, it is
dominant for him to participate in the auction. (In particular, in the second-belief mechanism,
opting out is strictly dominated by (0, θi), which always has positive utility.) Accordingly, if i

chooses to participate in the second-price mechanism, he should also participate in the second-
belief one.

Another (related) concern pertains to the case in which the players only have very impre-
cise external beliefs. In this case, while the revenue generated by the second-price mechanism
is equal to the second-highest valuation, denoted by 2nd(θ), the one generated by the second-
belief mechanism is “2nd(θ) − ε”. Again, such a concern is based on an unfair comparison. The
second-belief mechanism works no matter what beliefs the seller may have about the quality
of the players’ conservative beliefs, and insists on guaranteeing strictly positive utilities to the
players (when they play conservatively and not all players have value 0). By contrast, the second-
price mechanism only guarantees that the players’ utilities are � 0, and thus cannot guarantee
the participation of players who believe that they do not have the highest valuation. Accordingly,
for the seller to gain an extra ε in revenue by adopting the second-price mechanism instead of
the second-belief one, it is necessary that he has enough information about the players: namely,
he must be sure that each player believes that he might be the one with the highest valuation. In
absence of this information, to guarantee the participation of all players, the second-price mech-
anism must be modified so as to provide some form of “ε rewards” as well, and thus will miss
its target revenue in its purest form. To be sure, the second-price mechanism can be perturbed so
that all players with non-zero valuations get strictly positive utilities and it is strictly dominant
for them to participate. But then the revenue of the seller becomes “2nd(θ) − ε” as well.

8 To be sure, such alternative notions exist: in particular, ε-Nash equilibrium. Note however that any mechanism which,
like ours, achieves a revenue benchmark – at least in some contexts – close to the highest true valuation, must rely on the
traditional notion of rationality, instead of any ε-alternative. This is so because, when the revenue benchmark equals the
highest valuation minus ε, by definition the sum of the players’ utilities must be at most ε. Therefore any ε-alternative
notion of rationality will make the players indifferent between participating and opting out. And when players opt out,
the mechanism cannot guarantee its desired benchmark.
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The third concern raised is that the second-belief mechanism may miss its benchmark because
its players may prefer decreasing their opponents’ utilities to increasing their own ones. Indeed,
if (1) the player with the highest valuation is player i, (2) i believes that he is the player with the
highest valuation, (3) i believes that θi � 2nd(B), and (4) i further believes that 2nd(B) > 2nd(θ),
then, when all other players act rationally, by sufficiently underbidding his own valuation – e.g.,
by bidding (0,0) – player i will cause another player to receive negative utility. However, let us
emphasize that, while leveraging the players’ external beliefs, we continue to use the classical
utility function for single-good auctions: namely, the utility of every player equals his true valua-
tion minus the price he pays if he wins the good, and 0 minus the price he pays otherwise. Under
such a classical utility function, the second-belief mechanism achieves its benchmark at every
rational play. The concern about a player having a different type of preference is therefore out of
the model.

8. Related work

In Bayesian settings with a common prior, higher revenue benchmarks can be guaranteed,
and, more generally, more social choice correspondences can be implemented, under proper
assumptions.9 These works are not very relevant to ours, since we focus on a non-probabilistic
model of incomplete information, and we do not impose any common knowledge assumption
about the players’ beliefs. Let us instead recall other works, where probabilistic/common-prior
assumptions have been substantially relaxed.

Other models of incomplete information. Postlewaite and Schmeidler [22] studied differential
information settings for exchange economies. They model a player’s uncertainty as a partition of
the set of all possible states of the world, and assume such partitions to be common knowledge. In
our case, we do not assume a player to have any knowledge/beliefs about the knowledge/beliefs
of another player, and we certainly do not have any common-knowledge requirements. In addi-
tion, they further assume that each player has a probabilistic distribution over the state space, and
use Bayesian equilibrium as the key solution concept. Their model actually reduces to Harsanyi’s
incomplete information model [16] if the state space is finite.

Chung and Ely [10] model a player’s belief about the state of the world via a distribution, but
assume that he prefers one outcome ω to another ω′ if he locally prefers ω to ω′ in every state that
is possible according to his belief. In this sense, what matters is the support of the distribution,
which is possibilistic. The authors show that, even when the players only have very small uncer-
tainty about the state of the world, the set of social choice rules implementable at (essentially)
undominated Nash equilibria is highly constrained compared with that in complete-information
settings. Their result is less relevant for settings, like ours, where a player has no uncertainty
about his own payoff type. In addition, in our purely possibilistic model, we have no requirement
on how big a player’s uncertainty about his opponents can be. Finally, instead of studying im-
plementation at all equilibria (of a given type), we study the fragility of implementation even at
some of them.

9 For instance, Cremer and McLean [11] show that, for certain valuation distributions, revenue equal to the highest val-
uation can be achieved in a single-good auction under Bayesian Nash equilibrium or in weakly dominant strategies. Also,
Abreu and Matsushima [1] show that, under some technical conditions, any Bayesian incentive compatible social-choice
function can be virtually implemented in iteratively undominated strategies.
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Artemov, Kunimoto, and Serrano [2] also model the players’ beliefs about each other via
distributions. But they assume that each player i’s belief about the others’ payoff types is from a
subset Qi of the set of all possible distributions, and that the Qi ’s are common knowledge among
the players. By doing so, they assume that the players have some knowledge about each other’s
first-order belief. They impose no constraint on the players’ higher-order beliefs, and assume that
no other player knows player i’s true first-order belief. Their model is still different from ours.
First of all, in our model a player’s belief is possibilistic instead of probabilistic. Second of all,
we do not assume that the players have any knowledge about each other. Moreover, their model
implicitly assumes that the players’ knowledge about each other’s first-order belief is correct –
i.e., player i’s true first-order belief is from Qi , while in our model a player can have arbitrary,
perhaps totally wrong, beliefs about others. Finally, the social-choice functions studied in [2] are
still defined over the players’ payoff types rather than their beliefs.

Our model of external information is also related to other notions in decision theory. In partic-
ular, Knight [20] and later Bewley [4] have considered players who have incomplete information
about their own types. Specifically, a Knightian player i does not know his own type θi , nor the
distribution Di from which θi has been drawn. Rather, he knows several distributions, one of
which is guaranteed to be Di . Recently Knightian players have also been studied in mechanism
design, in particular, by Lopomo, Rigotti, and Shannon [21] for games with a single player, and
by Chiesa, Micali, and Zhu [9] for auctions with multiple players.

Also, Hyafil and Boutilier [18] study regret-minimizing equilibria in games with multiple
players having possibilistic beliefs about each other. But they assume that the players’ beliefs
come from a common prior, and are always correct. Our model does not make these assumptions.

“Side bets”. Eliaz and Spiegler [12] study mechanism design in non-common prior settings, and
consider speculative bets between two players with heterogeneous prior beliefs. They character-
ize the conditions under which unmanipulable bets can be implemented at Bayesian equilibrium,
leading to speculative gains to both players. Their framework envisages only two players, two
actions for player 2, no actions for player 1, and two states of nature affecting only the util-
ity function of player 2. Player 1 is a pure “speculator”. Moreover, each player’s belief can be
specified by a single parameter, the probability that the first state of nature occurs, and both play-
ers’ beliefs are drawn independently from the same distribution. Differently, we only rely on the
players’ possibilistic beliefs, and do not have assumptions about where such beliefs come from.

It is important to realize that when the players have heterogeneous probabilistic beliefs it is
possible to implement speculative trade (“side-bets”) leading to gains for both players, but it is
not clear whether their result is generalizable to n players, let alone usable to derive ours.

However, our mechanism can be expressed in terms of degenerate side-bets. Namely, a player
i announcing (0, vi) in Step 1 can be interpreted as saying that he is not participating to the “bet”
and that his own value is vi ; while i announcing (1, vi) can be interpreted as saying that he “bets”
that some other player j will declare j ’s value to be at least vi .10

Prior-free mechanisms. Prior-free mechanisms for auctions have also been investigated (in
particular, by Baliga and Vohra [3], Segal [25], and Goldberg, Hartline, Karlin, Saks, and

10 This alternative language leaves totally open whether it is possible to design an interim individually rational mecha-
nism generating revenue always higher than our benchmark by leveraging first-order possibilistic beliefs. The hard case
continues to be when all conservative beliefs are correct. Indeed, with possibilistic beliefs, the players cannot compute
their “expected utilities” under certain bets, and thus can only bet on events that they are certain about, such as the values
smvi .
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Wright [14]), although not always in auctions of a single good. The term “prior-free” seems
to suggest that this approach be relevant to our possibilistic setting, but things are quite different.
For instance, all cited prior-free mechanisms work in dominant strategies, and we have proved
that no dominant-strategy mechanism can even approximate our revenue benchmark. More gen-
erally, as for all mechanisms, prior-free ones must be analyzed based on some underlying solution
concept, and as long as they use one of the solution concepts we prove inadequate for our bench-
mark, they automatically fail to guarantee it.

Impossibility results. Several impossibility results have been proved for implementation in
dominant strategies: for instance, for many forms of elections (see Gibbard [13] and Satterth-
waite [24]), for maximizing social welfare in a budget-balanced way (see Green and Laffont [15]
and Hurwicz [17]), and for maximizing revenue in general settings of quasi-linear utilities (see
Chen, Hassidim and Micali [6]). As for mechanisms working in undominated strategies, Jack-
son [19] shows that the set of social choice correspondences (fully) implementable by bounded
mechanisms (which include finite ones) is quite constrained. We note, however, that none of
these results imply ours for implementing the second-belief benchmark in either dominant or
undominated strategies (indeed, our results do not require full implementation).

Our own prior work. In [7] we studied mechanisms leveraging only (what we now call) cor-
rect external beliefs, and constructed one such mechanism for truly combinatorial auctions.
(This mechanism would also work with incorrect external beliefs, but under a slightly differ-
ent analysis.) In a later work with Valiant [8], we were able to extend our combinatorial-auction
mechanism so as to leverage also, to a moderate extent, the internal knowledge of the play-
ers.11 In neither of these two prior papers we proved any impossibility results: given that no
significant revenue guarantees were known for combinatorial auctions, we were satisfied with
achieving new, reasonable benchmarks. For instance, in [7] we showed the existence of a very
robust mechanism that, in any truly combinatorial auction and without any knowledge about the
players’ true valuations, generates within a factor of 2 the “maximum revenue that a player could
guarantee if he were charged to sell the goods to his competitors by means of take-it-or-leave-it
offers”.

Perhaps interestingly, our prior mechanisms were of extensive form, and we still do not know
whether equivalent, normal-form ones exist.

9. Future directions

We believe that much work can be done in leveraging the players’ possibilistic beliefs. Indeed,
in a recent and unpublished work with Rafael Pass, we exhibit single-good auction mechanisms
guaranteeing even higher revenue benchmarks (based on the players’ possibilistic higher-order
beliefs), under different solution concepts.

Beyond single-good auctions, we plan to investigate what social choice correspondences can
be implemented by leveraging the players’ possibilistic beliefs in other strategic settings.

Finally, we should investigate models where some of the players’ beliefs are possibilistic, and
some are probabilistic, but without assuming the correctness of such beliefs, let alone their being
common knowledge.

11 The emphasis of [8] actually was the possibility of leveraging the internal knowledge of coalitions rather than indi-
vidual ones.
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