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Abstract

In settings of incomplete information, we model the hierarchy of the players’ beliefs
about each other’s payoff types in a set-theoretic way, and leverage it to generate revenue
in single-good auctions. Our mechanisms have no clue about the players’ valuations or
beliefs. Yet, they work even when a player’s beliefs are totally arbitrary and wrong,
the beliefs of different players are inconsistent with each other, and the players are not
expected-utility maximizers.

For each k ≥ 0, we define a revenue benchmark Gk over the players’ order-k beliefs.
Our benchmarks are very demanding: they are monotonically non-decreasing in k; G0

is the second highest true valuation; and the gap between each pair Gk and Gk+1 can
be arbitrary. In particular, for each k ≥ 1, Gk can be arbitrarily larger than the highest
true valuation when the players’ beliefs are wrong, and can coincide with the highest
true valuation when all beliefs are correct.

We construct a single, interim individually rational (IIR) mechanism guaranteeing
revenue ≥ Gk − ε for all k and all profiles of order-(k+1) rationalizable actions, where
the underlying notion of rationality is the very weak one proposed by Aumann [4].

Finally, we separate the revenue achievable from order-k and order-(k+1) rational-
izable actions. Indeed we prove that, for any c > 0, no IIR mechanism can guarantee
revenue ≥ Gk − c when the played actions are at most order-k rationalizable.

Keywords: Epistemic game theory, incomplete information, single-good auctions



1 Introduction
Weak notions of rationality and set-theoretic beliefs have been long studied in epistemic game
theory. However, mechanism design traditionally assumes that the players are expected-
utility maximizers, and models their beliefs as probability distributions. In this paper, we
take an epistemic game-theoretic approach to design normal-form auctions that generate rev-
enue by leveraging the players’ (arbitrary) beliefs about each other’s valuations. Intuitively,
we adopt the following model of beliefs and rationality:
• A player’s order-0 beliefs consist of his own (payoff) type; his order-1 beliefs consist of
the set of all type subprofiles of his opponents that he considers possible (although he
may be unable to compare their relative likelihood); his order-2 beliefs consist of the set
of order-1 belief subprofiles of his opponents that he considers possible; and so on.
We do not require a player’s beliefs to be correct, nor the beliefs of different players to
be consistent with each other, and we do not assume that a mechanism (designer) has
any information about the players’ beliefs.
• Our players are not required to be expected-utility maximizers. Following Aumann [4],
an action ai of a player i is (order-1) rationalizable if, for every pure action a′i, there
exists some “state of the world that i considers possible” where ai performs as well as a′i.
We do not need to assume distributions over states: it suffices to work with “possibilistic”
beliefs. An action ai is order-(k + 1) rationalizable if it is rationalizable when i believes
that all other players use order-k rationalizable actions.

In this model we focus on the problem of generating revenue in single-good auctions, with
private values and quasi-linear utilities, via mechanisms that are interim individually rational
(IIR for short). In such mechanisms, given his own type, a player always has an action
guaranteeing him non-negative utility no matter what his opponents might do.

We put forward a sequence of very ambitious revenue benchmarks, G0, G1, . . ., where
each Gk is defined over the players’ order-k beliefs, such that:
(a) G0 coincides with the second-highest valuation;
(b) G0 ≤ G1 ≤ · · · , and each Gk+1 can be arbitrarily higher than Gk;
(c) If the players’ beliefs are correct, then each Gk is less than or equal to the highest

valuation, and even G1 can coincide with this valuation;
(d) If the players’ beliefs are wrong, then even G1 can be arbitrarily higher than the highest

valuation.
For these benchmarks we prove the following two results:

1. For every ε > 0, there exists an IIR mechanism Mε guaranteeing revenue ≥ Gk− ε for
every profile of order-(k + 1) rationalizable actions, but

2. For every c > 0, no IIR mechanism can guarantee revenue ≥ Gk − c when the players
use order-k rationalizable actions.

Remarks About Our First Result While the players’ beliefs may be arbitrarily com-
plex, our mechanism asks them to report very little information. Roughly speaking, Mε is a
second-price auction with a reserve price. The mechanism pays the players to receive infor-
mation about their beliefs, and then uses such information to set the reserve price. The idea
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of buying information from the players is not new. (In particular, it is used by the auction
mechanism of [14].) We are not aware, however, of any mechanism where higher-order beliefs
are being bought. In some sense, our mechanism pays to hear even the faintest rumors.

Let us point out that a player may receive negative utility in our mechanism. Indeed, if
the players are order-(k + 1) rational, their beliefs are wrong, and Gk exceeds the highest
valuation, then at least one player has negative utility, because in this case our mechanism
generates revenue higher than the highest valuation. Nonetheless, when a player chooses his
action, he believes that his utility will be non-negative, and thus willingly participates in our
mechanism. (This situation is not too dissimilar from that of a rational player who willingly
enters the stock market, yet might end up losing money if his beliefs are wrong.)

Finally, let us stress that our first result is stronger than saying that “for every k there
exists a mechanismMε,k that guarantees revenue ≥ Gk−ε.” Indeed, we need not know what
the rationality order of our players is. Our mechanism automatically guarantees revenue
≥ G0 − ε if the players are order-1 rational; revenue ≥ G1 − ε if they are order-2 rational;
revenue ≥ G2 − ε if they are order-3 rational; and so on. This guarantee is somewhat
unusual, as typically a mechanism is analyzed under a specific solution concept, and thus
under a specific rationality order.

Remarks About Our Second Result Notice that prior mechanisms required at most
order-2 rationality, or common belief of rationality, but nothing in between. Our second re-
sult proves a fundamental intuition: namely, that “each additional rationality order strictly
increases implementation power.” Indeed, each benchmark Gk separates what is imple-
mentable with order-k rationality from what is implementable with order-(k+ 1) rationality.

Our Approach as an Alternative Road Dominant-strategy and Bayesian mechanisms
are the typical approaches to settings of incomplete information, and single-good auctions
are no exception. We thus wish to contrast such mechanisms with ours.

The revenue of our mechanism is always at least the second-highest valuation, and some-
times arbitrarily higher. By contrast, the revenue of the second-price mechanism always
coincides with the second-highest valuation. The latter mechanism however does not rely on
higher-order rationality and does not depend on the players’ beliefs.

Our mechanism is also applicable in a Bayesian setting, because the players’ set-theoretic
beliefs are always defined (in particular, their order-1 beliefs can be taken to consist of
the supports of the relevant distributions). In a Bayesian setting, however, the players are
assumed to have very structured information about each other. In particular, the order-1
beliefs of a player specify not only which type subprofiles are possible for his opponents in his
mind, but also the exact relative likelihood of any pair of such subprofiles. Thus, a properly
chosen Bayesian mechanism should leverage this richer information better than ours.

The real advantage of our mechanism is in non-Bayesian settings, when a player is unable
to compare the relative likelihood of his opponents’ type subprofiles. In such settings our
mechanism successfully leverages the players’ beliefs whether or not they are consistent with
each other, and whether or not they are correct.

Each model and each mechanism indeed has its own range of applicability.
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2 Related Work
Ever since Harsanyi [21], the players’ beliefs in settings of incomplete information tradition-
ally use probabilistic representations (see Mertens and Zamir [24], Brandenburger and Dekel
[13], and the survey by Siniscalchi [26].)

Beliefs that are not probabilistic and players who do not maximize expected utilities
have been considered by Ellsberg [16]. He considers beliefs with ambiguity, but in decision
theory. Thus his work does not apply to higher-order beliefs or multi-player games. Higher-
order beliefs with ambiguity in multi-player games have been studied by Ahn [1]. His work,
however, is not concerned with implementation, and relies on several common knowledge
assumptions about the internal consistency of the players’ beliefs. Bodoh-Creed [12] charac-
terizes revenue-maximizing single-good auction mechanisms with ambiguity-averse players,
but without considering higher-order beliefs, and using a model quite different from ours.1
For more works on ambiguous beliefs, see Gilboa and Schmeidler [20], Bewley [11], and the
survey by Gilboa and Marinacci [19].

As we shall see in a moment, our belief model is a set-theoretic version of Harsanyi’s type
structures. Set-theoretic information has also been studied by Aumann [3], but assuming that
a player’s information about the “true state of the world” is always correct. Independently,
set-theoretic models of beliefs have been considered, in modal logic, by Kripke [23] (see [18]
for a well written exposition).

Rationalizability was defined by Pearce [25] and Bernheim [10] for complete-information
settings. We extend it to our setting, via an iterated elimination procedure similar to that
proposed by Dekel, Fudenberg, and Morris [15] in a Bayesian setting. For other iterated
elimination procedures and corresponding notions of rationalizability in Bayesian settings,
see Battigalli and Siniscalchi [7], Ely and Pęski [17], and Weinstein and Yildiz [27].

Robust mechanism design, as initiated by Bergemann and Morris [8], is close in spirit
to our work, but studies questions different from ours. In particular, it provides additional
justification for implementation in dominant strategies. Although defining social choice
correspondences over the players’ payoff types only (rather than their arbitrary higher-order
beliefs), Bergemann and Morris [9] explicitly point out that such restricted social choice
correspondences cannot represent revenue maximizing allocations.

Chen and Micali [14] have considered arbitrary (possibly correlated) valuations in single-
good auctions when the players’ beliefs are possibilistic. However, their work leverages
only the players’ first two orders of beliefs. Although our mechanism can be viewed as
a generalization of theirs, our and their respective analysis are very different. Indeed, we
analyze our mechanism using standard epistemic solution concepts with respect to a very
weak notion of rationality, whereas [14] introduced a new solution concept which assumes
mutual belief of rationality with respect to the players being expected-utility maximizers. In
fact, it is easy to see that our notion of order-2 rational implementation implies their notion
of conservative strict implementation, but not vice versa.

Finally, it is also easy to see that order-1 rational implementation (a special case of our
notion) implies implementation in undominated strategies [22], but not vice versa.

1In his model, the players have preferences of the Maximin Expected Utility form, the designer has a
prior distribution over the players’ valuations, the players’ beliefs are always correct (i.e., they all consider
the designer’s prior plausible), actions coincide with valuations, and the solution concepts used are dominant
strategy and Bayesian-Nash equilibrium.
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3 Our Epistemic Model
Our model is directly presented for single-good auctions, although it generalizes simply to
other strategic settings.

An auction is decomposed into two parts: a context, describing the outcomes and the
players (including their valuations and their beliefs), and a mechanism, describing the actions
available to the players and the process leading from actions to outcomes.

We focus on contexts with finitely many types and on deterministic normal-form mech-
anisms assigning finitely many (pure) actions to each player.

Contexts A context C consists of four components, C = (n, V, T , τ), where
• n is a positive integer, the number of players, and [n] , {1, . . . , n} is the set of players.
• V is a positive integer, the valuation bound.
• T , the type space, is a tuple of profiles T = (T,Θ, ν, B) where for each player i,

- Ti is a finite set, the set of i’s possible types;
- Θi = {0, 1, . . . , V } is the set of i’s possible valuations;
- νi : Ti → Θi is i’s valuation function; and
- Bi : Ti → 2T−i is i’s belief correspondence.

• τ , the true type profile, is such that τi ∈ Ti for all i.
Note that T is a possibilistic version of Harsanyi’s type structure [21]. As usual, in a context
C = (n, V, T , τ) each player i privately knows his own true type τi and his beliefs. Player
i’s beliefs are correct if τ−i ∈ Bi(τi). The profile of true valuations is θ , (νi(τi))i∈[n]. An
outcome is a pair (w,P ), where w ∈ {0, 1, . . . , n} is the winner and P ∈ Rn is the price
profile. If w > 0 then player w gets the good, otherwise the good is unallocated. If Pi ≥ 0
then player i pays Pi to the seller, otherwise i receives −Pi from the seller. Each player i’s
utility function ui is defined as follows: for each valuation v ∈ Θi and each outcome (w,P ),
ui(v, (w,P )) = v − Pi if w = i, and = −Pi otherwise. i’s utility for an outcome (w,P ) is
ui(θi, (w,P )), and sometimes written as ui(w,P ). The revenue of outcome (w,P ), denoted
by rev(w,P ), is

∑
i Pi.

The set of all contexts with n players and valuation bound V is denoted by Cn,V .

Mechanisms An auction mechanism M for Cn,V specifies
• The set A , A1 × · · · × An, where each Ai is i’s set of actions. We set A−i , ×j 6=iAj.
• An outcome function, typically denoted by M itself, mapping A to outcomes.

For each context C ∈ Cn,V , we refer to the pair (C,M) as an auction.
In an auction, when the mechanism M under consideration is clear, for any player i,

valuation v, and action profile a, we may simply use ui(v, a) to denote ui(v,M(a)), and
ui(a) to denote ui(M(a)).

A mechanism is interim individually rational (IIR) if, for every context C = (n, V, T , τ)
and every player i, there exists some action ai ∈ Ai such that for every a−i ∈ A−i,

ui(a) ≥ 0.
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Rationality Essentially, an action is order-k rationalizable if it survives the first k steps
of iterated deletion of interim strictly dominated actions. Let us be more precise.

Let Γ = ((n, V, T , τ),M) be a single-good auction, where T = (T,Θ, ν, B). For each
player i, each type ti ∈ Ti and each k ≥ 0, we define RAT ki (ti), the set of order-k rational-
izable actions for player i with type ti, inductively as follows:
• RAT 0

i (ti) = Ai.
• For each k ≥ 1, RAT ki (ti) is the set of actions ai ∈ RAT k−1i (ti) for which there does not
exist an alternative action a′i ∈ Ai such that ∀t−i ∈ Bi(ti) and ∀a−i ∈ RAT k−1−i (t−i),

ui(νi(ti)), (a
′
i, a−i)) > ui(νi(ti), (ai, a−i))

where RAT k−i(t−i) = ×j 6=iRAT kj (tj).

The set of order-k rationalizable action profiles for auction Γ is RAT k(τ) , ×iRAT ki (τi).
Every player is order-0 rational. A player is order-(k+ 1) rational if he uses order-(k+ 1)

rationalizable actions and believes his opponents to be order-k rational.
Note that our elimination procedure is consistent with Aumann’s notion of rationality and

higher-order rationality [4]. Also, if we allow an action to be dominated by a mixed action,
then our notion can be alternatively defined by eliminating never-best-responses in a way
analogous to that of interim correlated rationalizability, as proposed by Dekel, Fudenberg,
and Morris [15].

Finally, note that each player can, for every k, compute his order-k rationalizable actions
based on his true type τi and his beliefs.

Epistemic Implementation An (epistemic) revenue benchmark b is a function mapping
contexts to reals. A mechanism M order-k rationally implements b for Cn,V if, for every
context C ∈ Cn,V and every profile a of order-k rationalizable actions in the auction (C,M),

rev(M(a)) ≥ b(C).

Our notion of implementation does not depend on common belief of rationality (a very
strong assumption); does not require any consistency about the beliefs of different players;
and is by definition “closed under Cartesian product.” 2

In our notion the mechanism knows only the number of players and the valuation bound.
(One may consider weaker notions where the mechanism is assumed to know —say— the
entire underlying type space, but not the players’ true types. Of course more revenue bench-
marks might be implementable under such weaker notions.)

4 Our Epistemic Benchmarks
Below we recursively define the epistemic revenue benchmarks Gk for single-good auc-
tions, based on the players’ order-k beliefs. Each Gk is a function mapping a context

2For a given solution concept S this means that S is of the form S1 × · · · × Sn, where each Si is a subset
of i’s actions. This property is important from an epistemic perspective, because it overcomes the “epistemic
criticism” of the Nash equilibrium concept, see [6, 5, 2]. It is also important from an implementation
perspective. In particular, implementation at all Nash equilibria is not closed under Cartesian product, and
thus mismatches in the players’ beliefs (about each other’s equilibrium actions) may easily yield undesired
outcomes.
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C = (n, V, T , τ) to a real number. As a warm-up, we first informally describe G0, G1

and G2.
• Let g0i = θi, the true valuation, for each player i. (The interpretation of g0i is that player
i “believes” that there exists some player —i.e., himself!— who values the good for at
least g0i .)
Then G0 is defined to be the second highest value among all values g0i .
• Let g1i be the highest value c such that player i believes that, no matter what the true
type profile may be, there always exists some player j (whose identity need not be known
to i) with g0j ≥ c.
Then G1 is defined to be the second highest value among all values g1i .
• Let g2i be the highest value c such that player i believes that there always exists some
player j (whose identity need not be known to i) with g1j ≥ c.
Then G2 is defined to be the second highest value among all values g2i .

Note that G0 clearly coincides with the second highest true valuation. Also note that, since
we allow them to be arbitrary, the players’ beliefs can be totally wrong. In this case, for
k > 0, Gk may vastly exceed the highest true valuation. For instance, consider the case of
two players, both valuing the good for 10, where player 1 believes that player 2 values the
good for at least 200, and player 2 believes that player 1 values it for 300. Then G1 = 200.

We now provide the formal definition.

Definition 1. Let C = (n, V, T , τ) be a context where T = (T,Θ, ν, B). For each player i
and each integer k ≥ 0, the function gki is defined as follows: ∀ ti ∈ Ti,

g0i (ti) = νi(ti) and gki (ti) = min
t−i∈Bi(ti)

max
j∈[n]

gk−1j (tj) ∀k ≥ 1.

We refer to gki (ti) as the order-k guaranteed value of i with type ti.
The order-k revenue benchmark Gk maps C to the second highest value in {gki (τi)}i∈[n].
We so name gki (ti) because, if gki (ti) ≥ c then player i with type ti believes that there

always exists some player j(1) who believes that there always exists a player j(2) ... who
believes that there always exists some player j(k) whose true valuation is at least c.

The gki ’s are monotonically non-decreasing in k. Indeed, for each player i, integer k > 0
and type ti ∈ Ti, we have

gki (ti) = min
t−i∈Bi(ti)

max
j∈[n]

gk−1j (tj) ≥ min
t−i∈Bi(ti)

gk−1i (ti) = gk−1i (ti).

Thus Gk(C) ≥ Gk−1(C) for every context C and k > 0.
It is easy to see that, for every context C, if the players’ beliefs are correct, then for each

player i and each k ≥ 0, we have gki (τi) ≤ maxj θj, and thus Gk(C) ≤ maxj θj.
For any ε > 0, Gk − ε is the revenue benchmark mapping every context C to Gk(C)− ε.

5 Our Mechanism
We now construct a mechanism that leverages the players’ beliefs up to some order bound K
that can be arbitrarily high.3 That is, if K = 99, then our mechanism leverages the players’

3The reliance on K is not crucial —in fact, if we are willing to make the action space infinite, then we
do not need K and our mechanism can leverage the players’ beliefs up to any order.
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order-0 up to order-99 beliefs about valuations when they happen to be respectively order-1
up to order-100 rational, but does not leverage the players’ order-100 beliefs even if they
happen to be order-101 rational or more.

Our mechanism is uniformly constructed on parameters n, V , K, and a constant ε > 0.
An action of a player i has three components: his own identity (for convenience only), a
belief-order `i ∈ {0, 1, . . . , K}, and a value vi ∈ {0, 1, . . . , V }. In the description below, the
players act only in Step 1, and Steps a through c are just “conceptual steps taken by the
mechanism”.

The expression “X := x” denotes the operation that sets or resets variable X to value x.

Mechanism Mn,V,K,ε

1: Each player i, publicly and simultaneously with the others, announces a triple (i, `i, vi) ∈
{i} × {0, 1, . . . , K} × {0, 1, . . . , V }.
(Allegedly, if i is order-k rational, then `i = min{` : g`i (τi) = gk−1i (τi)} and vi = g`i (τi).)

a: Order the n announced triples according to v1, . . . , vn decreasingly, and break ties ac-
cording to `1, . . . , `n increasingly. If there are still ties, then break them according to
the players’ identities increasingly.

b: Let w be the player in the first triple, Pw := 2ndv , maxj 6=w vj, and Pi := 0 ∀i 6= w.

c: ∀i, Pi := Pi − δi, where δi , ε
2n

[
1 + vi

1+vi
− `i

(1+`i)(1+V )2

]
.

The final outcome is (w,P ). We refer to δi as player i’s reward.

Note that our mechanism never leaves the good unsold.

5.1 Analysis of Our Mechanism

Theorem 1. For each n, V,K and ε > 0, the mechanism Mn,V,K,ε is IIR and, for each
k ∈ {0, 1, . . . , K}, order-(k + 1) rationally implements the benchmark Gk − ε for Cn,V .

Both in our intuitive analysis and our proof we arbitrarily fix n, V , K, ε, and a context
C = (n, V, T , τ) with T = (T,Θ, ν, B); and simply denote Mn,V,K,ε by M .

5.1.1 Intuitive Analysis

Showing that M is IIR is easy. In fact, for each player i, let ai , (i, 0, θi). Then i’s utility
ui(ai, a

′
−i) is always non-negative, no matter which action subprofile a′−i the other players

choose.
Let us now sketch the proof of our revenue lowerbound, namely,

rev(M(a)) ≥ Gk(C)− ε

for every k ∈ {0, 1, . . . , K} and every action profile a ∈ RAT k+1(τ).
Notice that

vi ≥ gki (τi) for all i implies 2ndv ≥ Gk(C),

and that the second inequality immediately implies the desired revenue lowerbound, because
each reward δi is at most ε

n
. Therefore it only remains to show that
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vi ≥ gki (τi) for every action ai = (i, `i, vi) ∈ RAT k+1
i (τi).

We proceed by contradiction. Assuming vi < gki (τi), we derive a contradiction by proving
the existence of another action âi such that for each type subprofile t−i ∈ Bi(τi) and each
action subprofile a′−i ∈ RAT k−i(t−i),

ui(ai, a
′
−i) < ui(âi, a

′
−i).

Set âi = (i, v̂i, ˆ̀
i), where v̂i = gki (τi) and ˆ̀

i = min{` : g`i (τi) = gki (τi)}, and refer to âi as the
alleged action.

To begin with, because v̂i > vi by construction, no matter what the other players do,
using âi gives player i a higher reward than using ai. But getting a higher reward is not
enough to prove the desired inequality. In particular, when gki (τi) > g0i (τi), the following
may occur.

“Bad Case”: Player i does not get the good with ai, but gets the good and pays a price
greater than θi with âi.

In this case i’s utility is positive with ai, while negative with âi. However, we show that
the bad case never occurs according to player i’s belief. That is, assuming order-(k + 1)
rationality, we show that
(∗) if gki (τi) > g0i (τi), then player i believes that he never gets the good by using âi.
We derive (∗) by proving, by induction, the following two properties: for each player j, each
type tj, and each order-k rationalizable action aj = (j, `j, vj),
1. vj ≥ gk−1j (tj), and

2. if vj = gk−1j (tj), then `j ≤ min{` : g`j(tj) = gk−1j (tj)}.
We omit sketching the proofs of these properties, but explain why they imply (∗).

By the definition of gki (τi), for any type profile t = (τi, t−i) with t−i ∈ Bi(τi), there exists
some player j whose order-(k−1) guaranteed value gk−1j (tj) is at least gki (τi). Since i believes
that such a player j uses order-k rationalizable actions, by Property 1 he also believes that
vj ≥ gk−1j (tj). We now distinguish two cases.

If vj > gki (τi) = v̂i, then of course j 6= i, and player i cannot get the good by using âi.
Thus (∗) trivially holds. What if vj = gki (τi)?

In this case, because vj ≥ gk−1j (tj) ≥ gki (τi), we have vj = gk−1j (tj) as well. According
to Property 2, player j, who uses order-k rationalizable actions in i’s belief, announces
`j ≤ min{` : g`j(tj) = gk−1j (tj)}. Because gki (τi) > g0i (τi), it can be proved that `j is at most
ˆ̀
i − 1, that is, `j < ˆ̀

i. Given how the players’ announced triples are ordered, j’s triple is
ordered before i’s. Thus i cannot get the good and (∗) holds.

To summarize, if player i believes that his opponents are going to use order-k rational-
izable actions, then he also believes that it is “safe” for him to use his alleged action, which
gives him the biggest reward without any risk of being over-charged. Thus bidding any value
strictly less than gki (τi) is interim strictly dominated by the alleged action, and cannot be
order-(k + 1) rationalizable. This concludes our intuitive analysis.

5.1.2 Proof of Theorem 1

We break our proof into simpler claims.
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Claim 1. M is IIR.

Proof. Arbitrarily fix i ∈ [n] and a′−i ∈ A−i, and let ai = (i, 0, θi). We need to prove

ui(ai, a
′
−i) ≥ 0. (1)

In the play of (ai, a
′
−i), if w 6= i, then we have Pi = −δi, and thus ui(ai, a′−i) = −Pi = δi > 0.

If w = i, then we have θi ≥ 2ndv and Pi = 2ndv − δi. Thus

ui(ai, a
′
−i) = θi − Pi = θi − 2ndv + δi ≥ δi > 0.

Therefore Equation 1 holds, and so does Claim 1. �
To prove our revenue lowerbound, we make use of the following relations. For any two

pairs of non-negative integers (`, v) and (`′, v′), we write

(`, v) � (`′, v′)

if v > v′ or (v = v′ and ` < `′). We write (`, v) � (`′, v′) if (`, v) � (`′, v′) or (`, v) = (`′, v′).

Claim 2. Let δi and δ′i respectively be the rewards that player i gets in Step c according to
the action profiles (ai, a−i) and (a′i, a−i), where ai = (i, `i, vi) and a′i = (i, `′i, v

′
i). Then,

(`i, vi) � (`′i, v
′
i) implies δi > δ′i.

Proof. By definition, (`i, vi) � (`′i, v
′
i) means that either vi > v′i, or vi = v′i and `i < `′i.

If vi > v′i, then we have

δi − δ′i =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + V )2

]
− ε

2n

[
1 +

v′i
1 + v′i

− `′i
(1 + `′i)(1 + V )2

]
=

ε

2n

[
vi − v′i

(1 + vi)(1 + v′i)
− `i − `′i

(1 + `i)(1 + `′i)(1 + V )2

]
>

ε

2n

[
1

(1 + V )2
− `i − `′i

(1 + `i)(1 + `′i)(1 + V )2

]
>

ε

2n

[
1

(1 + V )2
− 1

(1 + V )2

]
= 0,

where the first inequality holds because v′i < vi ≤ V , and the second because `i−`′i
(1+`i)(1+`′i)

≤
`i

1+`i
< 1. Thus δi > δ′i as desired.
If vi = v′i and `i < `′i, then we have

δi − δ′i =
ε

2n
· `′i − `i

(1 + `i)(1 + `′i)(1 + V )2
> 0.

Thus again δi > δ′i.
Therefore Claim 2 holds. �
Let us now prove that a player i never “underbids his beliefs”.

Claim 3. ∀ k ∈ {1, . . . , K + 1} and ∀ai = (i, `i, vi) ∈ RAT ki (τi),

(`i, vi) � (min{` : g`i (τi) = gk−1i (τi)}, gk−1i (τi)).
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Proof. We prove Claim 3 by induction on k. Because the analyses for the Base Case (k = 1)
and the Inductive Step (k > 1) are almost the same, below we focus on the Inductive Step,
and point out the differences with the Base Case when needed.

Assume that Claim 3 holds for all k′ < k. To prove it for k we proceed by contradiction.
Letting ˆ̀

i = min{` : g`i (τi) = gk−1i (τi)} and assuming (ˆ̀
i, g

k−1
i (τi)) � (`i, vi), we shall

prove that there is another action âi such that, arbitrarily fixing t−i ∈ Bi(τi) and a′−i ∈
RAT k−1−i (t−i), we have

ui(θi, (âi, a
′
−i)) > ui(θi, (ai, a

′
−i)), (2)

contradicting the fact ai ∈ RAT ki (τi). Let v̂i = gk−1i (τi) and set

âi , (i, ˆ̀
i, v̂i).

To prove Equation 2, let δ̂i and δi respectively be the rewards that player i gets in Step
c in the plays of (âi, a

′
−i) and (ai, a

′
−i). Because (ˆ̀

i, v̂i) � (`i, vi), by Claim 2 we have

δ̂i > δi.

Let (ŵ, P̂ ) and (w,P ) respectively be the outcomes of the two plays, and denote a′j by
(j, `′j, v

′
j) for each j 6= i. We distinguish two cases.

Case 1. ˆ̀
i = 0.

This case applies to both the Base Case (k = 1) and the Induction Step (k > 1). In this
case we have v̂i = gk−1i (τi) = g0i (τi) = θi, and we further distinguish three subcases.
Subcase 1.1. w = i.

In this subcase, we have ŵ = i as well, since according to M the triple (i, ˆ̀
i, v̂i)

is ordered before (i, `i, vi). Therefore Pi = maxj 6=i v
′
j − δi and P̂i = maxj 6=i v

′
j − δ̂i.

Accordingly,

ui(θi, (âi, a
′
−i)) = θi − P̂i = θi −max

j 6=i
v′j + δ̂i > θi −max

j 6=i
v′j + δi = θi − Pi = ui(θi, (ai, a

′
−i)),

where the inequality holds because δ̂i > δi. Thus Equation 2 holds.
Subcase 1.2. w 6= i and ŵ = i.

In this subcase, v̂i ≥ maxj 6=i v
′
j, Pi = −δi, and P̂i = maxj 6=i v

′
j − δ̂i. Accordingly,

ui(θi, (âi, a
′
−i)) = θi − P̂i = θi −max

j 6=i
v′j + δ̂i = v̂i −max

j 6=i
v′j + δ̂i ≥ δ̂i

> δi = −Pi = ui(θi, (ai, a
′
−i)),

Thus Equation 2 holds.
Subcase 1.3. w 6= i and ŵ 6= i.

In this subcase, Pi = −δi and P̂i = −δ̂i. Accordingly,

ui(θi, (âi, a
′
−i)) = −P̂i = δ̂i > δi = −Pi = ui(θi, (ai, a

′
−i)),

and again Equation 2 holds.
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Case 2. ˆ̀
i ≥ 1.

This case applies to the Induction Step only. (In the Base Case we have ˆ̀
i = 0.)

In this case, we shall prove that ŵ 6= i. To do so, first note that, by the definition of ˆ̀
i,

g
ˆ̀
i−1
i (τi) < g

ˆ̀
i
i (τi). (3)

Let t be the type profile (τi, t−i). Because t−i ∈ Bi(τi), we have

g
ˆ̀
i
i (τi) = min

t′−i∈Bi(τi)
max

{
g
ˆ̀
i−1
i (τi),max

j′ 6=i
g
ˆ̀
i−1
j′ (t′j′)

}
≤ max

j′
g
ˆ̀
i−1
j′ (tj′). (4)

Combining Equations 3 and 4, we have

g
ˆ̀
i−1
i (τi) < max

j′
g
ˆ̀
i−1
j′ (tj′).

Therefore, letting j = argmaxj′ g
ˆ̀
i−1
j′ (tj′) with ties broken lexicographically, we have

j 6= i and g
ˆ̀
i−1
j (tj) ≥ g

ˆ̀
i
i (τi),

and thus
(ˆ̀
i − 1, g

ˆ̀
i−1
j (tj)) � (ˆ̀

i, g
ˆ̀
i
i (τi)). (5)

Because ˆ̀
i ≤ k−1 and a′j ∈ RAT k−1j (tj), we have a′j ∈ RAT

ˆ̀
i
j (tj). Thus by the inductive

hypothesis4 we have

(`′j, v
′
j) � (min{` : g`j(tj) = g

ˆ̀
i−1
j (tj)}, g

ˆ̀
i−1
j (tj)) � (ˆ̀

i − 1, g
ˆ̀
i−1
j (tj)),

which together with Equation 5 implies

(`′j, v
′
j) � (ˆ̀

i, g
ˆ̀
i
i (τi)) = (ˆ̀

i, g
k−1
i (τi)) = (ˆ̀

i, v̂i). (6)

By Equation 6 we have that the triple (j, `′j, v
′
j) is ordered before (i, ˆ̀

i, v̂i) according to
M , and thus ŵ 6= i. Since (ˆ̀

i, v̂i) � (`i, vi), we have w 6= i as well. Therefore Pi = −δi
and P̂i = −δ̂i, which implies

ui(θi, (âi, a
′
−i)) = −P̂i = δ̂i > δi = −Pi = ui(θi, (ai, a

′
−i)).

Thus Equation 2 holds.
In sum, Equation 2 holds in all possible cases, contradicting the fact ai ∈ RAT ki (τi).

Therefore Claim 3 holds. �
Following Claim 3, we have that for every action profile a ∈ RAT k+1(τ), 2ndv is at least

the second highest value in the set {gki (τi)}i∈[n], which is precisely Gk(C). Because for each
player i

δi =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + V )2

]
≤ ε

2n
· 2 =

ε

n
,

we have

rev(M(a)) = 2ndv −
∑
i

δi ≥ Gk(C)−
∑
i

δi ≥ Gk(C)−
∑
i

ε

n
= Gk(C)− ε.

This concludes the proof of Theorem 1.

4Claim 3 is stated with respect to context C and player i. But due to the arbitrary choice of C and i,
the claim applies also to context C ′ = (n, V, T , (τ−j , tj)) and player j.
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6 Impossibility Results for Epistemic Implementation
Let us now prove that order-(k+ 1) rationality is necessary to guarantee the benchmark Gk.

Theorem 2. For every n, V, k, and c < V , no IIR mechanism order-k rationally implements
Gk − c for Cn,V .

Proof. We first prove the theorem for n = 2. Arbitrarily fix V, k > 0 (the case where k = 0
is degenerated and will be briefly discussed at the end), c < V , and an IIR mechanism M .
We need to prove the following statement:

There exist C = (2, V, T , τ) ∈ C2,V and a ∈ RAT k(τ) s.t. rev(M(a)) < Gk(C)− c. (7)

To prove statement 7, we set T = (T,Θ, ν, B) where for each player i = 1, 2,
• Ti = {ti,` : ` ∈ {0, 1, . . . , k}};
• νi(ti,`) = 0 ∀` < k, and νi(ti,k) = V ; and
• Bi(ti,`) = {t3−i,`+1} ∀` < k, and Bi(ti,k) = {t3−i,k}.

We set τi = ti,0 for each i.
The type space T is illustrated in Figure 1, where a circle represents a type, the number

inside a circle represents the corresponding valuation, and the arrows represent the belief
correspondences.
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rr
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??
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0
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V
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τ2 = t2,0 t2,1 t2,2 t2,k−1 t2,k

Figure 1: Type space T

Let us now introduce an auxiliary type space T ′ = (T ′,Θ, ν ′, B′) where for each player i,
• T ′i = {t′i,` : ` ∈ {0, 1, . . . , k}};
• ν ′i(t′i,`) = 0 ∀`; and
• B′i(t′i,`) = {t′3−i,`+1} ∀` < k, and B′i(t′i,k) = {t′3−i,k}.

Let C ′ = (2, V, T ′, τ ′) where τ ′i = t′i,0 for each i. The type space T ′ is illustrated in Figure 2.
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Figure 2: Type space T ′
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In context C, we have g0i (ti,k) = g1i (ti,k−1) = · · · = gk−1i (ti,1) = gki (ti,0) = V for each i.
Thus

Gk(C) = V, and Gk(C)− c = V − c > 0.

Accordingly, to prove statement 7 it suffices to prove the following two propositions:

RAT k(τ) = RAT k(τ ′); (8)

and
there exists a ∈ RAT k(τ ′) such that rev(M(a)) ≤ 0. (9)

To prove Equation 8, recall that by definition

RAT 0
i (ti,`) = RAT 0

i (t′i,`) = Ai for each i and each ` ≤ k,

where Ai is the set of actions for player i in M . Because νi(ti,`) = ν ′i(t
′
i,`) = 0 for each i and

each ` < k, according to our iterated deletion procedure and the construction of T and T ′,
by induction we have that for each `′ ≤ k,

RAT `
′
i (ti,`) = RAT `

′
i (t′i,`) for each i and each ` ≤ k − `′.

In particular, for `′ = k we have RAT ki (ti,0) = RAT ki (t′i,0), that is, RAT ki (τi) = RAT ki (τ ′i),
for each i. Thus Equation 8 holds.

To prove statement 9, note that τ ′i = 0 for each i. Thus for each action profile a, we have
rev(M(a)) = −u1(0, a)− u2(0, a). Accordingly, it suffices to prove the following statement:

there exists a ∈ RAT k(τ ′) such that ui(0, a) ≥ 0 for each i. (10)

To do so, note that M is IIR, which implies that for each player i = 1, 2 there exists an
action ai such that

ui(0, (ai, a
′
3−i)) ≥ 0 ∀a′3−i ∈ A3−i.

This equation and the definition of RAT 1
i (τ ′i) together imply that for each i there exists an

action a1i ∈ RAT 1
i (τ ′i) such that

ui(0, (a
1
i , a
′
3−i)) ≥ 0 ∀a′−i ∈ A3−i = RAT 0

3−i(t
′
3−i,1).

(Indeed, if ai ∈ RAT 1
i (τ ′i) then a1i = ai, else a1i is the action interim strictly dominating ai.)

Because B′i(τ ′i) = B′i(t
′
i,0) = {t′3−i,1}, by induction we conclude that for each i there exists

an action aki ∈ RAT ki (τ ′i) such that

ui(0, (a
k
i , a
′
3−i)) ≥ 0 ∀a′3−i ∈ RAT k−13−i (t′3−i,1).

Note that ak ∈ RAT k(τ ′). Accordingly, to prove Statement 10 it suffices to show that
ak3−i ∈ RAT k−13−i (t′3−i,1) for each i, or equivalently,

aki ∈ RAT k−1i (t′i,1) ∀i, (11)

because then we have ui(0, ak) ≥ 0 for each i, as desired. To prove Equation 11, again recall
that by definition

RAT 0
i (t′i,`) = RAT 0

i (t′i,`+1) = Ai for each i and each ` < k.

13



Because the players’ valuations are always 0 in T ′, we have

RAT 1
i (t′i,`) = RAT 1

i (t′i,`+1) for each i and each ` < k − 1.

By induction, we finally have

RAT k−1i (t′i,0) = RAT k−1i (t′i,1) for each i.

Accordingly, we have aki ∈ RAT ki (τ ′i) = RAT ki (t′i,0) ⊆ RAT k−1i (t′i,0) = RAT k−1i (t′i,1) for each
i. Thus Equation 11 holds, and so does statement 10 and statement 9.

Combining Equation 8 and statement 9, we have that statement 7 holds, and thus The-
orem 2 holds for n = 2 and k > 0.

In the degenerated case where n = 2 and k = 0, the analysis is very similar. We consider
context C = (2, V, T , τ) with T = (T,Θ, ν, B), such that for each player i:

Ti = {ti}; νi(ti) = V ; and Bi(ti) = {t3−i}.

Also consider the auxiliary context C ′ = (2, V, T ′, τ ′) with T ′ = (T ′,Θ, ν ′, B′), such that for
each player i:

T ′i = {t′i}; ν ′i(t
′
i) = 0; and B′i(t

′
i) = {t′3−i}.

Because M is IIR, in auction (C ′,M) there exists an action profile a such that ui(0, a) ≥ 0
for each i. But then rev(M(a)) ≤ 0 < V − c = G0(C) − c. Because a ∈ A = RAT 0(τ), M
cannot order-0 rationally implement G0 − c.

In sum, Theorem 2 holds for n = 2. For n > 2, we construct the desired type spaces (and
contexts) by adding dummy players to the type spaces T and T ′ of the 2-player case. The
analysis is essentially the same, and thus omitted.

7 Variants and Conclusions
The total reward given to the players by our mechanism is upperbounded by an absolute
value ε > 0. A similar analysis shows that the mechanism could choose to reward the players
with an ε fraction of the price charged to the winner. In this case, the guaranteed revenue
would be (1− ε)Gk rather than Gk − ε.

Although studied for generating revenue in single-good auctions, our approach is quite
general. In applications where the setting is not Bayesian, it may be important to leverage the
players’ higher-order set-theoretic beliefs. Indeed, attractive social choice correspondences
defined over such beliefs may be studied and successfully implemented.

Acknowledgements
We have greatly benefitted from the comments of a wonderful anonymous referee.

The first two authors thank Shafi Goldwasser, Andrew Lo, and Ron Rivest for their
comments. The third author wishes to thank Joseph Halpern for introducing him to the
area of epistemic game theory, and for hours and hours of enlightening discussions about it.
This work has been partially supported by ONR Grant No. N00014-09-1-0597.

14



References
[1] D. S. Ahn. Hierarchies of ambiguous beliefs. Journal of Economic Theory, Vol. 136, pp.

286-301, 2007.

[2] G. B. Asheim, M. Voorneveld, and J. W. Weibull. Epistemically stable action sets.
Working paper, 2009.

[3] R. Aumann. Agreeing to Disagree. Annals of Statistics, Vol. 4, pp. 1236-1239, 1976.

[4] R. Aumann. Backwards Induction and Common Knowledge of Rationality. Games and
Economic Behavior, Vol. 8, pp. 6-19, 1995.

[5] R. Aumann and A. Brandenburger. Epistemic Conditions for Nash Equilibrium. Econo-
metrica, Vol. 63, No. 5, pp. 1161-1180, 1995.

[6] K. Basu and J.W. Weibull. Action subsets closed under rational behavior. Economics
Letters, Vol. 36, pp. 141-146, 1991.

[7] P. Battigalli and M. Siniscalchi. Rationalization and incomplete information. B. E.
Journal of Theoretical Economics, Vol. 3, Iss. 1, 2003.

[8] D. Bergemann and S. Morris. Robust mechanism design. Econometrica, Vol. 73, No. 6,
pp. 1771-1813, 2005.

[9] D. Bergemann and S. Morris. Robust Mechanism Design: An Introduction. In D. Berge-
mann and S. Morris, Robust Mechanism Design, World Scientific Press, 2012.

[10] B. Bernheim. Rationalizable Strategic Behavior. Econometrica, Vol. 52, No. 4, pp. 1007-
1028, 1984.

[11] T. F. Bewley. Knightian decision theory. Part I. Decisions in Economics and Finance,
Vol. 25, pp. 79-110, 2002.

[12] A. L. Bodoh-Creed. Ambiguous beliefs and mechanism design. Games and Economic
Behavior, Vol. 75, pp. 518-537, 2012.

[13] A. Brandenburger and E. Dekel. Hierarchies of beliefs andcommonknowledge. Journal
of Economic Theory, Vol. 59, pp. 189-198, 1993.

[14] J. Chen and S. Micali. Mechanism Design with Set-Theoretic Beliefs. Symposium on
Foundations of Computer Science (FOCS), pp. 87-96, 2011.

[15] E. Dekel, D. Fudenberg, S. Morris. Interim correlated rationalizability. Theoretical Eco-
nomics, Vol. 2, pp. 15-40, 2007.

[16] D. Ellsberg. Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics,
Vol. 75, pp. 643-669, 1961.

[17] J. C. Ely and M. Pęski. Hierarchies of belief and interim rationalizability. Theoretical
Economics, Vol. 1, pp. 19-65, 2006.

15



[18] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT Press,
2003.

[19] I. Gilboa and M. Marinacci. Ambiguity and the Bayesian paradigm. Working paper,
2011.

[20] I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. Journal
of Mathematical Economics, Vol. 18, pp. 141-153, 1989.

[21] J. Harsanyi. Games with Incomplete Information Played by “Bayesian” Players, I-III.
Management Science, Vol. 14, pp. 159-182, 320-334, 486-502. 1967-1968.

[22] M. Jackson. Implementation in Undominated Actions: A Look at Bounded Mechanisms.
The Review of Economic Studies, Vol. 59, pp. 757-775, 1992.

[23] S. Kripke. Semantical analysis of modal logic I: normal modal propositional calculi.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, Vol. 9, pp. 67-96,
1963.

[24] J. Mertens and S. Zamir. Formulation of Bayesian analysis for games with incomplete
information. International Journal of Game Theory, Vol. 14, pp. 1-29, 1985.

[25] D. Pearce. Rationalizable strategic behavior and the problem of perfection. Economet-
rica, Vol. 52, No. 4, pp. 1029-1050, 1984.

[26] M. Siniscalchi. Epistemic Game Theory: Beliefs and Types. In S. N. Durlauf and L.
E. Blume (eds.), The New Palgrave Dictionary of Economics, Second Edition. Palgrave
Macmillan, 2008.

[27] J. Weinstein and M. Yildiz. A Structure Theorem for Rationalizability with Application
to Robust Predictions of Refinements. Econometrica, 75(2), pp. 365-400, 2007.

16


