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ABSTRACT
We investigate the problem of optimal mechanism design,
where an auctioneer wants to sell a set of goods to buyers, in
order to maximize revenue. In a Bayesian setting the buyers’
valuations for the goods are drawn from a prior distribution
D, which is often assumed to be known by the seller. In this
work, we focus on cases where the seller has no knowledge at
all, and “the buyers know each other better than the seller
knows them”. In our model, D is not necessarily common
knowledge. Instead, each buyer individually knows a poste-
rior distribution associated with D. Since the seller relies on
the buyers’ knowledge to help him set a price, we call these
types of auctions crowdsourced Bayesian auctions.

For this crowdsourced Bayesian model and many envi-
ronments of interest, we show that, for arbitrary valuation
distributions D (in particular, correlated ones), it is possi-
ble to design mechanisms matching to a significant extent
the performance of the optimal dominant-strategy-truthful
mechanisms where the seller knows D.

To obtain our results, we use two techniques: (1) proper
scoring rules to elicit information from the players; and (2) a
reverse version of the classical Bulow-Klemperer inequality.
The first lets us build mechanisms with a unique equilibrium
and good revenue guarantees, even when the players’ second
and higher-order beliefs about each other are wrong. The
second allows us to upper bound the revenue of an optimal
mechanism with n players by an n

n−1
fraction of the revenue

of the optimal mechanism with n − 1 players. We believe
that both techniques are new to Bayesian optimal auctions
and of independent interest for future work.
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1. INTRODUCTION
At the core of Bayesian mechanism design is the assump-

tion that the true valuation profile of the players, θ, has been
drawn from a distribution D over the set of all possible val-
uation profiles. Different assumptions are then made about
who knows how much about D. Most mechanisms work un-
der the assumption that the designer knows D. We call this
assumption the “Centralized Bayesian Assumption.”

Notably, this is the assumption under which Myerson [25]
constructed a truthful mechanism that maximizes revenue.
We are instead interested in designing auctions in Bayesian
settings in which the players know each other better than the
designer knows them.

That is, we wish to investigate settings where the auc-
tioneer is not an expert, but might obtain good revenue by
leveraging the collective knowledge of the buyers about each
other. This requires an assumption about how much players
know about D. For instance, the notion of Bayesian Nash
equilibrium presupposes the Common-Knowledge Assump-
tion: D is common knowledge to the players.

This assumption is of course quite strong, because com-
mon knowledge is a non-trivial requirement. Yet, note that
Bayesian Nash equilibrium actually requires more. Namely,
it requires that

each player i has no information about the valu-
ations of his opponents beyond D|θi, that is, D’s
posterior corresponding to his own valuation θi. In-
deed, if i succeeds in gathering additional information,
then he might have plenty of incentive to deviate from
his Bayesian Nash equilibrium strategy.1

This additional requirement is actually strong, since it is
very natural for a player in a high-stake game to gather
as much information about his opponents as he can. For
example, a bank participating in a treasury auction has an
incentive (and the means) to learn much about its rivals
before placing its bid.

Removing this additional assumption is our main goal. To
do so, we rely on what we term the “Crowdsourced Bayesian
Assumption.” Informally, we assume that the designer has
no information about D, while each player i, in addition to
his valuation, individually (as opposed to “commonly”) does

1The mechanism of Cremer and McLean [13] is an example
of additional information changing the players’ incentives.
This mechanism is further described in Appendix F.



not necessarily know just D|θi, but may know a posterior
distribution possibly more informative than D|θi.

Under the crowdsourced Bayesian assumption, we prove
that it is possible to design auctions, all the way from single-
good to truly combinatorial, whose revenue almost coin-
cides with that obtainable under the classical centralized-
Bayesian assumption. The idea of obtaining approximate
revenue without resorting to common knowledge assump-
tions has been widely explored in both computer science
and economics, as we describe in the following section.

1.1 Related Work

Implementation Theory.
The idea of using players’ knowledge to guarantee the

good performance of a mechanism is not new, and indeed
is at the center of Implementation Theory. We refer inter-
ested readers to surveys by Maskin and Sjostrom [24] and
by Jackson [23]. Our work can be considered part of the
non-parametric Bayesian implementation literature for auc-
tions, where the term “non-parametric” implies that the de-
signer does not know the distribution.2 For single-good auc-
tion environments and independent valuations, Caillaud and
Robert [6] show how to obtain optimal revenue where the
players have common knowledge of the valuation distribu-
tion and the seller knows nothing.3 For public-good projects
and independent valuations, Choi and Kim [11] show how to
implement the socially efficient outcome when each player’s
distribution is known by someone else. Cremer and Riordan
[14] show an efficient, budget-balanced and truthful mech-
anism for the public-good problem, where one player has
knowledge about the others, and there are at least two in-
dependent players. Their solution concept of Stackelberg
Truthfulness is very similar to our own solution concept of
two-step dominant strategy truthfulness. To the best of our
knowledge, our paper gives the first implementation results
with arbitrarily correlated valuations, and where players may
collect extra information on each other beyond what is given
by the prior distribution.

Detail-Free Mechanisms.
Mechanisms where the designer does not know the dis-

tribution are called detail-free, and have been a goal of the
mechanism design literature since at least the time of Wil-
son [30]. Explicit detail-free Bayesian mechanisms for single-
unit auctions have been proposed by Segal [29], Baliga and
Vohra [2] and Dhangwatnotai, Roughgarden, and Yan [15].
Under the assumption that each player knows his own dis-
tribution, the mechanism we present in Section 4 obtains
more revenue than these existing mechanisms. When valua-
tions are not drawn from distributions, auction mechanisms
have been proposed by Goldberg, Hartline, Karlin, Saks and
Wright [19], Goldberg and Hartline [18]. Our mechanisms
are incomparable to theirs: we obtain more revenue, but we
assume that a distribution exists.

2We choose to use the term “crowdsourced” because of our
use of proper scoring rules, a technique used in other crowd-
sourcing applications such as prediction markets.
3A more detailed comparison with Caillaud and Robert’s
result is given in Section 5.

Robust Mechanism Design .
This paper focuses on removing the common knowledge

assumption, and thus belongs to the Robust Mechanism
Design literature initiated by Bergemann and Morris [3].
One of their results shows that many social choice func-
tions which are implementable in a Bayesian setting are also
dominant strategy implementable (removing the need for
common knowledge of the distribution). This result does
not hold for environments where monetary payments are re-
stricted. Such environments include optimal auctions, where
we have a constraint that the auctioneer should not pay out
more money than it receives from the players. Thus, we
need alternative ways of removing the common knowledge
assumption. Chung and Ely [12] show that when the auc-
tioneer knows the distribution but players can have arbitrary
beliefs, an auctioneer who wants to maximize his worst-case
gain should use a dominant strategy mechanism. This is
a justification for using dominant strategy mechanisms to
maximize profits, an approach which we follow in this pa-
per.

A Reverse Bulow-Klemperer Inequality.
A well known result by Bulow and Klemperer [5] states

that, for the special case of a single unit auction where
the buyers’ valuations are identically and independently dis-
tributed according to a regular distribution, a Vickrey auc-
tion with n players will always generate more revenue than
an optimal auction with n−1 players. This means that hav-
ing additional demand for the good is better than having
knowledge of the distribution. In Appendix E, we prove a
new reverse version of the Bulow-Klemperer inequality that
bounds the extra amount of revenue that an auctioneer can
get by selling to n buyers instead of n− 1 buyers.

Our Mechanisms As Black-Box Results And Their
Relation To Classical Bayesian Mechanisms.

Our mechanism from Section 3 can be viewed as a “com-
piler” that takes as input a classical Bayesian mechanism
and outputs a crowdsourced one. In Appendix F we discuss
under what assumptions we can leverage the existing clas-
sical mechanisms presented by Hartline and Roughgarden
[21], Cremer and McLean [13], Papadimitriou and Pierrakos
[27], Chawla, Hartline, Malec and Sivan [7] and Dobzinski,
Fu and Kleinberg [16], to create new crowdsourced mecha-
nisms.

Other Non-Bayesian Approaches.
Chen and Micali, in [9] for combinatorial auctions and

in [10] for single-good auctions, show how to obtain new
and reasonable revenue benchmarks without any Bayesian
assumption, including ours.4 (Of course, although this has
generated some confusion in the past, in settings of complete
information, one can achieve virtually maximum revenue.5)

4In essence, the revenue benchmark of [9] consists of one
half of “the maximum revenue that a player is sure he could
generate by selling the goods to his opponents via take-it-
or-leave-it offers.” The revenue benchmark in [10] essentially
consists of the second-highest value that a player believes
that some player (including himself) is willing to pay for
the good. Notice that such benchmark is always greater or
equal to the classical second-highest valuation, and some-
times much higher.
5For instance, Chen, Hassidim and Micali [8] do precisely



1.2 Paper Outline
Section 2 outlines our model and assumptions. Section 3

contains the proof of our main theorem, which holds for very
general environments. Section 4 shows an alternative mech-
anism for single-good auctions and explain its contributions
with respect to existing mechanisms. Section 5 proves that,
for 2 players, our mechanisms are virtually optimal with re-
spect to our new assumptions about knowledge. Section 6
gives final remarks. Appendix E provides a reverse version
of the Bulow Klemperer inequality that is derived from the
proof of our main theorem. Appendix F discusses how our
results may be combined with some existing mechanisms.
Appendices A, B, and C contain the proofs of our lemmas.

2. MODEL AND ASSUMPTIONS

2.1 Players, Goods and Utilities
In an assignment environment, there is a finite set of play-

ers N = {1, . . . , n} and a finite set X of goods. The set of all
feasible assignments is denoted by A = {(A1, ..., An) : Ai ⊆
X}. The set A satisfies a downward-closure condition if :

for all (A1, ..., An) ∈ A, for all i ∈ N , we have
(A1, . . . , Ai−1, ∅, Ai+1, . . . , An) ∈ A.

Players have quasilinear utility. Each player i has a val-
uation function θi : 2X → Z+ that satisfies θi(∅) = 0.
Player i’s utility of receiving a set Ai and paying a price
pi is ui(Ai, pi) = θi(Ai) − pi. A negative price indicates a
payment from the mechanism to the player.

Unless otherwise specified, we denote by θ = (θ1, . . . , θn)
a profile of valuations, and by Θ the set of all possible valu-
ation profiles. We use the notation ∆(Θ) to refer to the set
of all probability distributions over Θ.

These environments are very general. In particular, they
include all types of auctions, from single-good to combinato-
rial. An example environment which is not downward-closed
is the public-good context, where no player can be prevented
from using the public good.

In this paper, we always consider valuations that lie within
some finite set. The only result that relies on this assump-
tion is Lemma 1.

2.2 Beliefs and the Crowdsourced-Bayesian
Assumption

Our knowledge model is similar to that of the Bayesian
Implementation literature [22].6 There exists a distribu-
tion D ∈ ∆(Θ) from which valuation profiles are drawn.
A player’s knowledge is represented by a partition P =
(S1, ..., Sk) of the set Θ.

Definition 1 (Knowledge relative to a partition).
Let θ be the true valuation profile, P a partition of Θ, and
S∗ the unique set in P such that θ ∈ S∗. A player whose
knowledge is represented by a partition P knows

that for general settings of quasi-linear utility, which include
combinatorial auctions as a special case.
6There are some differences between our model and that of
[22]. In their model, each player i has an individual prior
qi and the vector of priors (q1, ..., qn) is common knowledge
to all players. In our model, there is only one true prior D,
which may not be known to anyone. Each player knows his
posterior Di, but the vector of posteriors is not necessarily
common knowledge.
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set X of goods. The set of all feasible assignments is denoted
by A = {(A1, ..., An) : Ai ⊂ X}. The set A satisfies a
downward-closure condition:

for all (A1, ..., An) ∈ A, for all i ∈ N , we have
(A1, . . . , Ai−1, ∅, Ai+1, . . . , An) ∈ A.

Players have quasilinear utility. Each player i has a val-
uation function θi : 2X → Z+ that satisfies θi(∅) = 0.
Player i’s utility of receiving a set Ai and paying a price
pi is ui(Ai, pi) = θi(Ai) − pi. A negative price indicates a
payment from the mechanism to the player.

Unless otherwise specified, we denote by θ = (θ1, . . . , θn)
a profile of valuations, and by Θ the set of all possible valu-
ation profiles. We use the notation ∆(Θ) to refer to the set
of all probability distributions over Θ.

These environments are very general. In particular, they
include all types of auctions, from single-good to combinato-
rial. An example environment which is not downward-closed
is the public goods project, where no agent can be prevented
from using the public good.

2.2 Beliefs and the Crowdsourced-Bayesian As-
sumption

Our knowledge model is similar to that of the Bayesian
Implementation literature [24].6 There exists a distribution
D ∈ ∆(Θ) from which valuation profiles are drawn. Players’
knowledge is represented by partitions P = (S1, ..., Sk) of
the set Θ.

Definition 1 (Knowledge w.r.t. a partition). Let
θ be the true type profile, P a partition of Θ, and S∗ the
unique set in P such that θ ∈ S∗. A player whose knowledge
is represented by a partition P knows

1. The set S∗ containing the true type profile.

that for general settings of quasi-linear utility, which include
combinatorial auctions as a special case.
6There are some differences between our model and that of
[24]. In their model, each agent i has an individual prior
qi and the vector of priors (q1, ..., qn) is common knowledge
to all agents. In our model, there is only one true prior D,
which may not be known to anyone. Each agent knows their
posterior Di, but the vector of posteriors is not necessarily
common knowledge.
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Figure 1: This example shows the knowledge par-
tition of a generic buyer. The buyer’s knowledge
partition is P = (Pi1 , Pi2 , Pi3). She does not know
the realized valuation θ exactly, but she knows that
it lies in the set S∗ = Pi1 highlighted in red.

2. The posterior distribution D|S∗ followed by θ given
that it is in the set S∗.

Players know their own valuation. More formally,

Definition 2. A partition P of Θ is i-consistent if,
for any set S in P and any two valuation profiles θ, θ� ∈ S,
we have θi = θ�i.

Having established this notation, we state our main as-
sumption on the players’ knowledge.

Crowdsourced-Bayesian Assumption: Each player i knows
a partition Pi of Θ such that: (1) Pi is i-consistent for
each i, and (2) when θ is randomly selected according to

D, player i’s beliefs are given by Di � D|S∗i , where S∗i
is the unique set in Pi containing θ.

Remark.
The Crowdsourced-Bayesian assumption

(a) makes no restriction on D: indeed, D may be any
member of ∆(Θ), the set of all distributions over Θ
(in particular, the players’ valuations can be arbitrar-
ily correlated);

(b) does not assume any knowledge on the part of the de-
signer: indeed the designer may know (arbitrarily little
or even) nothing about D and;

(c) makes no assumptions about players’ higher-order be-
liefs: all our results hold even if players’ second and
higher-order beliefs are wrong.

2.3 Mechanisms and Solution Concepts

Figure 1: This example shows the knowledge par-
tition of a generic buyer. The buyer’s knowledge
partition is P = (Pi1 , Pi2 , Pi3). She does not know
the realized valuation θ exactly, but she knows that
it lies in the highlighted set S∗ = Pi1 .

1. The set S∗.

2. The posterior distribution D|S∗ together with the fact
that θ is drawn from it.

Players know their own valuations. More formally,

Definition 2. A partition P of Θ is i-consistent if,
for any set S in P and any two valuation profiles θ, θ′ ∈ S,
we have θi = θ′i.

Having established this notation, we state our main as-
sumption on the players’ knowledge.

Crowdsourced-Bayesian Assumption: For each player
i, there is a partition Pi of Θ representing his knowl-
edge such that: (1) Pi is i-consistent, and (2) when θ is
randomly selected according to D, player i’s belief about
θ are given by Di , D|S∗i , where S∗i is the unique set in
Pi containing θ.

Remark. The Crowdsourced-Bayesian assumption

(a) makes no restriction on D: indeed, D may be any
member of ∆(Θ) (in particular, the players’ valuations
can be arbitrarily correlated);

(b) does not assume any knowledge on the part of the de-
signer: indeed the designer may know (arbitrarily little
or even) nothing about D and;

(c) makes no assumptions about players’ higher-order be-
liefs: all our results hold even if players’ second and
higher-order beliefs (that is, their beliefs about each
other’s beliefs about ... about the true valuations) are
wrong.



2.3 Mechanisms and Solution Concepts
A player’s type is a pair (θi,Di) that specifies his valua-

tion and his belief about others’ valuations. A direct revela-
tion or crowdsourced-Bayesian mechanism is one where each
player’s strategy space coincides with his type space.

Definition 3. A crowdsourced-Bayesian mechanism
is a randomized function M : Θ × ∆(Θ)n × {0, 1}∗ → A ×
Rn that specifies for any valuation profile θ, belief profile
(D1, . . . ,Dn) and sequence of coin tosses r ∈ {0, 1}∗, an
outcome M(θ, (D1, . . . ,Dn), r) ∈ A× Rn.

In this paper, crowdsourced-Bayesian mechanisms are of-
ten compared with mechanisms where players only reveal
their valuation function θi. The corresponding definition is
given below.

Definition 4. A classical direct revelation mecha-
nism is a randomized function M : Θ × {0, 1}∗ → A × Rn
that specifies for any valuation profile θ and any sequence of
coin tosses r ∈ {0, 1}∗, an outcome M(θ, r) ∈ A× Rn.

Among classical direct revelation mechanisms, we consider
those that are dominant strategy truthful.

Definition 5. We say that a classical direct revelation
mechanism M is dominant strategy truthful (DST) if,
whenever θ is the true valuation profile, for all players i, for
all strategies τi 6= θi, for all opponent strategies τ−i,

Erui(M(θi, τ−i, r)) ≥ Erui(M(τi, τ−i, r)),

and there exists τ−i such that the above inequality is strict.
We say M is strictly dominant strategy truthful if

for all τi 6= θi and all τ−i the above inequality is strict.

Remark. In a Bayesian setting, a mechanism takes the
prior distribution D as an auxiliary input. For dominant
strategy mechanisms, the above inequalities should hold no
matter what D is.

For crowdsourced-Bayesian mechanisms, we introduce a
solution concept called two-step dominant strategy truthful-
ness.

Definition 6. A crowdsourced-Bayesian mechanism is two-
step (strictly) dominant strategy truthful if, whenever
θ is the true valuation profile and (D1, . . . ,Dn) is the true
vector of beliefs

1. For each player, all of his (strictly) dominant strategies
specify that he reveals his true valuation.

2. Given that all players are revealing their true valu-
ations, it is a (strictly) dominant strategy for each
player to reveal his true belief.

An important feature is that mechanisms which are two-
step strictly dominant strategy truthful have a unique equi-
librium where players reveal their true valuations and their
true beliefs about others. Furthermore, truthfulness is the
only strategy that survives two steps of iterated elimination
of strictly dominated strategies.

Unless otherwise specified, all mechanisms we consider
satisfy the (ex-post) Individual Rationality Condition. For
all players i, for all true valuations θi, for any valuation pro-
file τ−i of the other players’ actions, for any coin tosses r of
the mechanism M , it holds that ui(M(θi, τ−i, r)) ≥ 0.

2.4 Revenue and Implementation
Let M be a crowdsourced-Bayesian mechanism, let E be

an assignment environment and let D be a distribution. De-
note by rev(M,E,D) the expected revenue generated by M
on environment E when valuations are drawn from D and
all players are truthful. We denote by OPT (E,D) the ex-
pected revenue of the optimal classical strictly DST Bayesian
mechanism when valuations are drawn from D and players
are truthful. (Each expectation is taken over all possible
random choices, that is, over D and the coin tosses of the
corresponding mechanism, if probabilistic.)

A desirable property for a mechanism is that it achieve
revenue that is close to optimal. Fix an environment E. For
c < 1 and ε > 0, a mechanism achieves (c, ε)-approximate
revenue if, for all distributions D we have that

Rev(M,E,D) ≥ c ·OPT (E,D)− ε.

Definition 7. A crowdsourced-Bayesian mechanism M
implements (c, ε)-approximate revenue maximization if

1. the only strategy that survives iterated elimination of
strictly dominated strategies is truthfulness about val-
uations and beliefs

2. the mechanism achieves (c, ε)-approximate revenue.

A helpful lemma for implementation tells us that we can
convert a dominant strategy truthful auction mechanism
into a strictly dominant strategy truthful mechanism with
an arbitrarily small loss in expected revenue.

Lemma 1. Let E be a downward-closed environment and
let M be a classical direct revelation DST mechanism. Then
for every δ > 0 there exists a classical direct revelation mech-
anism M ′ which is strictly DST and satisfies

Rev(M ′, E,D) ≥ (1− δ)Rev(M,E,D)

for all distributions D.

The proof of this lemma is given in Appendix A. In the fol-
lowing sections, all DST mechanisms will be assumed to be
strictly DST unless stated otherwise. Because of the above
lemma, the loss of revenue from this assumption can be made
arbitrarily small.

2.5 Proper Scoring Rules
Let Ω be a state space and let ∆(Ω) be the set of prob-

ability distributions over Ω. A scoring rule S is a function,
S : Ω×∆(Ω)→ R. A scoring rule S can be used to reward
individuals reporting their knowledge (or beliefs) about the
world: in particular, giving an individual reporting a prob-
ability distribution D ∈ ∆(Ω) a reward equal to S(ω,D)
whenever the realized state is ω ∈ Ω. A scoring rule S is
proper if an individual maximizes his expected reward by
announcing his true knowledge about the world. That is,
for any two different probability distributions D,P ∈ ∆(Ω),

Eω←D[S(ω,D)] ≥ Eω←D[S(ω,P)].

A recent paper by Gneiting and Raftery is a good survey of
proper scoring rules [17]. A scoring rule S is strictly proper
if the above inequality is strict.

Brier’s scoring rule [4], denoted by BSR, is defined as fol-
lows. For each s ∈ Ω, denote by D(s) be the probability
assigned to s by D. Let δω,s be the indicator function, that



is δω,s = 1 if s = ω and 0 otherwise. The Brier’s Scoring
Rule is given by

BSR(ω,D) = −
(∑
s∈Ω

(δω,s −D(s))2

)
= 2D(ω)− ‖D‖22 − 1.

Note that Brier’s scoring rule is always bounded: indeed,
BSR(ω,D) ∈ [−2, 0] for all ω and D. (In contrast, Good’s [20]
more popular logarithmic scoring rule LSR(ω,D) = log(D(ω))
is unbounded.)

3. MAIN THEOREM
We show that crowdsourced-Bayesian Mechanisms are in

principle as powerful as centralized-Bayesian ones.

Theorem 1. For any ε > 0, for all n-player assignment
environments E, there exists a mechanism M that imple-
ments (1− 1

n
, ε)-approximate revenue.

We construct a specific mechanism M and show that it
satisfies the requirements of the theorem via a sequence of
lemmas. M first obtains from a player a distribution over
the valuations of the other players, and then runs the opti-
mal classical strictly DST mechanism for this (n− 1)-player
distribution.

In our description below, numbered steps are taken by the
players, and steps marked by letters are steps taken by the
mechanism/auctioneer.

Mechanism M

a. Choose a player i uniformly at random from {1, ..., n}.
Comment. Player i will receive the empty allocation
and get a price of zero, but he will be rewarded ac-
cording to his knowledge. Choosing i deterministically
does not affect incentives, but might reduce revenue.
We do not know how to make M two-step DST without
“removing one player”.

1. Player i announces a distribution F over Θ−i.
Comment. Allegedly, F represents his true knowledge
Di restricted to the domain Θ−i.

2. Each player j 6= i announces a valuation function vj ∈
Θj.
Comment. Allegedly, vj is j’s true valuation.

b. LettingM be the optimal strictly-DST centralized mech-
anism for the (n− 1)-player distribution F ,
run M(v−i;F) so as to obtain an allocation A−i =
(A1, A2, ..., Ai−1, Ai+1, ..., An), and a price vector P−i =
(P1, P2, ..., Pi−1, Pi+1, ...Pn).
Comment. The allocations and prices of the players in
−i are determined by M.

c. Set Ai = ∅, reward i by setting Pi = − ε
2
(2+BSR(v−i,F)),

and output outcome (A,P ).
Comment. Although player i gets no allocation, he
gets a reward according to Brier’s scoring rule. The
negative price indicates that the mechanism transfers
money to player i. Since we insist that our players do
not incur negative utilities ex post, the boundedness of
Brier’s scoring rule is crucial here.

Theorem 1 is implied by the following two lemmas, the
proofs of which are in Appendix B.

Lemma 2. The mechanism M is two-step strictly DST.

Lemma 3. For all assignment environments E and dis-
tributions D,

rev(M, E,D) ≥ (1− 1

n
)opt(E,D)− ε.

Computational Remarks.
Our mechanism M needs to evaluate Brier’s scoring rule.

For this, we need to have access to F(v−i) and to compute
the norm ‖F‖22, which might be computationally expensive
when F is correlated and/or the range of the players’ val-
uations is big. By contrast, a variant of Good’s logarith-
mic scoring rule, LSRa,b(v−i,F) = a + b log(F(v−i)) with
a, b > 0, is still strictly proper, but only requires access to
F(v−i). However, although always providing positive util-
ity in expectation for suitable values of a and b, it has the
disadvantage that, for some distributions F and some valua-
tion subprofiles v−i, it can give arbitrarily negative rewards,
giving player i negative utility. If positive utility in expec-
tation is good enough, then LSRa,b is a perfectly suitable
scoring rule.

4. THE SINGLE-GOOD AUCTION SETTING
In this section, we introduce a mechanism L for single

good auctions. The main features of this mechanism are
that it aggregates the knowledge of many players and under
certain conditions collects more revenue than M.

We first introduce two tools that are used by L: a knowl-
edge aggregator AGG and the 1-lookahead mechanism L.

4.1 Knowledge Aggregator
We define the knowledge aggregator, AGG, to be the func-

tion mapping the identity of a player i and a distribution
subprofile DK−i to another distribution as follows.

AGG(i,DK−i)
0. For each j 6= i, set Sj to be the support

of DKj .
1. Set S = ∩j 6=iSj and j′ = min{j : j 6=

i}.
2. If S = ∅, then output DKj′ .
3. Else, set DK′ to be DKj′ |S, and out-

put DK′.
In essence, AGG interprets each DKj as the distributional
knowledge of player j in a crowdsourced-Bayesian model
with distribution D, and aggregates the individual knowl-
edge of the players in −i so as to reconstruct a refined distri-
bution for i’s valuation. Notice that in AGG, if the knowledge
of players in −i disagrees with each other in an apparent
way (that is, when S = ∅), then the function’s output can
be arbitrary. Also notice that the choice of the player j′

can be arbitrary, because when the input DK is the “true
knowledge” of the players, any choice of j′ will lead to the
same output DK′. Here by “true knowledge” we mean that,
each DKj is obtained from the true distribution D by first
conditioning on some event that is consistent with the true
valuation profile, and then conditioning on the knowledge of
players in −i.



4.2 The 1-lookahead Mechanism L
The 1-lookahead mechanism [28] is a dominant strategy

truthful mechanism for single unit auctions that allocates
the good to the player with the highest valuation, charging
him a price that maximizes revenue and does not depend
on his own announcement. The auctioneer gets as input a
profile of announced valuations v = (v1, ..., vn) and a distri-
bution of valuations D that is assumed to be known by the
auctioneer.

L(v;D)

1. Each player i announces vi.

a. Let i∗ = argmaxi vi be a player with
maximum announced valuation. If
multiple such players exist, choose any
one of them.

b. Let p∗ = argmaxp p · Probθ←D(θi∗ ≥
p|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j)

c. If vi∗ ≥ p∗ player i∗, assign the good to
player i by setting Ai∗ = 1, Pi∗ = p∗.
Otherwise, Ai∗ = ∅, Pi∗ = 0.

d. For all j 6= i∗ set Aj = ∅, Pj = 0.
Output (A,P ).

Ronen [28] showed that the 1-lookahead mechanism is
dominant strategy truthful and thatRev(L,D) ≥ 1

2
OPT (D),

even when D is correlated and the optimal mechanism is not
known.

As mentioned in Section 2 and proved in Appendix A, the
mechanism L can be transformed into a strictly dominant
strategy mechanism Lδ that achieves (1− δ) of the revenue
obtained by L, for arbitrarily small δ.

4.3 Our Mechanism L
We give a crowdsourced-Bayesian mechanism L that is a

modification of the 1-lookahead mechanism L.

Mechanism L

1. Each player i secretly announces to the auctioneer a
valuation vi.

a. Let i∗ = argmaxi vi be a player with maximum an-
nounced valuation. If multiple such players exist, choose
any one of them.

2. Each player j 6= i∗ announces a distribution Fj ∈
∆(Θ−j × {vj}).7

b. Compute F = AGG(i∗,F−i∗).
c. Set (A,P ) = Lδ(v,F) to assign the good and deter-

mine prices. Break ties in favor of player i∗ chosen in
step a.

e. For each j 6= i∗, update Pj = Pj− ε
2n

(2+BSR(v−j ,Fj)).
Also update Pi∗ = Pi∗ − ε.

We can prove a theorem analogous to Theorem 1 for mech-
anism L.

Theorem 2. The mechanism L implements ( 1−δ
2
, ε)-revenue

approximation.

7The distribution Fj must be consistent with player j’s al-
leged valuation vj . This is why the mechanism restrict Fj
to the set ∆(Θ−j × {vj}).

We prove this theorem via a sequence of lemmas. The
proofs are given in Appendix C.

Lemma 4. L is two-step strictly DST.

Lemma 5. For any distribution D, we have that

Rev(L,D) ≥ 1− δ
2

OPT (D)− ε.

4.4 The Performance of L Compared to Other
Mechanisms

Comparing M and L.
The main difference between L and M is that L is explicit.

That is, we can construct it without appealing to the exis-
tence of some possibly unknown optimal classical mechanism
M. Thus, L is more practical for scenarios such as corre-
lated distributions, where the optimal classical mechanism
M exists but is infeasible to implement.8

I.I.D. Valuations and Comparison with Segal [29] and
Baliga and Vohra [2] .

For all distributions D, the revenue of the mechanism L
is guaranteed to be at least one half of the optimal revenue.
However, L can do better under certain assumptions on D.
For example, if all the valuations are identically and inde-
pendently distributed, then the optimal auction always sells
to the player with the highest valuation. In this case, L
obtains at least (1 − δ)OPT (D) − ε revenue for arbitrarily
small δ, ε and for an arbitrary number of players.

We can compare the performance of L in this setting with
that of existing mechanisms. Segal [29] and Baliga and
Vohra [2] show how, in the iid setting, the auctioneer can
charge a reserve price to i∗ by estimating the distribution
from the vector v−i∗ . As the number of players n goes to
infinity, this estimate becomes more precise and the revenue
approaches that of the optimal mechanism. In contrast, our
mechanism L works for any number of players. Furthermore,
in the iid setting our crowdsourced-Bayesian assumption is
implied by the weaker

Self-Knowledge Assumption: Each player i knows the
distribution D from which his valuation is drawn.

As long as this assumption holds, our mechanism obtains
at least as much revenue as existing mechanisms. We ac-
knowledge the possibility that the self-knowledge assump-
tion does not hold. In this case, the existing mechanisms
are superior.

5. OPTIMALITY OF OUR MECHANISM FOR
n = 2

In Section 3, we showed a crowdsourced-Bayesian mecha-
nism whose revenue is very close to the revenue of the op-
timal centralized-Bayesian mechanism where players’ types
correspond to their valuations. Our mechanism achieves this

8For single-good auctions and correlated distributions, the
mechanism of Cremer and McLean [13] extracts as much rev-
enue as possible. However, it violates the ex-post individual
rationality condition because truthful players may receive
negative utility from this mechanism. Furthermore, it re-
quires that the distribution D is common knowledge among
the players. More details are given in Appendix F.



by extending players’ types to pairs (θi,Di) of valuations and
knowledge. An important question is whether our mecha-
nism is optimal among those that allow players to have these
extended types.

We show that our mechanism M is virtually optimal for
n = 2, when the distribution D is arbitrarily selected. The
proof consists of showing that, for every ε > 0, there exists
a distribution D such that no two-step DST crowdsourced-
Bayesian mechanism M can achieve revenue higher than
( 1

2
+ ε) ·OPT (D), where OPT (D) is the revenue of the op-

timal centralized-Bayesian mechanism. Since M obtains a
profit of at least 1

2
OPT (D)− ε, these two facts together im-

ply that the difference in revenue between M and M, when
the distribution is D, is at most ε · (OPT (D) + 1). Since
M was an arbitrary two-step DST crowdsourced-Bayesian
mechanism and since this result holds for arbitrarily small
ε, we have that M is virtually optimal among this class of
mechanisms.

We need to prove now that M cannot obtain revenue
higher than ( 1

2
+ ε)OPT (E,D) for some distribution D. To

prove this, we require that players always prefer winning the
auction to losing. In a crowdsourced-Bayesian mechanism,
losing players can be given cash rewards for their knowledge.
These cash rewards must be kept small in order to prevent
players from preferring to become informants instead of par-
ticipating in the auction. Our mechanism M gives rewards
no larger than an arbitrarily small ε, so it fits under this
class of mechanisms.9 When players have a preference for
winning, the following theorem holds:

Theorem 3. Let E be a single-item auction environment
with two players. Let M be a two-step DST crowdsourced-
Bayesian mechanism where players have a preference for
winning. Then for every ε > 0 there exists a distribution
D of player valuations such that

Rev(M,E,D) ≤ (
1

2
+ ε)OPT (E,D),

where OPT (E,D) is the revenue of the optimal centralized-
Bayesian mechanism.

This can be shown via two lemmas.

Lemma 6. Let E be a single-item auction environment
with two players. Let M be two-step DST, crowdsourced-
Bayesian mechanism in which players have a preference for
winning. Then for all distributions D we have Rev(M,E,D)
is bounded above by the revenue of a Vickrey auction with
monopoly reserve prices.

Lemma 7 (Hartline and Roughgarden [21]). Let E
be a single-item auction environment with two players. For
every ε > 0, there exists a distribution D of (independent)
valuations such that the Vickrey auction with monopoly re-
serve price does not obtain more than ( 1

2
+ ε)OPT (E,D)

revenue.

The two lemmas combined imply the theorem. We prove
the first of the lemmas in Appendix D. The proof of the
second can be found in the referenced paper.

9Even without this small reward, the informant in M is cho-
sen at random, so players cannot “choose” to become infor-
mants. On the other hand, our mechanism L in Section 4
ensures that players always prefer winning to losing by en-
suring that winners always get utility greater than ε, and
losers (who become informants) get utility no higher than ε.

Comparison with Caillaud and Robert [6].
Remarkably, this optimality implies a separation between

what is achievable in our knowledge model and what is
achievable when we assume common knowledge of D. Cail-
laud and Robert [6] show a mechanism to implement the op-
timal single-unit auction when players have independent val-
uations, D is unknown to the seller, and D is common knowl-
edge among the players. They show that under these as-
sumptions, they obtain as much revenue as the optimal auc-
tion with a knowledgeable seller. In contrast, we have shown
above that we cannot obtain more than ( 1

2
+ε)·OPT (D) un-

der the crowdsourced-Bayesian assumption when there are
only two players. Our mechanism does not guarantee as
much revenue as theirs because it uses a weaker assumption
on the knowledge of the players.

6. CONCLUSION
We have shown how to use scoring rules in order to help an

ignorant seller extract knowledge from a group of informed
buyers. Implicit in our results (and made explicit in the
proof of Lemma 3 in Appendix B) is a reverse version of the
Bulow-Klemperer inequality which we believe is of indepen-
dent interest. Beyond auctions, there are many situations in
mechanism design where players can have knowledge about
each other. We believe the techniques we presented will
prove to be useful in these situations as well.
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APPENDIX
A. PROOF OF LEMMA 1

Lemma 1. Let E be a downward-closed environment and
let M be a classical direct revelation DST mechanism. Then
for every δ > 0 there exists a classical direct revelation mech-
anism M ′ which is strictly DST and satisfies

Rev(M ′, E,D) ≥ (1− δ)Rev(M,E,D)

for all distributions D.

Proof. In this proof we use the fact that the players’ val-
uations lie within some finite set. In particular, we assume
that there exists a finite set S ⊆ Z+ such that for every
player i, every valuation function θi and every set A ⊆ X,
θi(A) ∈ S.

Construct a lottery mechanism L as follows

L(τ1, ..., τn)

1. choose a player i, a set Ai ⊆ X and a
price pi ∈ S at random.

2. If τi(Ai) ≥ pi, output the out-
come ((∅, ∅, ..., Ai, ..., ∅), (0, ..., 0, pi −
ε, 0..., 0)) where ε is an arbitrary num-
ber satisfying 0 < ε < 1.

3. If τi(Ai) < pi, output the outcome
((∅, ∅, ..., ∅), (0, 0, ..., 0)).

Now given M , L and δ, construct the mechanism M ′ as
follows

M ′((τ1, ..., τn); δ)

1. With probability 1 − δ, output M(τ)
and STOP.

2. With probability δ, output L(τ) and
STOP.

Let θi be player i’s true valuation function and let τi 6= θi.
We show that for all profiles of opponent announcements τ−i
we have

Erui(M ′(θi, τ−i, r)) ≥ Erui(M ′(τi, τ−i, r)).

For any sequence of coin tosses r ∈ {0, 1}∗ writeAi(r), pi(r)
for the set and price assigned to player i in the mechanism
L in step 1. Note that Ai(r), pi(r) are completely specified
by r and do not depend on the actions of the players.

Write

Erui(M ′(θi, τ−i, r)) = (1−δ)Erui(M(θi, τ−i, r))+δErL(θi, τ−i, r).

Because the mechanism M is dominant strategy truthful, it
is true that

(1− δ)Erui(M(θi, τ−i, r)) ≥ (1− δ)Erui(M(τi, τ−i, r)).

Thus, it suffices to show that L is strictly dominant strategy
truthful.

First, we examine the coin tosses for which i is indifferent
between a truthful strategy θi and a “lying” strategy τi 6= θi.



If player i gets chosen in step 1 of L, he is given a choice
of purchasing a set Ai at price pi, which he can accept or
reject depending on his announcement. If pi ≤ θi(Ai), τi(Ai)
or pi ≥ θi(Ai), τi(Ai), the player gets the same utility from
announcing θi or τi. The interesting cases are θi(Ai) < pi ≤
τi(Ai) and τi(Ai) ≤ pi < θi(Ai).

Consider the case where τi(Ai) ≤ pi < θi(Ai). In this
case, the utility of player i from choosing θi is θi(Ai) −
(pi − ε) > 0. If player i chooses τi instead, he does not get
assigned a good and his utility is zero. For this choice of
random coins, player i strictly prefers being truthful.

Now consider the case θi(Ai) < pi ≤ τi(Ai). Since pi and
θi(Ai) are both integers, pi ≥ θi(Ai) + 1 > θi(Ai) + ε.

In this case, if player i announces τi, his utility will be
θi(Ai) − (pi − ε) < 0. If the player announces θi, he gets
assigned no good and charged a price of zero, so his utility
is zero. Thus, player i strictly prefers announcing θi for this
choice of random coins.

When we take expectation over all the random coins of
the mechanism, we obtain

Erui(L(θi, τ−i, r)) > Erui(L(τi, τ−i, r)).

We conclude that L is strictly dominant strategy truthful,
and so isM ′. NoticeRev(M ′,D, E) = (1−δ)Rev(M,D, E)+
δRev(L,D, E) and that Rev(L,D, E) ≥ 0. Thus,

Rev(M ′, E,D) ≥ (1− δ)Rev(M,E,D).

Q.E.D.

B. PROOFS OF LEMMAS 2 AND 3

Lemma 2. The mechanism M is two-step strictly DST.

Proof. Let i be the player chosen in step a of the mech-
anism. First we prove that each player j 6= i maximizes
his utility by announcing his true valuation in step 2, re-
gardless of the other players’ strategies. Indeed, player j
gets allocation Aj and price Pj , which are determined by
running an optimal strictly DST classical direct revelation
mechanism M(v−i,F). Since M is strictly DST, player j
maximizes his utility θj(Aj)−Pj by announcing vj = θj , no
matter what v−{i,j} and F are. (Notice that it does not even
matter whether F is the true distribution from which θ−i is
drawn, because forM to be classical DST, the players must
maximize their utilities by being truthful regardless of the
distribution.) Since player j has the same utility in M and
in M, truthfulness in M implies truthfulness in M (about
his valuation).

Now we prove that, given that all players j 6= i reveal their
true utility types, player i maximizes his expected utility
by announcing his true knowledge Di. Indeed, player i’s
expected utility from announcing distribution F is

Ev−i←Di [
ε

2
(2 + BSR(v−i,F))].

Since Brier’s scoring rule is strictly proper, this expectation
is maximized if and only if F = Di. Q.E.D.

Remark.
Note that we need a version of iterated dominance as the

solution concept for this mechanism. Let i be the player
selected in the first stage. If all other players j are “irra-
tional” and report a fake value (say vj = 0), then it is not

dominant for player i to report his true beliefs. Given that
all other players report vj = 0, i’s best response is to give a

distribution that assigns probability 1 to the v−i = ~0.

Lemma 3. For all assignment environments E and dis-
tributions D,

rev(M, E,D) ≥ (1− 1

n
)opt(E,D)− ε.

Notation .
Since a direct (possibly randomized) centralized-Bayesian

assignment mechanism M may be conceptualized as receiv-
ing (the description of) a distribution D as a separate in-
put, we use a slightly different notation to denote M ’s rev-
enue than the one used for decentralized-Bayesian mech-
anisms. Namely, if M always flips ` coins, then letting
v be a valuation profile and r ∈ {0, 1}`, M(v,D, r) de-
notes the unique outcome (A,P ) computed by M on in-
puts v and D when using coin tosses r; rev(M(v,D, r)) =∑n
i=1 Pi; rev(M(v,D)) = Er←{0,1}`rev(M(v,D, r)); and

rev(M(D)) = Ev←DEr←{0,1}`rev(M(v,D, r)).

Proof. Consider the following mental experiment. Fix
a valuation profile v drawn from the distribution D, and
(if the mechanism is randomized), fix a sequence r of coin
flips. Let M(v,D, r) be an execution of the optimal mech-
anism that produces some outcome (A,P ). For any player
i, let (Ai, P i) be an outcome such that Aii = ∅, P ii = 0,
Ai−i = A−i, and P i−i = P−i. That is, player i gets the
empty allocation and pays zero, and all the other players
get the same price and allocation as in (A,P ). Define the
mechanism Mi which, given a valuation profile v, coin flips
r, and distribution D, runs M(v,D, r) but gives player i
the empty allocation and charges him zero. That is, Mi

produces the outcome Mi(v,D, r) = (Ai, P i). Note that
the average revenue of the Mi mechanisms (taken over the
choice of i) is

1

n

n∑
i=1

rev(Mi(v,D, r)) =
1

n

n∑
i=1

∑
j 6=i

Pj =

=
n− 1

n

n∑
j=1

Pj =
n− 1

n
rev(M(v,D, r)).

Taking expectation over all v ← D and all sequences of coin
flips r, we get that

1

n

n∑
i=1

rev(Mi(D)) =
n− 1

n
rev(M(D)) =

=
n− 1

n
opt(E,D).

Since the mechanism M is classical-DST, and each Mi

does not change the outcomes for any player j 6= i, we must
have that Mi is dominant-strategy truthful for all players
j 6= i. Furthermore, it has the property that it produces an
allocation Ai such that Aii = ∅, an allocation that does not
serve player i.

Now let’s restrict ourselves to outcomes that do not serve
player i. Since the mechanism M is optimal, the maximum



expected revenue of classical-DST mechanisms not serving
player i is obtained by runningM on inputs v−i,D−i, where
v−i is the profile of valuations of all players except i, and
D−i is the distribution of v−i induced by restricting D to
Θ−i. In particular, this generates more expected revenue
than running Mi, which is also a classical-DST mechanism
that does not serve player i. We can conclude that

rev(M(D−i)) ≥ rev(Mi(D)).
To continue, we observe that the expected revenue of op-

timal mechanisms increases with the precision of their dis-
tributions. That is, modeling them as a single universal
mechanism M receiving the relevant distribution as a sep-
arate input; letting P be a partition of the valuation space
Θ into events; and assuming that, when the true valuation
profile θ is randomly selected from D,M’s separate input is
D|S —where S is the unique set in P containing the realized
θ— we have

∑
S∈P

Pr
θ←D

(θ ∈ S) · opt(E,D|S) ≥ opt(E,D).

Accordingly, we must have that the revenue ofM does not
decrease when given player i’s true knowledge Di, which is
D|Si whenever θ ∈ Si ∈Pi. That is,

rev(M,−i) ,
∑

Si∈Pi

Pr
θ←D

(θ ∈ Si) · rev(M((D|Si)−i))

≥ rev(M(D−i)),
where (D|Si)−i is the distribution of θ−i induced by restrict-
ing D|Si to Θ−i.

The mechanism M generates revenue by choosing a player
i at random and runningM(θ−i,Di) —when the players are
truthful, v−i = θ−i and F = Di. Thus the expected revenue
(ignoring the reward in step c) of M is

1
n

∑n
i=1 rev(M,−i),

which, based on previous inequalities, is greater than or
equal to

1

n

n∑
i=1

rev(M(D−i)) ≥ 1

n

n∑
i=1

rev(Mi(D)) =
n− 1

n
opt(E,D).

Taking into account the reward given in step c, which is
at most ε, we can conclude that the expected revenue of M
is ≥ n−1

n
opt(E,D)− ε, as desired.

Theorem 1 follows directly from Lemmas 2 and 3. Q.E.D.

Computational Remarks.
In our proof of Theorem 1, we use the optimality of mech-

anismM only to derive two inequalities: namely inequalities
rev(M,−i) ≥ rev(M(D−i)) and rev(M(D−i)) ≥
rev(Mi(D)). The first can be interpreted as the follow-
ing condition: “the more precise the valuation-distribution
known to M, the better M’s revenue performance.” The
second inequality can be interpreted as the following con-
dition: “M generates more revenue when running with all
players but i, than when running on all players and then
throwing away i’s payment.” Thus, if M satisfies the above
two conditions and is approximately optimal, with approxi-
mation ratio β, then M will also be approximately optimal,
with approximation ratio n−1

n
β.

Our mechanism M needs to evaluate Brier’s scoring rule.
For this, we need to have access to F(v−i) and to compute
the norm ‖F‖22, which might be computationally expensive
when F is correlated and/or the range of the players’ val-
uations is big. By contrast, a variant of Good’s logarith-
mic scoring rule, LSRa,b(v−i,F) = a + b log(F(v−i)) with
a, b > 0, is still strictly proper, but only requires access to
F(v−i). However, although always providing positive util-
ity in expectation for suitable values of a and b, it has the
disadvantage that, for some distributions F and some valua-
tion subprofiles v−i, it can give arbitrarily negative rewards,
giving player i negative utility. If positive utility in expec-
tation is good enough, then LSRa,b is a perfectly suitable
scoring rule.

C. PROOFS OF LEMMAS 4 AND 5

Lemma 4. L is two-step strictly DST.

Proof. This is analogous to the proof of Lemma 2. It is
strictly dominant for players to announce their valuations
truthfully because players are rewarded according to Lδ,
which is a strictly DST mechanism.

Given that all players announce their valuation truthfully,
each player j want to announce Fj truthfully ( that is, an-
nouncing a distribution Fj consistent with his true beliefs
Dj). This is because player j is rewarded using a strictly
proper scoring rule for announcing his knowledge. It is im-
portant to highlight that the player j is only rewarded based
on v−j , which is outside his control. Q.E.D.

Lemma 5. For any distribution D, we have that

Rev(L,D) ≥ 1− δ
2

OPT (D)− ε.

Proof. As in lemma 3 , we need to show that revenue
increases monotonically with knowledge. Recall that each
player j has a partition Pj over the set Θ of type profiles.
Denote by P =

∧
j∈−i∗ Pj the meet10 of the partitions of

all players except i∗.
We can write the revenue of mechanism L as

Rev(L,D) =
∑
S∈P

Pr
θ←D

(θ ∈ S) ·Rev(L,D|S).

Now note that, for any S ∈ P, we have Rev(L,D|S) ≥
Rev(Lδ,D|S)−ε. This is because L charges exactly the same
prices as Lδ, except that it gives n players a reward no larger
than ε

n
. Furthermore, Rev(Lδ,D|S) > (1 − δ)Rev(L,D|S).

Thus, we have

Rev(L,D) ≥
∑
S∈P

Pr
θ←D

(θ ∈ S) · [(1− δ)Rev(L,D|S)− ε].

The revenue Rev(L,D|S) can be written as

Rev(L,D|S) =

max
p

p · Probθ←D|S(θi∗ ≥ p|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j).
10The meet is defined as follows: given a true type profile θ
and a player j, there exists a unique set Sj(θ) ∈ Pj such
that θ ∈ Sj(θ). Define S(θ) =

⋂
j∈−i∗ Sj(θ). The set P =

{S(θ) : θ ∈ Θ} is the meet of the partitions. It is well known
that P is itself a partition of Θ and that it is finer than any
of the Pj .



If the mechanism L only knows the distribution D (in-
stead of the posterior D|S), it charges the price p̂ = maxp p ·
Probθ←D(θi∗ ≥ p|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j). The revenue
Rev(L,D) can be written as

Rev(L, D) =
∑
S∈P

[Probθ←D(θ ∈ S) · p̂ ·

Probθ←D|S(θi∗ ≥ p̂|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j)].
But p̂ is not the optimal price if we have extra information.

Indeed, if we condition on the set S then

p̂ · Pr
θ←D|S

(θi∗ ≥ p̂|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j) ≤

max
p

p · Pr
θ←D|S

(θi∗ ≥ p|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j).

This implies that∑
S∈P

Pr
θ←D

(θ ∈ S) · [(1− δ)Rev(L,D|S)− ε]

≥ (1− δ) ·
∑
S∈P

Pr
θ←D

(θ ∈ S) · p̂ ·

Pr
θ←D|S

(θi∗ ≥ p̂|θ−i∗ = v−i∗ and v∗i ≥ vj ∀j)− ε.

But the right hand side of this inequality is (1−δ)Rev(L,D)−
ε and the left hand side is less than or equal to Rev(L,D).
From Ronen’s work [28] we know thatRev(L,D) ≥ 1

2
OPT (D).

We conclude that

Rev(L,D) ≥ 1− δ
2

OPT (D)− ε.

Q.E.D.

D. PROOF OF LEMMA 6

Lemma 6. Let E be a single-item auction environment
with two players. Let M be two-step DST, crowdsourced-
Bayesian mechanism in which players have a preference for
winning. Then for all distributions D we have Rev(M,E,D)
is bounded above by the revenue of a Vickrey auction with
monopoly reserve prices.

Proof. We begin by analyzing a deterministic mecha-
nism. At the end of this proof, we show how to generalize
to randomized mechanisms. We denote by θi the true valu-
ation of player i, and by Di player i’s true belief about the
other player’s valuation.11

Let M be a deterministic, two-step DST, crowdsourced-
Bayesian mechanism for auctioning a single good between
two players. Player 1 announces a valuation v1 ∈ Θ1 and a
distribution F1 ∈ ∆(Θ2). Analogously, player 2 announces a
valuation v2 ∈ Θ2 and a distribution F2 ∈ ∆(Θ1). Since M
is two-step DST, the only strategy of player 1 that survives
iterated elimination of dominated strategies is announcing
v1 = θ1, his true valuation, and F1 = D1, his true belief
about θ2.

For a pure strategy profile s = ((v1,F1), (v2,F2)) let x(s)
denote the winner of the auction (with winner 0 if no one
gets the good) and let p(s) be the price paid by the winner.
We are assuming that the mechanism is ex-post individually

11In general Di is player i’s belief about the valuation profile,
including his own valuation. However, since player i is al-
ways certain about his own valuation being θi, we interpret
Di as his belief about the other player’s value.

rational, so no revenue can be obtained from a player who
did not win.

First of all, consider the case where F1 = F2 and both
players are truthful. In this case, the players’ valuations are
iid. As observed in Section 4, the mechanism L obtains (1−
δ)·Opt(D)−ε in this environment, for arbitrarily small δ and
ε. The mechanism L generates virtually as much revenue as
the optimal classical mechanism (which is a Vickrey auction
with reserve price in our case of i.i.d buyers). Thus, when
distributions are identical, the mechanism should sell the
good to the highest value player.12

Now suppose that the profile of strategies is
s = ((v1,F1), (v2,F2)), with F1 6= F2. Assume without
loss of generality that v1 > v2. We are going to show that
x(s) 6= 2. Assume the contrary. Player 1 loses the auction
even though he has the highest valuation. However, if he an-
nounces F1 to be equal to F2, then by the above paragraph
he would win the auction. Since player 1 prefers to win, he
has an incentive not to announce his true belief about player
2’s value, even when both players are truthful about their
valuations. This violates the two-step DST property of M ,
and hence gives us a contradiction.

We conclude that, if a crowdsourced-Bayesian two-step
DST mechanism (where players prefer to win than to lose)
maximizes revenue, then it can never sell the good to the
player with the lowest valuation. Given that it always sells
the good to the player with the highest value, it cannot
obtain more revenue than the Vickrey auction with reserve
price.

The above analysis applied to deterministic mechanisms.
If the mechanism instead is randomized (like our mechanism
M), the given revenue bounds still holds. Let M be a ran-
domized and let Mr be the resulting deterministic mecha-
nism given thatM uses randomness r. The expected revenue
of M is Er[Rev(Mr, E,D)]. None of the mechanisms Mr ob-
tain more revenue than the Vickrey auction with monopoly
reserve price. Thus, the revenue of M is also bounded by
that of the Vickrey auction with monopoly reserves. Q.E.D.

E. A REVERSE VERSION OF THE BULOW-
KLEMPERER INEQUALITY

Of independent interest, the proof of Theorem 1 implies
a reverse version of the Bulow-Klemperer theorem [5]. The
Bulow-Klemperer theorem states that for a single-good con-
text and symmetric players 13 the Vickrey auction on n play-
ers always generates more expected revenue than the optimal
auction with n− 1 players.

Informally, this result can be written as the following in-
equality,

OPT (n− 1) ≤ V ickrey(n),

where OPT (n−1) and V ickrey(n) are respectively the rev-
enue obtained by the optimal auction on n − 1 players and
the Vickrey auction on n players. We show a reverse di-
rection of this inequality, that is, the optimal auction on
n−1 players generates almost as much revenue as the Vick-
rey auction on n players, losing at most a 1

n
fraction of the

revenue.
12We are relying on the fact that for iid distributions, no
centralized-Bayesian mechanism that achieves the optimal
revenue can sell to the player with the lowest valuation.

13The theorem can be extended to multiple goods and affili-
ated valuations.



Corollary 1. For single-good auctions with i.i.d. valu-
ations drawn from a regular distribution,

OPT (n− 1) ≤ V ickrey(n) ≤ n

n− 1
OPT (n− 1).

Proof. We just need to prove the second inequality. Note
that our proof of Theorem 1 relies on the inequality

1

n

n∑
i=1

Rev(M(D−i)) ≥ n− 1

n
OPT (E,D),

where Rev(M(D−i)) is the revenue of the optimal mech-
anism where player i does not participate and the other
players’ valuations are drawn from the distribution D−i.
To make this inequality more suggestive, we write E−i to
be the environment E with player i removed, and we write
Rev(M(D−i)) = OPT (E−i,D−i). Thus, we can rewrite the
above inequality as

Ei[OPT (E−i,D−i)] ≥ n− 1

n
OPT (E,D).

This means that, if we remove a player at random, the
revenue of the optimal auction with n players does not drop
by more than a 1

n
fraction. Q.E.D.

Our proof applies to general environments and arbitrary
symmetric distributions.

Corollary 2. The expected revenue of a Vickrey auc-
tion on an assignment environment with n symmetrically
distributed players is always lower than or equal to n

n−1
of

the expected revenue of the optimal auction with n− 1 play-
ers.

Moreover, we show that for general downward-closed en-
vironments and i.i.d. buyers the optimal auction on n − 1
players can generate more revenue than the Vickrey auction,
disproving the Bulow-Klemperer result for these general en-
vironments.

E.1 The Bulow-Klemperer Result Does Not
Hold For General Downward-Closed
Environments

For general downward closed environments, the Vickrey
auction cannot provide a better than constant approxima-
tion to the revenue of the optimal auction. A known re-
sult by Hartline and Roughgarden [21] states that, even for
i.i.d. buyers, there exists a downward-closed environment
E∗ where the Vickrey auction cannot achieve more than
half of the revenue of the optimal auction.14

However, for general downward-closed environments with
i.i.d. buyers, we have shown that the optimal auction with
n − 1 players gives a (1 − 1

n
) approximation of the optimal

revenue with n players. Thus, the Vickrey auction does
not beat the optimal auction on n − 1 players for general
downward closed environments.

Corollary 3. Let E be a downward-closed environment,
and let D be a distribution of players’ valuations. If

Rev(V ickrey(E,D)) < (1− 1

n
) ·Rev(OPT (E,D)),

then Rev(V ickrey(E,D)) < Ei[OPT (E−i,D−i)].
14See example 3.3 in the cited paper. In their environment
E∗ there are two groups of buyers, and one cannot simulta-
neously sell to both.

In particular, there exists a downward-closed environment
E∗ and an i.i.d. distribution D∗ of regular values such that
the optimal auction on n − 1 players obtains more rev-
enue than the Vickrey auction on n players. Accordingly,
the Bulow-Klemperer inequality does not hold for general
downward-closed environments.

F. OUR MECHANISMS AS BLACK-BOX
RESULTS

Our Mechanism M As a Compiler.
The main contribution of this work is a very general method

for an ignorant seller to extract knowledge from informed
buyers. We can think of our method of removing a player at
random and incentivizing this player to state his knowledge
via a proper scoring rule as a compiler, which can be applied
to transform any classical dominant strategy truthful mech-
anism which assumes the seller has some knowledge into a
crowdsourced-Bayesian one.

Our method is very robust against errors in players’ sec-
ond and higher-order knowledge. As an example of a proce-
dure that is not robust, consider the case where the distribu-
tion D is common knowledge amongst the players. A seller
who would like to know D could ask all players to report
a distribution. If all reports agree, then the seller uses this
distribution to determine prices. Otherwise, all players get
a large penalty and the mechanism ends. The problem with
this approach is equilibrium selection. Any strategy profile
where all players report the same distribution F could be
an equilibrium, even if F 6= D.

In more specific settings, analogous versions of our mech-
anism L may be able to incorporate players’ knowledge into
existing mechanisms. We give a brief discussion in the fol-
lowing paragraphs.

Simple Mechanisms.
The look-ahead auction L can be considered as a “simple”

mechanism in that the winner of the auction is determined
without the need to know the distribution D. The only use
of the distribution is to set a reserve price. The comparison
of simple and optimal mechanisms is a recent and inter-
esting approach in mechanism design. Neeman [26] shows
that English Auctions are approximately optimal, perform-
ing an analysis similar to Ronen’s work on Vickrey auc-
tions. Hartline and Roughgarden [21] study approximately-
optimal mechanism design in downward-closed and matroid
environments, under the assumptions that the distributions
of valuations are independent and satisfy some regularity
properties. In particular, they show that Vickrey Auctions
with reserve price achieve a constant-factor approximation
of optimal revenue for a large class of environments and dis-
tributions. They also show matching constant lower bounds
in the approximation factor, and sub-constant lower bounds
for special kinds of distributions and environments. We can
leverage simple mechanisms to create crowdsourced mech-
anisms for new environments. If a mechanism M uses a
distribution D only to determine prices (and not to deter-
mine the allocation to players), then the mechanism can in
principle be used to construct a crowdsourced mechanism
M′ with similar revenue guarantees, analogously to how we
constructed the mechanism L from the classical L.



Extracting the Full Surplus.
If we accept the weaker notion of interim individual ra-

tionality instead of ex-post individual rationality, Cremer
and McLean [13] give a classical Bayesian mechanism that
extracts the full surplus from the buyers. This mechanism
holds under two special conditions: first, the distribution D
must be common knowledge among the players. Second, for
each player the |Θi| × |Θ−i| matrix whose rows are given by
the distributions D(θ−i|θi) must be of full rank. Note that
this mechanism only works when the designer knows the dis-
tribution D, this distribution is common knowledge among
the players, and each player i’s beliefs are given precisely by
D|θi. Because of this, we cannot apply our techniques to
make this mechanism crowdsourced-Bayesian: using scoring
rules only incentivizes players to reveal D|θi, but the de-
signer needs to learn the exact distribution D, which cannot
immediately be reconstructed from (D|θ1, ...,D|θn) in order
to apply Cremer and McLean’s mechanism. The impossibil-
ity of extracting the full surplus when relaxing the common
knowledge assumption has been investigated widely. An ex-
ample of recent research is [1].

Recent Work on Correlated and Multi-parameter
Auctions.

More recently, there have been new developments in al-
gorithmic mechanism design for correlated valuations and
for multi-parameter problems. Papadimitriou and Pierrakos
[27] have shown that for 2 players there exists a PTAS that
approximates the optimal ex-post individually rational auc-
tion with correlated valuations, but for 3 or more players
achieving more than 99.97 % of the optimal revenue is com-
putationally infeasible.15 For their 2 player auction, this
result can be combined with our technique to remove the
assumption that the designer knows the distribution of val-
ues.16

Chawla, Hartline, Malec and Sivan [7] show a sequential-
posted price mechanism that achieves a constant-factor ap-
proximation of the optimal revenue even in multi-parameter
settings. One particular case they consider is where agents
can buy only one good, but may have different valuations
for different goods. They give a dominant strategy mecha-
nism that achieves a constant approximation factor to the
optimal revenue and can be computed in polynomial time.
Because the mechanism is DST, it can be combined with our
technique to remove the assumption that the seller knows
the distribution, in cases where the players know each other
better than the seller knows them.

Dobzinski, Fu and Kleinberg [16] show an optimal mech-
anism for single-item auctions with correlated distributions,
as well as unit-demand multi-item auctions. Their mech-
anisms can be constructed in time polynomial in the size
of the support of D. Our technique can potentially be
used in conjunction with their mechanisms to construct a
crowdsourced-Bayesian mechanism for single-item auctions
with correlated distributions17

15In particular, it is NP-Hard.
16In this way we lose a 1

2
fraction of the optimal revenue. So

this way of removing the assumption about the auctioneer’s
knowledge is no better than using our mechanism L from
Section 4.

17Or for unit-demand multi-item auctions.


