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Designing dominant-strategy incentive compatible (DSIC) mechanisms for a seller to 
generate (approximately) optimal revenue by selling items to players is a fundamental 
problem in Bayesian mechanism design. However, most existing studies assume that 
the seller knows the entire distribution from which the players’ values are drawn. 
Unfortunately, this assumption may not hold in reality: for example, when the distributions 
have exponentially large supports or do not have succinct representations. In this work 
we consider, for the first time, the query complexity of Bayesian mechanisms. The seller 
only has limited oracle accesses to the players’ distributions, via quantile queries and 
value queries. For single-item auctions, we design mechanisms with logarithmic number 
of value or quantile queries which achieve almost optimal revenue. We then prove 
logarithmic lower-bounds, i.e., logarithmic number of queries are necessary for any 
constant approximation DSIC mechanisms, even when randomized and adaptive queries are 
allowed. Thus our mechanisms are almost optimal regarding query complexity. Our lower-
bounds can be extended to multi-item auctions with monotone subadditive valuations, 
and we complement this part with constant approximation mechanisms for unit-demand 
or additive valuation functions. Our results are robust even if the answers to the queries 
contain noises. Thus, in those settings the seller needs to access much less than the entire 
distribution to achieve approximately optimal revenue.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

An important problem in Bayesian mechanism design is to design auctions that (approximately) maximize the seller’s 
expected revenue by selling items. More precisely, in a Bayesian multi-item auction a seller has m heterogeneous items to 
sell to n players. Each player has a private value for each item, which is independently drawn from some prior distribution. 
When the joint prior distribution is of common knowledge to both the seller and the players, optimal Bayesian incentive-
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Table 1
Our main results. Here h(·) < 1 is the tail function in the small-tail assumptions. For single-item auctions, 
the revenue is a (1 + ε)-approximation to the optimal BIC revenue, with ε sufficiently small. For multi-
item auctions with unit-demand or additive valuation functions, the revenue is a c-approximation for some 
constant c. The upper bounds in the table holds for queries with small noise in the response while the 
lower bounds holds even for queries without noise. Note that the result of regular distributions doesn’t 
require the distribution to be bounded.
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compatible (BIC) mechanisms have been discovered for various auction settings [39,19,11], where all players reporting their 
true values forms a Bayesian Nash equilibrium. When there is no common prior but the seller knows the distribution, 
many (approximately) optimal dominant-strategy incentive-compatible (DSIC) Bayesian mechanisms have been designed 
[39,41,15,12], where it is each player’s dominant strategy to report his true values.

However, the complexity for the seller to carry out such mechanisms is largely unconsidered in the literature. Most 
existing Bayesian mechanisms require that the seller has full access to the prior distribution and is able to carry out all 
required optimizations based on the distribution, so as to compute the allocation and the prices. Unfortunately the seller 
may not be so knowledgeable or powerful in real-world scenarios. If the supports of the distributions are exponentially 
large (in m and n), or if the distributions are continuous and do not have succinct representations, it is hard for the seller 
to write out “each single bit” of the distributions or precisely carry out arbitrary optimization tasks based on them. Even 
with a single player and a single item, when the value distribution is irregular, computing the optimal price in time that is 
much smaller than the size of the support is not an easy task. Thus, a natural and important question to ask is how much 
the seller should know about the distributions in order to obtain approximately optimal revenue.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms. In particular, the seller can 
only access the distributions by making oracle queries. Two types of queries are allowed, quantile queries and value queries. 
That is, the seller queries the oracle with specific quantiles (respectively, values), and the oracle returns the corresponding 
values (respectively, quantiles) in the underlying distributions. These two types of queries happen a lot in market study. 
Indeed, the seller may wish to know what is the price he should set so that half of the consumers would purchase his 
product; or if he sets the price to be 200 dollars, how many consumers would buy it. Another important scenario where 
such queries naturally come up is in databases. Indeed, although the seller may not know the distribution, some powerful 
institutes, say the Office for National Statistics, may have such information figured out and stored in its database. As in 
most database applications, it may be neither necessary nor feasible for the seller to download the whole distribution to 
his local machines. Rather, he would like to access the distribution via queries to the database. Moreover, the commercial 
data providers may charge the mechanism designer a fixed monetary payment for each query about the statistics of the 
distribution. To maximize the revenue of the designer, it is necessary to understand the tight bounds on the number of 
queries that are sufficient for good revenue guarantees.

Another concern in practice is that the queries to the valuation distributions are not precise. One reason for the occur-
rence of such error is that the data provider only has estimates for the statistics of the valuation distributions, and those 
estimates are only approximately correct with high probability. Another reason is that the data provider may even try to 
obfuscate the data due to privacy issues. For example, when the data provider adopts techniques such as differential privacy 
[25], the data provider will add a noise to the returned value of each query. In this paper, we show that our results are 
robust with the presence of imprecise queries.

In this work we mainly focus on non-adaptive queries, where later queries cannot be based on the answers of previous 
queries. Thus the seller makes all oracle queries simultaneously, before the auction starts. This also happens in both database 
and market study scenarios, and in Section 4, we will show that the performance of adaptive queries cannot be improved 
by more than a logarithmic factor.

1.1. Main results

We would like to understand both lower- and upper-bounds for the query complexity of approximately optimal Bayesian 
auctions. In this work, we will first consider single-item auctions and then extend our results to multi-item settings when 
the players’ valuations are either unit-demand or additive. When the distributions are bounded within [1, H] and the queries 
are precise, our results are summarized in Table 1. We also show that our query complexity results extend for arbitrary 
unbounded distributions that satisfy small-tail assumptions, with formal definitions provided in Section 3.2.1. These results 
are summarized in Table 1 as well. Similar small-tail assumptions are widely adopted in sampling mechanisms [42,22], to 
deal with irregular distributions with unbounded supports. Finally, in Section 3.3, we show that the revenue of the query 
mechanisms degrade proportionally to the amount of error contained in the queries to the valuation distributions.
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Table 2
Sample complexity in the literature. For multi-item auctions with unit-demand or additive valuation functions, the 
revenue has an extra ε additive loss. The results for single-item auctions are by [22], for unit-demand auctions are by 
[38], and for additive auctions are by [9], respectively.

Auctions Single-item
(regular)

Single-item
(bounded in [1, H])

Unit-demand
(bounded in [1, H])

Additive 
(bounded in [1, H])

Sample 
complexity

Õ (nε−4) Õ (nHε−3) Õ (nm2 H2ε−2) Õ (nm2 H2ε−2)

Approximations 1 + ε 1 + ε 27 32

Following the convention of the literature, the mechanism designer implements DSIC mechanisms while the benchmark 
is the optimal BIC revenue. It is known that the gap between the optimal DSIC mechanism and the optimal BIC mechanism 
for multi-item setting is bounded away from 1 [45], and the best known approximation ratio for DSIC mechanisms to the 
optimal BIC revenue in unit-demand and additive auctions are 24 and 8 respectively in the literature [12]. The main focus 
of this paper is not the tightness of approximation ratios for those mechanisms, but the amount of information required for 
the mechanism designer to achieve such approximations.

Also note that our lower- and upper-bounds on query complexity are tight for bounded distributions. As will become 
clear in Section 4, our lower-bounds allow the seller to make both value and quantile queries, and apply to any multi-
player multi-item auctions where each player’s valuation function is succinct sub-additive: formal definitions in Section 4. 
The lower-bounds also allow randomized adaptive queries and randomized mechanisms.1

For the upper-bounds, all our query schemes are deterministic, non-adaptive, and only make one type of queries: value 
queries for bounded distributions and quantile queries for unbounded distributions with small-tail assumptions. We show 
that our schemes, despite of being very efficient, only loses a small fraction of revenue compared with when the seller has 
full access to the distributions.

1.2. Related work

Sampling mechanisms A closely related area to our work is sampling mechanisms [18,22,5,29,34,1]. It assumes that the 
seller does not know the distribution D but observes random samples from D before the auction begins. There are two 
branches of researches for sampling mechanisms. One branch focuses on designing mechanisms that minimize the approx-
imation ratio given only one sample [35,1] or two samples [5,21]. The other one is referred as sample complexity, which 
measures how many samples the seller needs so as to obtain a good approximation to the optimal Bayesian revenue [9,29,8]. 
Most of the previous results focus on analyzing the sample complexity of DSIC mechanisms, which is similar to what we 
adopt in this paper. There are two exceptions. In Gonczarowski and Nisan [27], the authors provide upper bounds on the 
sample complexity for (1 + ε)-approximation to the optimal BIC revenue. However, the solution concept adopted there is 
ε-BIC, and the revenue guarantee under Bayesian Nash equilibrium for the mechanism proposed there is unclear. Hartline 
and Taggart [34] resolve the issue for the single-item setting, and provide upper bounds on the sample complexity of non-
truthful mechanisms for (1 + ε)-approximation to the optimal BIC revenue, under the solution concept of Bayesian Nash 
equilibrium. The best-known sample complexity results are summarized in Table 2.

Oracle queries can be seen as targeted samples, where the seller actively asks the information he needs rather than 
passively learns about it from random samples. As such, it is intuitive that queries are more efficient than samples, but 
it is a priori unclear how efficient queries can be. Our results answer this question quantitatively and show that query 
complexity can be exponentially smaller than sample complexity: the former is logarithmic in the “size” of the distributions, 
while the latter is polynomial.2 Finally, the design of query mechanisms facilitates the design of sampling mechanisms. If 
the seller observes enough samples from D , then he can mimic quantile queries and apply query mechanisms: see Section 7
for more details.

Parametric auctions Parametric mechanisms [3,14,17] assume the seller only knows some specific parameters about the 
distributions, such as the mean, the median (or a single quantile), the variance or higher moments. Note that using quantile 
or value queries, one can get the exact value of the median and the approximate value of the mean, and then apply para-
metric mechanisms. Existing parametric mechanisms only consider single-parameter auctions. Since our mechanisms make 
non-adaptive oracle queries, our results imply parametric mechanisms in multi-parameter settings with general distribu-
tions, where the “parameters” are the oracle’s answers to our query schemes. Our lower-bounds also imply that knowing 
only the median is not enough to achieve the same approximation ratios as we do.

Distributions within bounded distance There are several papers in the literature that consider the model where the seller 
is given a distribution that is within a small distance to the true prior distribution. For single-item single-buyer settings, 
Bergemann and Schlag [7] characterize the optimal robust monopoly pricing under the Prohorov distance. Li et al. [37]

1 As shown in Theorem 3 and 4, introducing randomization in the mechanisms does not affect the bounds, while when the adaptive queries are allowed, 
there is an additional multiplicative factor of 1

log(m log H)
in the lower bound.

2 For example, in the single-item auction, the sample complexity is Õ(n2 Hε−2) when the valuations are bounded in [1, H].
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consider the same problem with the earth-mover distance and extends the characterization to the multi-buyer setting. 
Recently, [9] study the multi-item auctions under the Kolmogorov distance. The distinction between our model and those 
papers is that the learnt distributions from our query schemes may be far from the true prior in terms of those specified 
distances (e.g., Prohorov, Kolmogorov or earth-mover), and thus their mechanisms do not apply. On the other hand, although 
a distribution close to the true prior may be learnt via sufficiently many oracle queries given Prohorov distance, our results 
imply that the query complexity of this approach will not be better than ours.

Menu complexity The complexity of auctions is an important topic in the literature, and other complexity measures 
such as menu complexity have been considered. Following the taxation principle [30,28,31], defines the menu complexity of 
truthful auctions. For a single additive buyer, [20] show the optimal Bayesian auction for revenue can have an infinite menu 
size or a continuum of menu entries, and [6] bound the menu complexity for approximating the optimal revenue. Recently, 
[24] considers the taxation, communication, query and menu complexities of truthful combinatorial auctions, and shows 
important connections among them. The queries considered there are totally different from ours: we are concerned with 
the complexity of accessing the players’ value distributions in Bayesian settings, while [24] is concerned with the complexity 
of accessing the players’ valuation functions in non-Bayesian settings.

2. Preliminaries

2.1. Bayesian auctions

In a multi-item auction there are m items, denoted by M = {1, . . . , m}, and n players, denoted by N = {1, . . . , n}. Each 
player i ∈ N has a non-negative value for each item j ∈ M , vij , which is independently drawn from distribution Dij . Player i’s 
true valuation is (vij) j∈[m] . To simplify the notations, we may write vi for (vij) j∈[m] and v for (vi)i∈[n] . Letting Di = × j∈M Dij
and D = ×i∈N Di , we use I = (N, M, D) to denote the corresponding Bayesian auction instance. We will consider several 
classes of widely studied auctions. A single-item auction has m = 1. When m > 1, a player i being unit-demand means his 
value for a subset S of items is max j∈S vi j , and a player i being additive means his value for S is 

∑
j∈S vi j . When all players 

are unit-demand (respectively, additive), we call such an auction a unit-demand auction (respectively, an additive auction) for 
short.

A mechanism M maps a reported value profile v from the players to a/n (random) allocation of items, x = (xi(v))i∈N , 
and payments to charge the players, p = (pi(v))i∈N . When v is clear from the context, we simply denote by x = (xi)i∈N and 
p = (pi)i∈N . For single-item auctions, xi ∈ [0, 1] and for multi-item auctions, xi ∈ [0, 1]m . A mechanism is called Bayesian 
Incentive Compatible (BIC) if it is every player’s optimal strategy to report her true value, given all other players report 
truthfully. A mechanism is called Dominant Strategy Incentive Compatible (DSIC) if it is every player’s optimal strategy to 
report her true value no matter what values are reported by the other players. Given any instance I , let Rev(M(I)) be the 
expected revenue generated by M and OPT(I) be the optimal BIC revenue of I , i.e., the maximum expected revenue gener-
ated by BIC mechanisms. When I is clear from the context, we write OPT for short. A mechanism achieves c-approximation 
if for any instance I , Rev(M(I)) ≥ OPT(I)

c .

2.2. Query complexity

In this work, we only allow the seller to access the prior distributions via two types of oracle queries: value queries and 
quantile queries. Given a distribution D over real numbers, in a value query, the seller sends a value v ∈ R and the oracle 
returns the corresponding quantile q(v) � Prx∼D [x ≥ v]. In a quantile query, the seller sends a quantile q ∈ [0, 1] and the 
oracle returns the corresponding value v(q) such that Prx∼D [x ≥ v(q)] = q. With non-adaptive queries, the seller first sends 
all his queries to the oracle, gets the answers back, and then runs the auction. The query complexity is the number of queries 
made by the seller.

Note that the answer to a value query is unique. The quantile queries are a bit tricky, as for discrete distributions there 
may be multiple values corresponding to the same quantile q, or there may be none. When there are multiple values, to 
resolve the ambiguity, let the output of the oracle be the largest one: that is, v(q) = arg supz{Prx∼D [x ≥ z] ≥ q}.3 Note that 
for any discrete distribution D and quantile query q > 0, v(q) is always in the support of D . Moreover, when q = 0, v(q)

may be +∞.
Noisy queries In this paper, we also consider the model where the answers to the queries contain errors, i.e., noisy value 

queries and noisy quantile queries.4

Definition 1. For any distribution D and η > 0, a value query has η-noise if for any value v ∈R, the returned quantile is

q ∈
[

1

1 + η
· Pr

x∼D
[x ≥ v], (1 + η) · Pr

x∼D
[x ≥ v]

]
.

3 The tie breaking rule here is chosen to simplify the exposition. All of our results extend to arbitrary tie breaking rules.
4 In Definition 1, we define the noise as multiplicative errors. This choice is made since we focus on multiplicative approximations in our paper. Similar 

results can be obtained for additive error, which will not be elaborated in this paper.
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Algorithm 1 The value-query algorithm AV .
Input: The value bound H and the precision factor δ.
1: Let k = �log1+δ H	 and define the value vector as v = (v0, v1, . . . , vk−1, vk) = (1, (1 + δ), (1 + δ)2, . . . , (1 + δ)k−1, H).
2: Query the oracle for D with v , and receive a non-increasing quantile vector q = (q(v0), · · · , q(vk)) = (ql)l∈{0,...,k} . Note q0 = 1.

3: Construct a discrete distribution D ′ as follows: D ′(vl) = ql − ql+1 for any l ∈ {0, . . . , k}, where qk+1 � 0.
Output: Distribution D ′ .

Mechanism 2 Efficient value Myerson mechanism ME V M .
1: Given the value bound H and a constant ε > 0, run the value-query algorithm AV with H and δ = ε for each player i’s distribution Di . Denote by D ′

i
the returned distribution. Let D ′ = ×i∈N D ′

i .
2: Run MM R S with D ′ and the players’ reported values, b = (bi)i∈N , to get allocation x = (xi)i∈N and price profile p = (pi)i∈N as the outcome.

Similarly, a quantile query has η-noise if for any quantile q ∈ [0, 1], the returned value v satisfies

v ∈
[

1

1 + η
· v ′, (1 + η) · v ′

]
and v ′ = arg max

z
{ Pr

x∼D
[x ≥ z] ≥ q}.

3. Efficient query mechanisms for single-item auctions

In this section, we first focus on designing efficient query mechanisms for single-item auctions when the queries are 
precise. The generalizations to η-noise queries are discussed in Section 3.3. We will consider both settings where all dis-
tributions are bounded or unbounded but satisfy small tail assumptions (formally defined in Section 3.2.1). Our results in 
this section rely on Myerson’s characterization of the optimal mechanism for single-item auctions [39]. For any valuation 
distribution with cumulative distribution function F and density f , the virtual value is defined as φF (v) = v − 1−F (v)

f (v)
.

Lemma 1 ([39]). For any BIC mechanism M with allocation rule x, any instance I = (N, M, D), the expected revenue equals the 
expected virtual welfare, i.e.,

Rev(M(I)) = Ev∼D

∑
i

[φF (vi) · xi(v)].

Thus, in Myerson’s mechanism, we first map all players’ values to virtual values and then run the second price auction 
with reserve price 0 on the virtual values, which achieves the optimal revenue.

3.1. Bounded distributions and value-query mechanisms

We first consider the setting when all distributions are bounded within [1, H]. We show that it is sufficient to use only 
value queries, and we define a universal query scheme AV , which will be used as a black-box in our mechanisms. The 
seller uses algorithm AV to learn a distribution D ′ = ×i∈N, j∈M D ′

i j that approximates the prior distribution D and is first 
order stochastically dominated by D (i.e., Prx∼Dij [x ≥ v] ≥ Prx∼D ′

i j
[x ≥ v] for any i, j and v ∈ [1, H]). The seller then runs 

existing DSIC Bayesian mechanisms using D ′ , while the players’ values are drawn from D . In this sense, all our mechanisms 
are simple, but they are not given a true Bayesian instance as input.

The query algorithm AV is defined in Algorithm 1. Here D ∈ �(R) is the distribution to be queried. The algorithm takes 
two parameters, the value bound H and the precision factor δ > 0, makes O (log1+δ H) value queries to the oracle, and then 
returns a discrete distribution D ′ . It is easy to verify that D ′ is stochastically dominated by D .5

Denoting by MM R S Myerson’s mechanism for single-item auctions, Mechanism 2 defines our efficient value Myerson
mechanism ME V M .

The query complexity of ME V M is O (n log1+ε H), since each distribution Di needs O (log1+ε H) value queries in AV . 
When ε is sufficiently small, O (n log1+ε H) ≈ O (nε−1 log H). Also, ME V M is DSIC since MM R S is so.

In this section and throughout the paper, we often analyze “mismatching” cases where a Bayesian mechanism M uses 
distribution D ′ while the actual Bayesian instance is I = (N, M, D) (i.e., the players’ true values are drawn from D). We use 
Rev(M(I; D ′)) to denote the expected revenue in this case. By construction, Rev(ME V M(I)) = Rev(MM R S (I; D ′)).

Because the distribution D ′ constructed in ME V M is stochastically dominated by D , letting I ′ = (N, M, D ′) be the 
Bayesian instance under D ′ , by revenue monotonicity [22] we have Rev(MM R S (I; D ′)) ≥ Rev(MM R S (I ′)). By Lemma 5 
of [22], Rev(MM R S (I ′)) ≥ OPT(I)

1+ε . Thus we have the following simple result.

5 Moreover, it is worth mentioning that the mean of D ′ approximates that of D . Indeed, mean(D) = ∫ H
1 vdF (v) ≤ ∑k−1

l=0 vl+1 Pr[vl ≤ v < vl+1] +
vk D(vk) ≤ (1 + δ) ∑k

l=0 vl D ′(vl) = (1 + δ)mean(D ′). Therefore, by directly applying the parametric mechanism in [2] with parameter mean(D ′) (for single-
parameter auctions where the distributions are regular or MHR (monotone hazard rate)), we will get at least a (1 + δ) fraction of their revenue.
5



J. Chen, B. Li, Y. Li et al. Artificial Intelligence 303 (2022) 103630
Algorithm 3 The quantile-query algorithm AQ .
Input: the tail length ε1 and the precision factor δ.
1: Let k = �log1+δ

1
ε1

	 and define the quantile vector as q = (q0, q1, . . . , qk−1, qk) = (1, ε1(1 + δ)k−1, . . . , ε1(1 + δ), ε1).
2: Query the oracle for D with q, and receive a non-decreasing value vector (vl)l∈{0,...,k} .

3: Construct a distribution D ′ as follows: D ′(vl) = ql − ql+1 for each l ∈ {0, . . . , k}, where qk+1 � 0.
Output: Distribution D ′ .

Theorem 1. ∀ε > 0, for any single-item instance I = (N, M, D) with values in [1, H], mechanism ME V M is DSIC, has query com-
plexity O (n log1+ε H), and Rev(ME V M(I)) ≥ OPT(I)

1+ε .

3.2. Unbounded distributions and quantile-query mechanisms

Next, we construct efficient query mechanisms for arbitrary distributions whose supports can be unbounded. For a mech-
anism to approximate the optimal Bayesian revenue using finite non-adaptive queries to such distributions, it is intuitive that 
some kind of small-tail assumption for the distributions is needed. Indeed, given any mechanism with query complexity C , 
there always exists a distribution that has a sufficiently small probability mass around a sufficiently large value, such that 
the mechanism cannot find it using C queries. If this probability mass is where all the revenue comes (e.g., all the remaining 
probability mass is around value 0), then the query mechanism cannot be a good approximation to the optimal revenue. 
Following the literature [42,22], the small-tail assumptions are such that the expected revenue generated from the “tail” 
of the distributions is negligible compared to the optimal revenue; see Section 3.2.1. Distributions with bounded supports 
automatically satisfy these assumptions, so are regular distributions in single-item auctions.

Even with small-tail assumptions, it is hard to generate good revenue from unbounded distributions with finite value
queries.6 Instead, we show it is sufficient to use only quantile queries. As before, the seller uses our quantile-query algorithm 
AQ (defined in Section 3.2.2) to learn a distribution D ′ that approximates D , and then reduces to simple mechanisms under 
D ′ . However, even for single-item auctions, it is not so simple to show why the combination of these two parts works. 
Indeed, under value queries it is easy to “under-price” the item so that the probability of sale is the same as in the optimal 
mechanism for D . Under quantile queries, under-pricing may lose a large amount of revenue because, for given quantiles, 
there is no guarantee on where the corresponding values are. Instead, the main idea in using quantile queries is to “over-
price” the item. This is risky in many auction design scenarios, because it may significantly reduce the probability of sale, 
and thus lose a lot of revenue. We prove a key technical lemma in Lemma 2 for single-item auctions, where we show that 
by discretizing the quantile space properly, we can over-price the item while almost preserving the probability of sale as in 
the optimal mechanism under D . This guarantees that the revenue loss for using quantile queries is small.

3.2.1. Small-tail assumptions
A Bayesian auction instance I satisfies the Small-Tail Assumption if there exists a function7 h : (0, 1) → (0, 1) such that, 

for any constant δ1 ∈ (0, 1) and any BIC mechanism M, letting ε1 = h(δ1), we have8

E
v∼D

I∃i, j,qij(vi j)≤ε1 Rev(M(v;I)) ≤ δ1OPT(I). (1)

Here qij(vij) is the quantile of vij under distribution Dij , Rev(M(v; I)) is the revenue of M under the Bayesian instance 
I when the true valuation profile is v , and I is the indicator function. For discrete distributions, Equation (1) is imposed on 
the ε1 probability mass over the highest values. Intuitively, the small tail assumption assumes that the revenue contribution 
of any mechanism from high values, i.e., values with quantile smaller than ε , is sufficiently small. Similar assumptions are 
widely adopted in sampling mechanisms to deal with distributions with potentially unbounded supports [c.f. 22]. Exam-
ples of distributions satisfying small tail assumption include exponential distributions and all bounded distributions. See 
Section 6.3 for a detailed discussion.

3.2.2. The quantile-query algorithm
We define our quantile-query algorithm AQ in Algorithm 3. As before, D ∈ �(R) is the distribution to be queried. The 

algorithm takes two parameters, the tail length ε1 and the precision factor δ, makes O (log1+δ
1
ε1

) quantile queries to the 
oracle, and then returns a discrete distribution D ′ .

3.2.3. Efficient quantile Myerson mechanism
Mechanism 4 defines our efficient quantile Myerson mechanism ME Q M .

6 Given any finite number of value queries, no information about the distribution is revealed if the distribution’s support is above the maximum value 
query. Hence the query mechanism cannot distinguish among those distributions and constant approximations are not possible in this case.

7 If computation complexity is a concern, then one can further require that the function is efficiently computable.
8 In fact in our results for the single item auction, we only need a weaker condition where the inequality only need to hold for the Bayesian optimal 

mechanism OPT.
6
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Mechanism 4 Efficient quantile Myerson mechanism ME Q M .

1: Given ε > 0, run algorithm AQ with δ = ε
3 and ε1 = h( 2ε

3(1+ε)
) (i.e., δ1 = 2ε

3(1+ε)
for Small Tail Assumption 2), for each player i’s distribution Di . Denote 

by D ′
i the returned distribution. Let D ′ = ×i∈N D ′

i .
2: Run Myerson’s mechanism MM R S with D ′ and the players’ reported values, b = (bi)i∈N , to get allocation x = (xi)i∈N and price profile p = (pi)i∈N as 

the outcome.

Theorem 2. ∀ε > 0, any single-item instance I = (N, M, D) satisfying Small-Tail Assumption, ME Q M is DSIC, has query complexity 
O (−n log1+ ε

3
h( 2ε

3(1+ε)
)), and Rev(ME Q M(I)) ≥ OPT(I)

1+ε .

Before proving Theorem 2, we first claim the following key lemma via an imaginary Bayesian mechanism that “over-
prices”. Recall I ′ = (N, M, D ′) is the instance under D ′ .

Lemma 2. Rev(MM R S (I ′)) ≥ 1
1+ε OPT(I).

Proof. For each player i, denote the support of D ′
i by V ′

i = (v ′
i;l)l∈{0,...,k} . We first define a way to couple the values v ′

i ∼ D ′
i

with the values vi ∼ Di .
The randomized round-down scheme For any value vi ≥ v ′

i;0, let v−
i be vi rounded down to the support of D ′

i , such that 
v−

i is distributed according to D ′
i whenever vi is distributed according to Di . Recall that under value queries, v−

i is simply 
the largest value in V ′

i that is less than or equal to vi , no matter whether Di is continuous or discrete. Under quantile 
queries, when Di is continuous, the same deterministic round-down scheme still works. However, the situation is more 
subtle when Di is discrete, and we need a randomized round-down scheme to ensure the relationship between vi and 
v−

i . More precisely, by the definition of quantile queries, V ′
i is a subset of Di ’s support. If vi is not in V ′

i , then it is still 
deterministically rounded down as before. If vi is in V ′

i , say vi = v ′
i;l , then by the definition of quantile queries and the 

construction of D ′
i , we have Prx∼Di [x ≥ vi] ≥ ql = Prx∼D ′

i
[x ≥ vi]. In this case, vi is rounded down to v ′

i;l−1 (i.e., v−
i = v ′

i;l−1) 
with probability

Prx∼Di [x ≥ vi] − Prx∼D ′
i
[x ≥ vi]

Di(vi)
,

and to v ′
i;l (i.e., v−

i = v ′
i;l) with probability

1 − Prx∼Di [x ≥ vi] − Prx∼D ′
i
[x ≥ vi]

Di(vi)
.

Following this scheme, it is not hard to verify that Prvi∼Di [v−
i ≥ v ′

i;l] = ql for any l ∈ {0, . . . , k}, thus v−
i is distributed 

according to D ′
i , as desired.

No matter what v−
i is, let v+

i be the smallest value in V ′
i that is strictly larger than v−

i (if no such value exists, then 
v+

i = +∞). That is, v+
i ≥ vi and v+

i is vi “rounded up”, which was not needed under value queries and is new for quantile 
queries.

The randomized resampling scheme For any value v ′
i ∼ D ′

i , let vi be resampled from Di conditional on “vi rounded down 
to v ′

i ”, so that vi is distributed according to Di whenever v ′
i is distributed according to D ′

i . Again, under value queries, the 
resampling is simply conditional on vi ∈ [v ′

i;l, v
′
i;l+1) when v ′

i = v ′
i;l , no matter whether Di is continuous or discrete. Under 

quantile queries, this resampling scheme still works when Di is continuous. When Di is discrete, we need to “undo” the 
randomized round-down scheme defined above. More precisely, letting v ′

i = v ′
i;l , vi is set to be v ′

i;l+1 with probability

p1 = Prx∼Di [x ≥ v ′
i;l+1] − ql+1

D ′
i(v ′

i;l)
;

is resampled from Di conditional on vi ∈ (v ′
i;l, v

′
i;l+1) with probability

p2 = Prx∼Di [v ′
i;l < x < v ′

i;l+1]
D ′

i(v ′
i;l)

;

and is set to be v ′
i;l with probability

p3 = Prx∼Di [x ≤ v ′
i;l] − Prx∼D ′

i
[x < v ′

i;l]
D ′

i(v ′
i;l)

= Di(v ′
i;l) − Prx∼Di [x ≥ v ′

i;l] + ql

D ′
i(v ′

i;l)
.

Following this resampling scheme, it is not hard to verify that vi is distributed according to Di whenever v ′
i is distributed 

according to D ′ .
i

7
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Mechanism 5 A Bayesian mechanism M∗ for instance I ′ .
1: Each player i reports his value v ′

i , and the mechanism discards the report that is not in V ′
i .

2: For each player i, generate value vi according to v ′
i using our resampling scheme.

3: Run MM R S with the value profile v and the prior distribution D , to get the price pi and the allocation xi ∈ {0, 1} for each player i.
4: If xi = 1 and pi ≤ v ′

i , sell the item to i and charge him pi ; otherwise, set xi = 0 and pi = 0.

Given the round-down and the resampling schemes above, we consider the Bayesian mechanism M∗ defined in Mecha-
nism 5 for I ′ , and compare its revenue with that of MM R S . We first claim that M∗ is a DSIC mechanism. Because MM R S

is DSIC, each xi is monotone in vi . Although vi is a random variable given v ′
i , it is easy to see that for any two different 

values v ′
i ∈ V ′

i and v̂ ′
i ∈ V ′

i , the corresponding resampled values vi and v̂ i are such that v ′
i < v̂ ′

i implies vi ≤ v̂ i . Thus xi is 
monotone in v ′

i as well. Moreover, let θi be player i’s threshold payment in MM R S given v−i and D . If v ′
i > θi then vi > θi , 

thus player i gets the item at price pi = θi . If v ′
i < θi then player i does not get the item and pi = 0, no matter whether 

vi < θi or not. Accordingly, θi is also player i’s threshold payment in M∗ under v−i and D ′ . Since v−i does not depend on 
v ′

i , M∗ is DSIC as desired.
To analyze the revenue of M∗ , note that by construction, when v ′

i is distributed according to D ′
i , the resampled vi

in M∗ is distributed according to Di . Moreover, each v ′
i is distributed as if we first sample vi from Di and then setting 

v ′
i = v−

i .
Thus, mechanism M∗ on instance I ′ essentially generates the same expected revenue as MM R S on instance I , except 

for the case when v ′
i < pi ≤ vi for the winner i. Fortunately, we are able to upper-bound the probability of this event and 

thus upper-bound the expected revenue loss. More precisely, for each player i, we write pi as pi(v−i; D) to emphasize that 
it is the threshold payment for i given v−i and D , and does not depend on vi or v ′

i . We have

Rev(M∗(I ′)) =
∑

i

E
v−i∼D−i

E
vi∼Di

pi(v−i; D)Iv−
i ≥pi(v−i;D)

=
∑

i

E
v−i∼D−i

pi(v−i; D) · Pr
vi∼Di

[v−
i ≥ pi(v−i; D)]. (2)

Here the first equality holds because of the relationship between D ′ and D as established by our rounding and resampling 
schemes, and because each player i in M∗ pays the same threshold price as in mechanism MM R S whenever v ′

i is at least 
the threshold, and pays 0 otherwise. By the construction of the distribution D ′ , we have the following claim, which is 
proved in Appendix A.

Claim 1. Prvi∼Di [vi ≥ pi(v−i; D)|qi(vi) > ε1] ≤ (1 + δ) Prvi∼Di [v−
i ≥ pi(v−i; D)].

Combining Equation (2), Claim 1 and Small Tail Assumption 2, we are able to lower-bound the revenue of M∗ as follows, 
which is also proved in Appendix A.

Claim 2. Rev(M∗(I ′)) ≥ 1
1+ε OPT(I).

By the optimality of MM R S , Rev(MM R S (I ′)) ≥ Rev(M∗(I ′)), and Lemma 2 holds. �
Proof of Theorem 2. First, mechanism ME Q M is DSIC because MM R S is DSIC. Second, the query complexity of ME Q M is 
O (−n log1+ ε

3
h( 2ε

3(1+ε)
)), because there are k + 1 = �log1+ ε

3

1
h( 2ε

3(1+ε)
)
	 + 1 quantile queries for each player and there are n

players in total. By definition,
Rev(ME Q M(I)) = Rev(MM R S (I; D ′)). By construction, D ′ is stochastically dominated by D . Thus by revenue monotonic-

ity Rev(MM R S (I; D ′)) ≥ Rev(MM R S (I ′)). Combining these two equations with Lemma 2, Theorem 2 holds. �
Mechanism ME Q M and Theorem 2 immediately extend to single-parameter downward-closed settings. Finally, when the 

distributions are regular, we are able to prove an even better query complexity and a matching lower-bound; see Section 5.

3.3. Robustness to noisy queries

When the value queries or the quantile queries exhibit η-noise, the optimal revenue cannot be obtained even with 
infinitely many queries. However, we can show that the performance of the query mechanisms degrades proportionally to 
the amount of noise η. Next we illustrate the multiplicative loss for value queries, and the bounds for quantile queries hold 
analogously.

When the seller constructs the empirical distribution D ′ in Algorithm 1 with O (n log1+ε H) value queries, in addition 
to rounding down the value, the seller can also choose to round down the quantile by a multiplicative factor of 1 + η to 
guarantee that the constructed empirical distribution D ′ is stochastically dominated by the true distribution D . Moreover, 
8
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there exists another distribution D̄ stochastically dominates the true distribution D , which is obtained by rounding up both 
the valuation by 1 + ε and the quantile by 1 +η. Moreover, by Lemma 5 of [22] and Lemma 2, the revenue gap between D ′
and D̄ is at most (1 + ε)(1 + η)2. Combining the results in Section 3.1, letting Ī = (N, M, D̄) be the instance under D̄ , we 
have

Rev(MM R S(I; D ′)) ≥ Rev(MM R S (I ′))

≥ 1

(1 + ε)(1 + η)2
Rev(MM R S (Ī)) ≥ 1

(1 + ε)(1 + η)2
Rev(MM R S(I)).

This additional gap of (1 + η)2 is precisely the revenue loss the seller suffers from η-noisy queries.
Finally, if the queries are only approximately accurate with high probability, i.e., there exists δ, η > 0 such that with 

probability at least 1 − δ, all queries have η-noise, then we can easily show that with probability at least 1 − δ, the query 
mechanisms are an (1 + ε)(1 + η)2-approximation to the optimal revenue.

4. Lower bounds

In this section, we prove lower bounds for the query complexity of Bayesian mechanisms when the queries have no 
noise, and we focus on DSIC mechanisms. As a building block for our general lower bound, we first have the following for 
single-item single-player auctions. Note that although the main focus of this paper is about non-adaptive noisy queries, here 
we prove a stronger result by showing that even with adaptive queries and precise feedback, our bounds for single-item 
single-player auctions are still tight. Formally, we have the following lemma.

Lemma 3. For any constant c > 1, there exists a constant C such that, for any large enough H, any Bayesian mechanism M making 
less than C logc H adaptive value and quantile queries to the oracle, there exists a single-player single-item Bayesian auction instance 
I = (N, M, D) where the values are bounded in [1, H], such that Rev(M(I)) < OPT(I)

c .

Proof. Here we consider the equal revenue curve, i.e., F (v) = 1 − 1
v , v ∈ [1, H) and F (H) = 1. For this distribution, posting 

any price from [1, H] has exactly the same revenue 1. For any constant H , let k � � 1
4 log(4c)4c+2 H�. We divide the value 

interval [1, H] into k + 1 sub-intervals as follows: from right to left, uk = H , and us = us+1
(4c)4c+2 for each s ∈ {k − 1, . . . , 0}. For 

each value interval (us, us+1), there exists a corresponding quantile interval (qs, qs+1) � ( 1
us+1

, 1
us

).
For each value s ∈ {k −1, . . . , 0}, considering the pair of intervals (us, us+1) and (qs, qs+1), we construct �4c	 distributions 

for it. More precisely, the distribution Ds
z for each z ∈ [�4c	] is defined as follows. For vz < us or us+1 < vz < H , the density 

of vz is 1
v2

z
. The probability of vz = H is 1

H . The probability of (4c)zus is qs+1 − qs .

By construction, given parameter s, all [�4c	] distributions coincide outside the value and quantile range (us, us+1) and 
(qs, qs+1). Therefore, only a query inside the range can distinguish those distributions from each other. Moreover, for any 
two parameter s, s′ ∈ {k − 1, . . . , 0}, the value and quantile queries will get the exactly same response for queries outside 
their own value and quantile intervals. Thus, for any adaptive value and quantile queries, a single query can distinguish at 
most one set of �4c	 distributions. Letting c′ � 1 − 1

2c and C � 1−c′
8(4c+2) logc(4c) = 1

16c(4c+2) logc(4c) , we have C logc H < k(1 − c′). 
Accordingly, for any Bayesian mechanism M that makes less than C logc H adaptive value and quantile queries, there exists 
a value s such that, with probability at least c′ , M cannot distinguish Ds

z ’s from each other.
We now analyze the optimal BIC revenue for those instances. For any Iz = (N, M, Dz), Myerson’s mechanism is optimal: 

it sets a (randomized) threshold for the unique player, if the player bids at least the threshold then he gets the item and 
pays the threshold payment, otherwise the item is unsold. It is not hard to verify that OPT(Iz) = (4c)zusqs+1 for each Iz .

Next, we analyze the revenue of M. Since M is DSIC, the allocation rule must be monotone in the player’s bid, and he 
will pay the threshold payment set by M, denoted by P . Here P may also be randomized. Note that for all instances, setting 
P < 4cus is strictly worse than setting P = 4cus , and setting P > (4c)�4c	us is strictly worse than setting P = (4c)�4c	us <

us+1. Also, for any instance Iz and any z′ ∈ {1, . . . , �4c	 − 1}, setting P ∈ ((4c)z′
us, (4c)z′+1us) is strictly worse than setting 

P = (4c)z′+1us . Thus, when mechanism M cannot distinguish the Iz ’s, it must use the same P for all Iz ’s, and the best it 
can do is to set P = (4c)zus with some probability ρz for each z ∈ [�4c	]. Because 

∑
z∈[�4c	] ρz = 1, there exists z∗ such that 

ρz∗ ≤ 1
4c . Thus we have

Rev(M(Iz∗)) ≤ 1

4c
· (4c)z∗ · us · qs+1 + (1 − 1

4c
)(4c)z∗−1 · us · qs+1

<
1

2c
· (4c)z∗ · us · qs+1 = 1

2c
OPT(Iz∗),

where the first inequality is because for any threshold other than (4c)z∗
us , the resulting expected revenue is no larger than 

that with the threshold being (4c)z∗−1us . That is, when M cannot distinguish the Iz ’s, it cannot be a 2c-approximation for 
Iz∗ .
9
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As the revenue of M under Iz∗ is at most OPT(Iz∗ ) when it is able to distinguish Iz∗ from all the other instances, we 
have

Rev(M(Iz∗)) ≤ (1 − 1

2c
)

1

2c
OPT(Iz∗) + 1

2c
OPT(Iz∗) <

1

c
OPT(Iz∗).

Thus M is not a c-approximation for Iz∗ , and Lemma 3 holds. �
We extend Lemma 3 to arbitrary multi-player multi-item Bayesian auctions with succinct sub-additive valuations, as fol-

lows. To make our exposition clearer, we first introduce some notations. A very broad class of Bayesian auctions, (monotone) 
sub-additive auctions, is such that each player i has a valuation function vi : 2[m] → R, which satisfies vi(S) + vi(T ) ≥
vi(S ∪ T ) ≥ vi(S) ≥ 0 for any subsets of items S and T . As such a valuation function in general needs 2m values to describe, 
following the conventions in Bayesian auction design [43,16,13], we will consider succinct sub-additive auctions, where only 
the item-values, that is, the vij ’s, are independently drawn from the underlying distribution D = ×i∈[n], j∈[m]Dij . Given 
(vij) j∈[m] , it is publicly known how to compute player i’s value for any subset of items. That is, the valuation function vi
now takes a vector of item-values (vij) j∈[m] and a subset S ⊆ [m] as inputs, such that for any vector (vij) j∈[m] , the re-
sulting function vi((vij) j∈[m], ·) is sub-additive and vi((vij) j∈[m], { j}) = vij for each item j. Note that such auctions include 
single-item, unit-demand and additive auctions as special cases.

Theorem 3. For any constant c > 1, there exists a constant C such that, for any n ≥ 1, m ≥ 1, for any large enough H, any monotone 
sub-additive valuation function profile v = (vi)i∈[n] , and any Bayesian mechanism M making less than Cnm logm ln H H adaptive 
value and quantile queries to the oracle, there exists a multi-item Bayesian auction instance I = (N, M, D), where |N| = n, |M| = m
and the values are bounded in [1, H], such that Rev(M(I)) < OPT(I)

c .

Proof. Similar to the proof of Lemma 3, for any H , let k � � 1
4 log(4cx)4c+2 H�, where x is a parameter to be determined later. 

Let C ′ � 1
24c(4c+2) logc(4cx) and H be large enough so that k ≥ 1. We divide the value interval [1, H] into k + 1 sub-intervals 

as follows: from right to left, uk = H , and us = us+1
(4cx)4c+2 for each s ∈ {k − 1, . . . , 0}. For each value interval (us, us+1), there 

exists a corresponding quantile interval (qs, qs+1) � ( 1
us+1

, 1
us

).

It is easy to see that C ′nm logc H < nmk
3c . Thus, for any Bayesian mechanism M making less than C ′nm logc H adaptive 

value and quantile queries, with probability at least 1 − 1
3c , there exists a player-item pair (i∗, j∗), a value interval (us, us+1)

with corresponding quantile interval (qs, qs+1) such that M does not query these two intervals for Di∗ j∗ and does not 
distinguishes Dz

i∗ j∗;s ’s from each other.
Therefore, for each i ∈ [n], j ∈ [m], s ∈ [k], we construct �4c	 Bayesian instances {I z = (N, M, Dz)}z∈[�4c	] , where each Dz

ij
is equal revenue distribution if i �= i∗ or j �= j∗ . For any z ∈ [�4c	], we construct the distribution Dz

ij;s such that for vz < us

or us+1 < vz < H , the density of vz is 1
v2

z
. The probability of vz = H is 1

H . The probability of (4cx)zus is qs+1 − qs . All 
distributions other than Dij are equal revenue distribution. For any queries outside the interval (us, us+1) and (qs, qs+1), it 
cannot distinguish those instances. Thus, with less than Cnm logc H adaptive value and quantile queries, with probability at 
least 1 − 1

3c , the mechanism cannot distinguish those instances from each other.
We now analyze the optimal BIC revenue for those instances. For any Iz , Myerson’s mechanism is optimal: it sets a 

(randomized) threshold for the unique player, if the player bids at least the threshold then he gets the item and pays the 
threshold payment, otherwise the item is unsold. Letting δ � 1

H , it is not hard to verify that OPT(Iz) = (4cx)zusqs for each 
Iz .

Given any succinct sub-additive valuation function profile v = (vi)i∈[n] where each vi takes a vector of item-values 
(vij) j∈[m] as part of its input, we would like to compare the optimal revenue for the sub-additive instances defined by the 
I z ’s with the corresponding expected revenue of M. By construction, the Dz ’s differ only at the Dz

i∗ j∗ ’s, within the value 
interval (us, us+1) and the quantile interval (qs, qs+1). Accordingly, with probability at least 1 − 1

3c , mechanism M cannot 
distinguish the I z ’s from each other. Eventually, we will analyze the revenue of M conditional on this event happening.

For now, to compare the optimal revenue and that of M, let us first introduce some notations. For any item-value profile 
v̂ = (v̂ i j)i∈[n], j∈[m] , when the players bid v̂ , we denote by xi(v̂) the (randomized) allocation of M to a player i. It is defined 
by the probabilities σi S (v̂) for all the subsets S ⊆ [m]: each σi S(v̂) is the probability that player i receives S under bid v̂ . 
Accordingly, the expected value of player i for allocation xi(v̂) is vi((v̂ i j) j∈[m], xi(v̂)) = ∑

S vi((v̂ i j) j∈[m], S) ·σi S(v̂). Moreover, 
for each item j, let xij(v̂) be the probability that player i receives item j according to xi(v̂): that is, xij(v̂) = ∑

S: j∈S σi S(v̂).
We upper-bound the revenue of M in three steps. To begin with, we reduce the multi-player sub-additive instances to 

single-player sub-additive instances, and construct a DSIC Bayesian mechanism M∗ that only sells the items to player i∗ . 
Given any instance I z , mechanism M∗ runs on the single-player sub-additive instance I z

i∗ = ({i∗}, M, Dz
i∗). It first simulates 

the item values of players in N \ {i∗}, which are all 1’s, and then runs M. Mechanism M∗ answers the oracle queries of 
M truthfully. The allocation and the payment for player i∗ under M∗ is the same as those under M. For any player i �= i∗ , 
mechanism M∗ assigns nothing to him and charges him 0, because i is an imaginary player to M∗ . It is easy to see that 
mechanism M∗ is DSIC. Moreover,
10



J. Chen, B. Li, Y. Li et al. Artificial Intelligence 303 (2022) 103630
Rev(M∗(Iz
i∗)) ≥ Rev(M(Iz)) −Ev̂∼Dz

∑
i �=i∗

vi((v̂ i j) j∈[m], xi(v̂)), (3)

because the revenue generated by M from players in N \ {i∗} is at most their total value for the allocation.
Next, we reduce the single-player sub-additive instances to single-player additive instances, and construct a DSIC Bayesian 

mechanism M+ that runs on the single-player additive instances I+z
i∗ = ({i∗}, M, Dz

i∗), with z ∈ [�4c	]. Note that each I+z
i∗

has the same item-value distributions as I z
i∗ , but player i∗ ’s value for any subset of items is additive.

For each single-player sub-additive instance defined by I z
i∗ and the valuation function profile v , by the taxation princi-

ple [28,40], mechanism M∗ is equivalent to providing a menu of options, where each entry is a pair of bundle and its price, 
to player i∗ , and then letting i∗ choose an entry maximizing his expected utility according to his true valuation. Given any 
instance I+z

i∗ , mechanism M+ provides the same menu as mechanism M∗ under I z
i∗ and v , except that the payment in 

each entry is discounted by a multiplicative 1 − ε̂ . Here ε̂ is a sufficiently small constant in (0, 1) to be determined later in 
the analysis. The truthfulness of M+ is immediate, because it lets i∗ choose a menu entry maximizing his expected utility 
under his true additive values. Let

δ̄ �Ev̂ i∗∼Dz
i∗ max

S⊆[m](
∑
j∈S

v̂ i∗ j − vi∗((v̂ i∗ j) j∈[m], S)),

the expected maximum difference between the additive values and the succinct sub-additive values. Following Lemma 3.4 
in [43], which compares the revenue in the sub-additive instance with that in the corresponding additive instance, we have

Rev(M+(I+z
i∗ )) ≥ (1 − ε̂)(Rev(M∗(Iz

i∗)) − δ̄/ε̂). (4)

Finally, we reduce the single-player additive instances to single-player single-item instances, and consider a DSIC Bayesian 
mechanism M′ that only sells item j∗ to player i∗ . Mechanism M′ runs on the single-player single-item instances I z

i∗ j∗ =
({i∗}, { j∗}, Dz

i∗ j∗ ), with z ∈ [�4c	]. Given any I z
i∗ j∗ , it first lets player i∗ report v̂ i∗ j∗ . Then it simulates the v̂ i∗ j ’s from Dz

i∗ j for 
j �= j∗ , which are all 1’s, and runs M+ on the augmented additive instance I+z

i∗ to obtain allocation x+
i∗ (v̂ i∗ ) and payment 

p+
i∗ (v̂ i∗ ). For each item j, let x+

i∗ j(v̂ i∗ ) be the probability that player i∗ receives item j in the allocation. Mechanism M′ sets 
its outcome to be the following:

• x′
i∗ j∗ (v̂ i∗ j∗ ) = x+

i∗ j∗ (v̂ i∗ ); and

• p′
i∗ (v̂ i∗ j∗ ) = p+

i∗ (v̂ i∗ ) − ∑
j∈[m]\{ j∗} v̂ i∗ j x

+
i∗ j(v̂ i∗ ).

Note that p′
i∗ (v̂ i∗ j∗ ) may be negative. Moreover, mechanism M′ is also considered in Lemma 8 of [32], which proved that 

M′ is DSIC and

Rev(M′(Iz
i∗ j∗)) ≥ Rev(M+(I+z

i∗ )) −
∑
j �= j∗

Ev̂ i∗ j∼Dz
i∗ j

v̂ i∗ j . (5)

Now we combine the above three reduction steps together and consider the event when mechanism M cannot dis-
tinguish the I z ’s from each other. When this happens, mechanism M produces the same outcome for all the instances. 
Accordingly, although mechanism M∗ is given the distributions Dz

i∗ , by simulating M, it still produces the same outcome 
for all the I z

i∗ ’s, thus the same menu for all of them. So mechanism M+ also produces the same menu for all the I+z
i∗ ’s: 

that is, the menu produced by M∗ with the payments discounted by 1 − ε̂ . As a result, although mechanism M′ is given 
the Dz

i∗ j∗ ’s, it still cannot “distinguish” the I z
i∗ j∗ ’s from each other and produces the same outcome for all of them. Using 

the similar argument in the proof of Lemma 3, in this case there exists z∗ ∈ [�4c	] such that

Rev(M′(Iz∗
i∗ j∗)) <

1

2c
OPT(Iz∗

i∗ j∗).

Combining this inequality with Equations (3), (4) and (5), we have

Rev(M(Iz∗
)) ≤ Rev(M∗(Iz∗

i∗ )) +Ev̂∼Dz∗
∑
i �=i∗

vi((v̂ i j) j∈[m], xi(v̂))

≤ Rev(M+(I+z∗
i∗ ))

1 − ε̂
+ δ̄/ε̂ +Ev̂∼Dz∗

∑
i �=i∗

vi((v̂ i j) j∈[m], xi(v̂))

≤ 1

1 − ε̂

⎛
⎝Rev(M′(Iz∗

i∗ j∗)) +
∑
j �= j∗

Ev̂ i∗ j∼Dz∗
i∗ j

v̂ i∗ j

⎞
⎠ + δ̄/ε̂ +Ev̂∼Dz∗

∑
i �=i∗

vi((v̂ i j) j∈[m], xi(v̂))
11
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<
1

1 − ε̂

⎛
⎝ 1

2c
OPT(Iz∗

i∗ j∗) +
∑
j �= j∗

Ev̂ i∗ j∼Dz∗
i∗ j

v̂ i∗ j

⎞
⎠ + δ̄/ε̂ +Ev̂∼Dz∗

∑
i �=i∗

vi((v̂ i j) j∈[m], xi(v̂)). (6)

Note that OPT(I z∗
i∗ j∗ ) ≤ OPT(I z∗

), since selling a single item to a single player is a feasible outcome. Moreover, since Dz∗
i j

is constantly 1 when i �= i∗ or j �= j∗ , and since the valuation function profile v is succinct sub-additive, we have∑
j �= j∗

Ev̂ i∗ j∼Dz∗
i∗ j

v̂ i∗ j = (m − 1) ln H,

δ̄/ε̂ = 1

ε̂
Ev̂ i∗∼Dz∗

i∗
max
S⊆[m](

∑
j∈S

v̂ i∗ j − vi∗((v̂ i∗ j) j∈[m], S)) ≤ m ln H

ε̂
,

Ev̂∼Dz∗
∑
i �=i∗

vi((v̂ i j) j∈[m], xi(v̂)) ≤ m ln H .

Here the second equation is because 
∑

j∈S v̂ i∗ j − vi∗ ((v̂ i∗ j) j∈[m], S) ≤ ∑
j∈[m] v̂ i∗ j for any v̂ i∗ and S . The third equation 

is because 
∑

i �=i∗ vi((v̂ i j) j∈[m], xi(v̂)) ≤ ∑
j

∑
i �=i∗ xij(v̂)v̂ i j for any v̂: indeed, each item can be sold to at most one player, 

generating expected value ln H .
Combining the equations above with Equation (6), we have

Rev(M(Iz∗
)) <

1

1 − ε̂
(

1

2c
OPT(Iz∗

) + (m − 1) ln H) + m ln H

ε̂
+ m ln H .

Setting ε̂ = 1
4 , we have

Rev(M(Iz∗
)) <

2

3c
OPT(Iz∗

) + 19m ln H

3
. (7)

Now we combine Equation (7) with the probability that M cannot distinguish the I z ’s. As OPT(I z∗
) ≥ 4cx, when x >

57m·c·ln H
8 , we have OPT(I z∗

) > 57
2 m · c2 · ln H and

Rev(M(Iz∗
)) ≤ (1 − 1

3c
)(

2

3c
OPT(Iz∗

) + 19m ln H

3
) + 1

3c
OPT(Iz∗

) <
1

c
OPT(Iz∗

).

Letting C = 1
24c(4c+2)

, which is a constant with respect to c, we have Cnm logm ln H H ≤ C ′nm logc H . Thus finishes the proof 
of Theorem 3. �

When there are multiple items to sell, for non-adaptive queries, we can make some changes to the constructed distribu-
tions to improve the query complexity bound. Formally, consider the �4c	 Bayesian instances {I z = (N, M, Dz)}z∈[�4c	] that 
are indistinguishable using only Cnm logc H non-adaptive queries. Here for i �= i∗ or j �= j∗ , Dz

ij is the distribution that is 
constantly 1. For distribution Dz

i∗ j∗ , we construct them by shifting them in the interval with no value or quantile queries, 

i.e. (us, us+1) and (qs, qs+1), based on the equal revenue distribution with cumulative probability function max{0, 1 −
√

H
v }. 

Note that the optimal revenue for those distributions is at least 
√

H . Applying the same analysis as in Theorem 3, we have 
the following theorem, with proof omitted.

Theorem 4. For any constant c > 1, there exists a constant C such that, for any n ≥ 1, m ≥ 1, any large enough H, any succinct sub-
additive valuation function profile v = (vi)i∈[n] , and any DSIC Bayesian mechanism M making less than Cnm logc H non-adaptive 
value and quantile queries to the oracle, there exists a multi-item Bayesian auction instance I = (N, M, D) with valuation profile v, 
where |N| = n, |M| = m and the item values are bounded in [1, H], such that Rev(M(I)) < OPT(I)

c .

Succinct sub-additive valuations is a very broad class and contains single-item, unit-demand, and additive auctions as 
special cases. Thus Theorem 3 and 4 automatically apply to those cases. We also note that it is shown in [45] that the 
optimal BIC revenue exceeds the optimal DSIC revenue by a constant factor even for two i.i.d. additive players and two 
identical items. So even with infinite samples, there exist constants c > 1 such that no c-approximation to OPT is possible. 
However, Theorem 4 is stronger: for every constant c > 1, one needs at least the given number of queries to get a c-
approximation.

5. Extension I: single-item auctions with regular distributions

In this section, we show that when we only consider regular distributions for single-item auctions, the query complexity 
can be much lower. In fact, we no longer need the small-tail assumptions explicitly even when the supports are unbounded. 
12
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Mechanism 6 Efficient quantile Myerson mechanism for regular distributions, ME M R .

1: Given ε > 0, run algorithm AQ with δ = ε
4 and ε1 = ε2

256n for each player i’s distribution Di , with the returned distribution denoted by D ′
i . Let 

D ′ = ×i∈N D ′
i .

2: Run MM R S with D ′ and the players’ reported values, b = (bi)i∈N , to get allocation x = (xi)i∈N and price profile p = (pi)i∈N as the outcome.

More precisely, for the upper-bound, we show that regular distributions satisfy the small-tail property with a properly 
defined tail function. Thus our techniques for distributions with small-tails directly apply here.

For the lower-bound, recall that in Section 4 we allow the distributions to be irregular. To construct the desired distribu-
tions, we can first find the un-queried quantile interval and then move the probability mass from its end points to internal 
points. Because the distributions can be irregular, we have complete control on where to put the probability mass. However, 
if the distributions have to be regular then this cannot be done. Instead, we start from two different single-peaked revenue 
curves and construct regular distributions from them. We still want to move probability mass from the end points of the 
un-queried quantile interval to internal points, but such moves must be continuous in order to preserve regularity. Finally, 
our lower- and upper-bounds are tight upto a logarithmic factor.

5.1. Upper bound

Our mechanism ME M R (i.e., “Efficient quantile Myerson mechanism for Regular distributions”) first constructs the dis-
tribution D ′ that approximates D using the quantile-query algorithm AQ with parameters δ = ε

4 and ε1 = ε2

256n ; and then 
runs Myerson’s mechanism MM R S on D ′ . Formally, we have the following theorem.

Theorem 5. ∀ε ∈ (0, 1), and for any single-item instance I = (N, M, D) where D is regular, mechanism ME M R is DSIC, has query 
complexity O (n log1+ε

n
ε ), and Rev(ME M R(I)) ≥ OPT(I)

1+ε .

Proof. Consider the quantile value q∗ = ε2

256n and v∗
i = F −1

i (1 −q∗). Let v̂ i = max{v∗
i , 

16OPT(I)
ε }, and D̄1, . . . , D̄n be imaginary 

distributions obtained by truncating D1, . . . , Dn at v̂ i (i.e., a sample v̄ i from D̄i is obtained by first sampling vi from Di and 
then rounding down to v̄ i = min{vi, ̂vi}). Finally, denote by Ī = (N, M, D̄) the imaginary Bayesian instance where players’ 
values are drawn from D̄ .

Note that D ′ is also a discretization distribution for D̄ , following the proof and notations of Theorem 2, letting v−
i be the 

value first sampled from D̄i then rounding down to the support of D ′ , we have ME M R is truthful and using the technique 
of Mechanism 5, we have

Rev(ME M R(I)) = Rev(MM R S (v, D ′)) ≥ Rev(MM R S (v ′, D ′))

≥
∑

i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v−
i ≥ pi(v̄−i; D̄)]

=
∑

i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v−
i ≥ pi(v̄−i; D̄)] · (I

v∗
i ≤ 16OPT(I)

ε
+ I

v∗
i >

16OPT(I)
ε

). (8)

We bound the indicators separately.∑
i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v−
i ≥ pi(v̄−i; D̄)] · I

v∗
i ≤ 16OPT(I)

ε

=
∑

i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v−
i ≥ pi(v̄−i; D̄)] · I

v∗
i ≤ 16OPT(I)

ε
· (Ipi(v̄−i;D̄)<v∗

i
+ Ipi(v̄−i;D̄)≥v∗

i
)

≥
∑

i

E
v̄−i∼D̄−i

[pi(v̄−i; D̄) · 1

1 + ε
4

· Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] · I
v∗

i ≤ 16OPT(I)
ε

· Ipi(v̄−i;D̄)<v∗
i

+(pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] − 16OPT(I)

ε
· ε2

256n
) · I

v∗
i ≤ 16OPT(I)

ε
· Ipi(v̄−i;D̄)≥v∗

i
]

≥ 1

1 + ε
4

∑
i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] · I
v∗

i ≤ OPT(I)
16ε

− ε

16
· OPT(I). (9)

The first inequality here holds because for price pi(v̄−i; D̄) < v∗
i , we have

Pr
¯ ¯ [v−

i ≥ pi(v̄−i; D̄)] ≥ 1

1 + ε Pr
¯ ¯ [v̄ i ≥ pi(v̄−i; D̄)]
vi∼Di 4 vi∼Di

13
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due to the structure of the quantile queries for D ′ . For price pi(v̄−i; D̄) ≥ v∗
i , when v∗

i ≤ 16OPT(I)
ε , by the regularity of Di , 

the optimal reserve corresponds to the quantile interval ( ε2

256n , 1]. Thus we have

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v−
i ≥ pi(v̄−i; D̄)] ≥ 0

≥ pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] − v∗
i · Pr

v̄ i∼D̄i

[v̄ i ≥ v∗
i ]

≥ pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] − 16OPT(I)

ε
· ε2

256n

since the expected revenue is non-decreasing for quantile range [0, ε2

256n ]. Thus Equation (9) holds. Then for the second 
indicator for Equation (8), we have∑

i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v−
i ≥ pi(v̄−i; D̄)] · I

v∗
i >

16OPT(I)
ε

≥ 1

1 + ε
4

∑
i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] · I
v∗

i >
16OPT(I)

ε
(10)

also by the construction of the quantile queries for D ′ . Combining Equation (8), (9) and (10), we have

Rev(ME M R(I))

≥ 1

1 + ε
4

∑
i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] · I
v∗

i ≤ 16OPT(I)
ε

− ε

16
· OPT(I)

+ 1

1 + ε
4

∑
i

E
v̄−i∼D̄−i

pi(v̄−i; D̄) · Pr
v̄ i∼D̄i

[v̄ i ≥ pi(v̄−i; D̄)] · I
v∗

i >
16OPT(I)

ε

= 1

1 + ε
4

Rev(MM R S(v̄, D̄)) − ε

16
· OPT(I).

By the optimality of Myerson’s mechanism, Rev(MM R S (v̄, D̄)) = OPT(Ī). By Lemma 2 of [22], for 0 ≤ δ ≤ 1, OPT(Ī) ≥
(1 − δ)OPT(I) —that is, the optimal revenue under the discretized distribution is at least (1 − δ) of the optimal revenue 
under the original distribution. Plugging in δ = ε

4 , Rev(MM R S (v̄, D̄)) ≥ (1 − ε
4 )OPT(I). Thus we have

Rev(ME M R(I))

≥ 1

1 + ε
4

(1 − ε

4
)OPT(I) − ε

16
· OPT(I) ≥ 1

1 + ε
OPT(I).

Thus Theorem 5 holds. �
Following [29], the sample complexity for single-item auction with regular distributions is �̃(nε−3). However, in the 

definition of sample complexity, each sample is a valuation profile of the players and consists of n values, and thus �̃(n2ε−3)

values in total. When ε is small, the query complexity in this setting is O (nε−1 log n
ε ), which is much lower than the sample 

complexity.

5.2. Lower bound

With regular distributions, by Lemma 3.6 in [23] it is sufficient to use a single sample (i.e., a random value drawn from 
the distribution) to achieve 2-approximation in revenue for single-player single-item auctions. Because every distribution 
is a uniform distribution in the quantile space, a sample for such auctions can be obtained by first choosing a quantile q
uniformly at random from [0, 1] and then making a quantile query. Thus, a single query is also sufficient for 2-approximation 
in this case. As such, unlike Theorem 4 where we have proved lower bounds for the query complexity for arbitrary constant 
approximations, for regular distributions we consider lower bounds for (1 +ε)-approximations, where ε is sufficiently small. 
More precisely, we have the following.

Theorem 6. For any constant ε ∈ (0, 1
64 ), there exists a constant C such that, for any n ≥ 1, any DSIC Bayesian mechanism M making 

less than Cnε−1 non-adaptive value and quantile queries to the oracle, there exists a multi-player single-item Bayesian auction instance 
I = (N, M, D) where |N| = n and D is regular, such that Rev(M(I)) < OPT(I) .
1+ε

14
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Fig. 1. The revenue curve of D1.

We only prove Theorem 6 for the single-player case, as in the following lemma. The lower bound for general multi-player 
single-item auctions can be proved using the same technique as in Theorem 4, thus the full proof has been omitted.

Lemma 4. For any constant ε ∈ (0, 1
64 ), there exists a constant C such that, for any DSIC Bayesian mechanism Mmaking less than C/ε

non-adaptive value and quantile queries to the oracle, there exists a single-player single-item Bayesian auction instance I = (N, M, D)

where D is regular, such that Rev(M(I)) < OPT(I)
1+ε .

Proof. Since the distributions are unbounded, we can always construct the distributions such that for any finite number of 
value queries, the responses for the value queries have almost none contribution to the optimal revenue. Thus we only need 
to focus on the lower bound for quantile queries.

Letting k � � 1
δε 	 and C � 1−2δε

2δ
. Here δ is a constant to be determined later and δ, ε satisfies that k ≥ 2. In our construc-

tion, we divide the quantile interval [0, 1] into k + 1 sub-intervals each, with the right-end points defined as follows: from 
left to right, q0 = 0, qt+1 = qt + δε for each t ∈ {0, . . . , k − 1}.

Accordingly, for any Bayesian mechanism M that makes less than C
ε non-adaptive quantile queries, there exists a quan-

tile interval (qt , qt+1) such that, qt+1 ≤ 1 − 2δε and with probability at least 1
2 , no quantile in (qt , qt+1) is queried. Indeed, 

if this is not the case, then with probability at least 1
2 , all the quantile intervals except (1 − 2δε, 1 − δε) and (1 − δε, 1)

are queried. Since there are at least k − 2 quantile intervals, the expected total number of queries made by M is at least 
k
2 − 1 ≥ 1−2δε

2δε = C
ε , a contradiction.

We now construct two different single-player single-item Bayesian instances

{Iz = (N, M, Dz)}z∈{1,2},

where the distributions outside the quantile range (qt , qt+1) are all the same. Thus with probability at least 1
2 , mechanism 

M cannot distinguish the Iz ’s from each other. We then show that when this happens, mechanism M cannot be a (1 +3ε)-
approximation for all instances Iz .

Let R be a parameter that is large enough such that no value query will get any useful response. Then the first distri-
bution D1 with value bounded within [0, R

qt
] is defined as follows, where F1(·) is the cumulative probability function of 

D1.

F1(v) =
{

1 − R
(1−qt+1)v+R , 0 ≤ v < R

qt
,

1, v = R
qt

.

That is there is a probability mass qt
1−δε at value R

qt
and within interval [0, R

qt
) it is a continuous distribution. Then for 

any quantile in range (0, qt
1−δε ], the oracle will response R

qt
. For quantile q in range ( qt

1−δε , 1], the oracle will response 
v(q) = R

1−qt+1
( 1

q − 1). Therefore the revenue function with related to the quantile q is

R1(q) =
{

R
1−qt+1

(1 − q),
qt

1−δε < q ≤ 1,
R

1−δε , q = qt
1−δε .

The revenue curve R1(q) is illustrated in Fig. 1.
15
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Fig. 2. The revenue curve of D2.

The second distribution D2 with value bounded within [0, R
qt

] is defined as follows, where F2(·) is the cumulative 
probability function of D2. Let v∗ = R(2−δε)

2(1−δε)−(2−δε)(1−qt+1)
. Since qt+1 ≤ 1 − 2δε , v∗ > 0 is well defined and it is easy to 

check v∗ < R
qt

.

F2(v) =

⎧⎪⎪⎨
⎪⎪⎩

1 − R
(1−qt+1)v+R , 0 ≤ v < v∗,

1 − R(1−δε)
(1+qt−δε)v−R , v∗ ≤ v < R

qt
,

1, v = R
qt

.

That is, there is a probability mass qt at value R
qt

and a two-step continuous distribution within [qt , q∗] and [q∗, qt+1]. 
Thus for any quantile in range (0, qt ], the oracle will response R

qt
. It can be calculated that the quantile of value v∗ is 

q∗ = 1 − 2−δε
2(1−δε)

· (1 − qt+1). Then for quantile q in range (qt , q∗], the oracle will response v(q) = R
q (1 − qt

1+qt−δε ) + R
1+qt−δε . 

For quantile q in range (q∗, 1], the oracle will response v(q) = R
1−qt+1

( 1
q − 1). Therefore the revenue function with related to 

the quantile q is

R2(q) =

⎧⎪⎪⎨
⎪⎪⎩

R
1−qt+1

(1 − q), q∗ < q ≤ 1,

R
1+qt−δε (1 + q − δε), qt ≤ q < q∗,
R, q = qt .

The revenue curve R2(q) is illustrated in Fig. 2.
Indeed when the quantile query is from [0, qt ] ∪ [qt+1, 1], the oracle’s answers for all distributions are the same. Accord-

ingly, with probability at least 1
2 , mechanism M cannot distinguish Dz ’s from each other, which means it cannot distinguish 

Iz ’s from each other, as desired.
Since M is truthful, the allocation rule for the player must be monotone and he will pay the threshold payment set 

by M, denoted by P . Let P∗ = (4−δε)R
4(1−δε)−(4−δε)(1−qt+1)

. Here P may be randomized. Recall that OPT(I1) = R
1−δε . If with 

probability 1
2 setting the price P ≤ P∗ , then for instance I1, we have

Rev(M(I1)) ≤ 1

2
OPT(I1) + 1

2
(

3R

4(1 − δε)
+ R

4
)

= 7R

8(1 − δε)
+ R

8
= R

1 − δε

(
1 − 1

8
δε

)
<

OPT(I1)

1 + 4ε

when δ ≥ 32. On the other hand, recall that OPT(I2) = R
2(1−δε)

+ R
2 = (2−δε)R

2(1−δε)
. If with probability 1

2 , the price P > P∗ , for 
instance I2, we have

Rev(M(I2)) <
1

2
OPT(I2) + (4 − δε)R

2(4 − 2δε)
= (2 − δε)R

4(1 − δε)
+ (4 − δε)R

2(4 − 2δε)

= (2 − δε)R
(

1 + (4 − δε)(1 − δε)

2

)
= OPT(I2)

(
1 − δε

2

)
<

OPT(I2)
2(1 − δε) 2 2(2 − δε) 2(2 − δε) 1 + 4ε

16
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Mechanism 7 Mechanism ME V U D for unit-demand auctions.
1: Given H and ε > 0, run the value-query algorithm AV with H and δ = ε for each player i’s distribution Dij for each item j. Denote by D ′

i j the returned 
distribution. Let D ′

i = × j∈M D ′
i j and D ′ = ×i∈N D ′

i .

2: Run MU D with D ′ and the players’ reported values, b = (bij)i∈N, j∈M , to get allocation x = (xij)i∈N, j∈M and price profile p = (pi)i∈N as the outcome.

when δ ≥ 32. Thus for any mechanism M with O ( 1
ε ) quantile queries, there exists z∗ ∈ {0, 1} such that when ε < 1

64 and 
δ = 32,

Rev(M(Iz∗)) ≤ OPT(Iz∗)

2
+ OPT(Iz∗)

2(1 + 4ε)
<

OPT(Iz∗)

1 + ε
.

Therefore Lemma 4 holds. �
6. Extension II: multi-item auctions

In this section, we generalize the query complexity to multi-item settings. For multi-item settings, the optimal BIC 
mechanism cannot be implemented in dominant strategies [45], and the goal in this section is to show that similar to 
single item settings, the simple DSIC mechanisms for unit-demand or additive settings can be implemented with limited 
queries. We will focus on the situation when there is no noise in the queries, and the case when the queries contain η-noise 
can be directly obtained in the same manner as in Section 3.3.

6.1. Bounded distributions

In this section, we consider multi-item auctions where all distributions are bounded within [1, H], and we construct 
efficient query mechanisms whose query complexity matches our lower-bounds. We show that it is sufficient to use only 
value queries scheme AV defined in Section 3.1.

The problem of unit-demand auctions and additive auctions is much more complicated compared to the single item 
auctions analyzed in Section 3. The optimal auction may involve lotteries and bundling, and the revenue monotonicity may 
not hold [33]. Even (disregarding complexity issues and) assuming we can design an optimal Bayesian mechanism for D ′ , 
it is unclear how much revenue it guarantees under equilibrium when the players’ values come from the true distribution 
D . To overcome this difficulty, we rely on recent developments on simple DSIC mechanisms with approximately optimal 
revenue.

The mechanism for unit-demand auctions is sequential post-price [36] and the analysis is relatively easy. For additive 
auctions, the Bayesian mechanism either runs Myerson’s auction separately for each item or runs the VCG mechanism with 
a per-player entry fee [44,12]. However, an easy and direct analysis would lose a factor of m in the query complexity. 
To achieve a tight upper-bound, we need to really open the box and analyze the mechanism differently in several crucial 
places, exploring its behavior under oracle queries.

To sum up, given our query scheme, our mechanisms are black-box reductions to simple Bayesian mechanisms, thus are 
simple, natural, and easy to implement in practice, while the analysis is non-black-box, non-trivial and reveals interesting 
connections between Bayesian mechanisms and query schemes.

6.1.1. Unit-demand auctions
The main difficulty for unit-demand auctions is that we no longer have revenue monotonicity as in single-item auctions. 

Our analysis then comes in a non-blackbox way and relies on the COPIES setting [15,36], which provides an upper-bound for 
the optimal BIC revenue. By properly upper-bounding the optimal revenue in the COPIES setting under D ′ , we are able to 
upper-bound the optimal revenue in unit-demand auctions using the expected revenue of ME V U D . More precisely, we have 
the following theorem.

Theorem 7. ∀ε > 0, for any unit-demand instance I = (N, M, D) with values in [1, H], mechanism ME V U D is DSIC, has query 
complexity O (mn log1+ε H), and Rev(ME V U D(I)) ≥ OPT(I)

24(1+ε)
.9

We prove Theorem 7 in the appendix. Below we provide some intuitions on designing mechanism ME V U D . Let us 
first recall the sequential post-price mechanism MU D . This mechanism processes the players one by one according to an 
arbitrary order, computes a price for each player i based on remaining items, remaining players and the prior distribution, 
and lets i choose his utility-maximizing item (or choose none). The revenue of this mechanism is analyzed by reducing the 
unit-demand instance to the COPIES setting, which we introduce below.

For a unit-demand auction instance I=(N, M, D), the corresponding COPIES instance is denoted by IC P =(NC P , MC P , D), 
where each player i ∈ N has m copies and each item j ∈ M has n copies, and player i’s copy j is only interested in item j’s 

9 Note that in order to get the bound in Table 1, by setting ε as a constant such as 0.1, the approximation to the optimal revenue is a constant, and the 
query complexity is O (mn log H).
17
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Mechanism 8 Mechanism ME V B V C G to approximate MB V C G via value queries.
1: Given H and ε > 0, run the value-query algorithm AV with H and δ = √

ε + 1 − 1 for each player i’s distribution Dij for each item j. Denote by D ′
i j

the returned distribution. Let D ′
i = × j∈M D ′

i j and D ′ = ×i∈N D ′
i .

2: Run MB V C G with D ′ and the players’ reported values, b = (bij)i∈N, j∈M , to get allocation x = (xij)i∈N, j∈M and price profile p = (pi)i∈N as the outcome.

copy i, with value vij drawn independently from Dij . Thus NC P = MC P = N × M , and IC P is a single-parameter instance. 
Denote by Ni the set of player i’s copies and by M j the set of item j’s copies. Note that both {Ni}i∈N and {M j} j∈M are 
partitions of NC P (and MC P ). Two natural constraints are imposed on feasible allocations under the COPIES setting, so as 
to connect it with the original unit-demand setting: (1) for each player i, at most one of his copies gets an item; and (2) 
for each item j, at most one of its copies gets allocated. Accordingly, letting qs be the probability that a feasible mechanism 
allocates an item to a player copy s ∈ NC P , we have 

∑
s∈Ni

qs ≤ 1 for each i ∈ N and 
∑

s∈M j
qs ≤ 1 for each j ∈ M .

The corresponding mechanism MC P
U D for the COPIES setting works in the same way as MU D , except that it considers 

an arbitrary order of the players in NC P , thus different copies of the same player may not be processed together. When 
evaluating the performance of mechanism MC P

U D , the order of the players is chosen by an online adaptive adversary, who 
tries to minimize the expected revenue of the mechanism. Because this adversary is the worst-case for mechanism MC P

U D ,

Rev(MU D(I; D ′)) ≥ Rev(MC P
U D(IC P ; D ′))

for any distribution D ′ , where the latter is the expected revenue of MC P
U D under the online adaptive adversary. Indeed, 

mechanism MU D can be considered as MC P
U D under a specific order where all copies of each player come together, thus 

the revenue is at least that when the order of NC P is adaptively chosen by the adversary. Given the above discussion, we 
are able to prove Theorem 7 and the formal proof is in Appendix B.

6.1.2. Additive auctions
For additive auctions, the DSIC Bayesian mechanism in [44,12] chooses between two mechanisms, whichever generates 

higher expected revenue under the true prior D . The first is the “individual Myerson” mechanism, denoted by MI M , which 
sells each item separately using Myerson’s mechanism. The second is the VCG mechanism with optimal per-player entry 
fees, denoted by MB V C G .

In our mechanism ME V A , the seller queries about D using algorithm AV with properly chosen parameters. Given the 
resulting distribution D ′ , the seller either runs MI M or runs MB V C G as a blackbox, resulting in query mechanisms ME V I M

and ME V B V C G . We only define the latter in Mechanism 8, and the former simply replaces MB V C G with MI M . Note that 
Rev(ME V I M(I)) = Rev(MI M(I; D ′)) and Rev(ME V B V C G(I)) = Rev(MB V C G(I; D ′)). However, the seller cannot compute 
these two revenue and choose the better one, because he does not know D . Thus he randomly chooses between the two, 
according to probabilities defined in our analysis, to optimize the approximation ratio. We have the following theorem.

Theorem 8 is harder to show. Indeed, one cannot use revenue monotonicity or the COPIES setting to easily upper-bound 
the optimal BIC revenue. Our analysis is based on the duality framework of [12] for Bayesian auctions, properly adapted for 
the query setting.

Theorem 8. ∀ε > 0, for any additive instance I = (N, M, D) with values in [1, H], mechanism ME V A is DSIC, has query complexity 
O (mn log1+ε H), and Rev(ME V A(I)) ≥ OPT(I)

8(1+ε)
.

The proof of Theorem 8 required unraveling the details from the duality framework and the core-tail decomposition 
technique introduced in [12,44]. Intuitively, selling items separately covers the revenue contribution of the optimal mech-
anism from the tail and selling items with entry fees covers the revenue contribution from the core. We show that given 
access to value queries, those two mechanisms still separately covers the revenue contribution of the optimal mechanism 
from the tail and the core with original distributions. Thus randomly choosing from ME V I M and ME V B V C G provides an 
8(1 +ε)-approximation to the optimal revenue. The details of the proofs resemble the techniques in [12], which is relegated 
to Appendix B.

6.2. Unbounded distributions

In this section, we consider unbounded distributions but have small tails. We provide upper bounds on the number of 
quantile queries required for implementing the approximately revenue optimal mechanisms.

6.2.1. Unit-demand auctions
The unit-demand mechanism ME Q U D is similar (see Mechanism 9), and we have the following.

Theorem 9. ∀ε > 0, any unit-demand instance I = (N, M, D) satisfying Small-Tail Assumption, ME Q U D is DSIC, has query complex-

ity O (−mn log1+ ε h( 2ε )), and Rev(ME Q U D(I)) ≥ OPT(I) .

3 3(1+ε) 24(1+ε)
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Mechanism 9 Mechanism ME Q U D for unit-demand auctions.

1: Given ε > 0, run algorithm AQ with δ = ε
3 and ε1 = h( 2ε

3(1+ε)
) (i.e., δ1 = 2ε

3(1+ε)
for Small Tail Assumption 2), for each player i’s distribution Dij on 

each item j. Denote by D ′
i j the returned distribution. Let D ′

i = × j∈M D ′
i j and D ′ = ×i∈N D ′

i .

2: Run mechanism MU D with D ′ and the players’ reported values, b = (bij)i∈N, j∈M , to get allocation x = (xij)i∈N, j∈M and price profile p = (pi)i∈N as the 
outcome.

Mechanism 10 Mechanism ME Q B V C G for additive auctions.

1: Given ε > 0, run algorithm AQ with δ = (1 + ε
5 )1/m − 1 and ε1 = h( ε

10(1+ε)
) (i.e., δ1 = ε

10(1+ε)
for Small Tail Assumption 1), for each player i’s 

distribution Dij on each item j. Denote by D ′
i j the returned distribution. Let D ′

i = × j∈M D ′
i j and D ′ = ×i∈N D ′

i .

2: Run MB V C G with D ′ and the players’ reported values, b = (bij)i∈N, j∈M , to get allocation x = (xij)i∈N, j∈M and price profile p = (pi)i∈N as the outcome.

The proof of Theorem 9 is similar to that of Theorem 7, but Lemma 2 above is used instead of Lemma 5 of [22], and 
the round-down scheme is replaced by the randomized round-down scheme designed in the proof of Lemma 2. The details 
have been omitted.

6.2.2. Additive auctions
For additive auctions, to approximate MB V C G , not only we need the Small-Tail Assumption, but we also approximate D

by running the quantile-query algorithm AQ with different parameters. The resulting mechanism ME Q B V C G is defined in 
Mechanism 10, and the mechanism ME Q I M simply replaces MB V C G with MI M . Again, in the final mechanism ME Q A the 
seller randomly chooses between the two query mechanisms, according to probabilities defined in the analysis. We have 
the following theorem.

Theorem 10. ∀ε > 0, any additive instance I = (N, M, D) satisfying Small-Tail Assumption, ME Q A is DSIC, has query complexity 
O (−m2n log1+ ε

5
h( ε

10(1+ε)
), and Rev(ME Q A(I)) ≥ OPT(I)

8(1+ε)
.

The proof of Theorem 10 is technical which requires a deep understanding of mechanism ME Q B V C G , and thus we defer 
the proof to Appendix B as well.

The main advantage of using quantile queries is to handle unbounded distributions. In addition, we can use the resulting 
query mechanisms to construct sampling mechanisms; see Section 7. As shown in Theorem 10, the query complexity of 
mechanism ME Q A has an extra factor of m compared with that of ME V A (and the lower bound). It would be interesting 
to see whether our lower-bounds can be improved in this scenario.

6.3. Using quantile queries for bounded distributions

As a corollary, Theorems 2, 9 and 10 also provide another way to approximate the optimal BIC revenue using only 
quantile queries when the distributions are bounded. More precisely, we have the following.

Corollary 1. For any ε > 0, H > 1, and prior distribution D with each Dij bounded within [1, H], there exist DSIC mechanisms that 
use O (mn log1+ε

nmH(1+ε)
ε ) quantile queries for single-item auctions and unit-demand auctions, and use O (m2n log1+ε

nmH(1+ε)
ε )

quantile queries for additive auctions, whose approximation ratios to OPT are respectively 1 + ε , 24(1 + ε) and 8(1 + ε).

Proof. We only need to show that the Small-Tail Assumption is naturally satisfied when the distributions have bounded 
supports. For example, consider additive auctions where all values are in [1, H], as considered in [35,18]. Then mH and 1
are straightforward upper- and lower-bounds for OPT(I), respectively. Moreover, by individual rationality, mH is an upper-
bound for the revenue generated under any valuation profiles. Given δ1, let ε1 = h(δ1) = δ1

m2nH
and denote by E the event 

that there exist at least one player i and one item j with qij(vij) ≤ ε1. By the union bound, Pr[E] ≤ mnε1 = mn · δ1
m2nH

= δ1
mH . 

Therefore

E
v∼D

I∃i, j,qij(vi j)≤ε1 Rev(M(v;I)) ≤ mH · Pr[E] ≤ δ1 ≤ δ1OPT(I).

Combining this observation with Theorems 2, 9 and 10, we have Corollary 1 when the values are all bounded in [1, H]. �
Remark: Since bounded distributions are special cases of unbounded distributions with the Small-tail Assumption. The 

lower bound for bounded distributions in Theorem 4 can be directly applied to obtain the lower bounds for unbounded 
distributions with the Small-tail Assumption.
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Mechanism 11 Sampling mechanism MS M .

1: For single-item auctions and unit-demand auctions, given ε > 0, set δ = ε
6 , ε1 = h( 2ε

3(1+ε)
) and k = �log1+δ

1
ε1

	; define the quantile vector as q =
(q0, q1, . . . , qk−1, qk) = (1, ε1(1 + δ)k−1, . . . , ε1(1 + δ), ε1).
For additive auctions, given ε > 0, set ε1 = h( ε

10(1+ε)
) and k = � 1

ε1
�; define the quantile vector as q = (q0, q1, . . . , qk−1, qk) = (1, kε1, . . . , 2ε1, ε1).

2: For each player i and item j, given t samples V t
i j = {v1

i j, . . . , vt
i j}, without loss of generality assume v1

i j ≥ v2
i j ≥ · · · ≥ vt

i j . For each quantile ql , set vtql
i j to 

be the value corresponding to the quantile query ql . (If tql is not an integer then the mechanism takes �tql	.)
3: Construct a discrete distribution D ′

i j as follows: D ′
i j(vtql

i j ) = ql − ql+1 for each l ∈ {0, . . . , k − 1}, and D ′
i j(vtqk

i j ) = ε1. Finally, let D ′
i = × j∈M D ′

i j for each 
player i and let D ′ = ×i∈N D ′

i .
4: Run MM R S /MU D /MA with distribution D ′ and the players’ reported values.

7. Extension III: sampling mechanisms

Using our techniques for query complexity, we can easily construct sampling mechanisms for multi-parameter auctions. 
Currently, the sample complexity for unit-demand auctions and additive distributions has been upper-bounded in [4,38,26,9]
for bounded auctions. In this section, we provide another way to explicitly construct sampling mechanisms for both unit-
demand and additive auctions, for arbitrary distributions with small-tails as well as for bounded distributions. As we will 
see, the revenue approximation ratios obtained in this section for unit-demand and for additive auctions are better than the 
results shown in Table 2.

The idea is to use samples to approximate quantile queries. Mechanism 11 defines our sampling mechanism MS M . Recall 
that mechanisms MM R S , MU D and MA are known (approximately) optimal DSIC mechanisms for single-item, unit-demand 
and additive auctions respectively. Note that in mechanism MS M , we use a different method to discretize the quantile space 
for additive auctions, so as to further reduce its sample complexity. In particular, we have the following theorem, which is 
proved in Appendix C.

Theorem 11. ∀ε > 0 and γ ∈ (0, 1), for any Bayesian instance I = (N, M, D),

• for single-item auctions satisfying the Small-Tail Assumption, with Õ(h−2( 2ε
3(1+ε)

) · ( ε
1+ε )−2) samples, mechanism MS M achieves 

revenue at least 1
1+ε OPT(I) with probability at least 1 − γ ;

• for unit-demand auctions satisfying the Small-Tail Assumption, with Õ (h−2( 2ε
3(1+ε)

) · ( ε
1+ε )−2) samples, mechanism MS M

achieves revenue at least 1
24(1+ε)

OPT with probability at least 1 − γ ;

• for additive auctions satisfying the Small-Tail Assumption, with Õ(h−2( ε
10(1+ε)

)( 1
2 − 1

1+(1+ ε
5 )1/m ))−2) samples, mechanism MS M

achieves revenue at least 1
8(1+ε)

OPT with probability at least 1 − γ .

Remark Following the convention in the literature, a logarithmic factor depending on γ has been absorbed in Õ (·). 
If the values are bounded in [1, H], by defining the tail function h according to H , the resulting sample complexity is 
Õ (m4n2 H2(1 + ε)4ε−4) for unit-demand auctions and Õ (m4n2 H2( 1+ε

ε )2( 1
2 − 1

1+(1+ ε
5 )1/m ))−2) for additive auctions.

8. Conclusion and future directions

We studied the query complexity of Bayesian mechanisms in this work, where the seller only has limited oracle ac-
cesses to the players’ distributions, via quantile and value queries. We prove logarithmic lower bounds for any constant 
approximation DSIC mechanisms for single-item auctions and multi-item auctions with subadditive valuations. For single-
item, unit-demand and additive auctions, we prove tight upper-bounds via efficient query schemes. Thus, in those settings 
the seller needs to access much less than the entire distribution to achieve approximately optimal revenue. As this is the 
first time the query complexity of Bayesian auctions is considered, many interesting questions about the query complex-
ity of Bayesian auctions are worth exploring. First, as mentioned, there is a logarithmic gap between adaptive queries and 
non-adaptive queries for multi-item auctions. It is intriguing to design approximately optimal Bayesian mechanisms with 
matching query complexity using adaptive queries. Moreover, in this work, we have focused on designing query mechanisms 
for additive and unit-demand valuations, another interesting direction is to design query mechanisms for general subaddi-
tive valuations. Finally, it is interesting to study more complicated settings when the oracles are also rational players or 
even the buyers themselves.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
20



J. Chen, B. Li, Y. Li et al. Artificial Intelligence 303 (2022) 103630
Appendix A. Missing proofs for Section 3

We now prove the claims used above.

Claim 1 (restated). Prvi∼Di [vi ≥ pi(v−i; D)|qi(vi) > ε1] ≤ (1 + δ) Prvi∼Di [v−
i ≥ pi(v−i; D)].

Proof. By definition, qi(vi) > ε1 implies vi ≤ v ′
i;k , where v ′

i;k is the largest value in V ′
i , the support of distribution D ′

i . Note 
that v−

i ≤ v ′
i;k for any vi . If pi(v−i; D) > v ′

i;k , then both probabilities are 0 and the inequality holds.
Below we consider the case pi(v−i; D) ≤ v ′

i;k . Let v ′
i;−1 = −1 and l ∈ {0, 1, . . . , k} be such that v ′

i;l ≥ pi(v−i; D) and 
v ′

i;l−1 < pi(v−i; D). We have

Pr
vi∼Di

[vi ≥ pi(v−i; D)|qi(vi) > ε1]
≤ Pr

vi∼Di

[v+
i ≥ pi(v−i; D)|qi(vi) > ε1]

= Pr
vi∼Di

[v+
i ≥ v ′

i;l|qi(vi) > ε1]
= Pr

vi∼Di

[v−
i ≥ v ′

i;l−1|qi(vi) > ε1]
= Pr

vi∼Di

[v−
i ≥ v ′

i;max{0,l−1}|qi(vi) > ε1]

= Prvi∼Di [v−
i ≥ v ′

i;max{0,l−1} and qi(vi) > ε1]
Prvi∼Di [qi(vi) > ε1]

= Prvi∼Di [v−
i ≥ v ′

i;max{0,l−1}] − Prvi∼Di [v−
i ≥ v ′

i;max{0,l−1} and qi(vi) ≤ ε1]
Prvi∼Di [qi(vi) > ε1]

= Prvi∼Di [v−
i ≥ v ′

i;max{0,l−1}] − Prvi∼Di [qi(vi) ≤ ε1]
Prvi∼Di [qi(vi) > ε1]

≤ Pr
vi∼Di

[v−
i ≥ v ′

i;max{0,l−1}]
= Pr

v ′
i∼D ′

i

[v ′
i ≥ v ′

i;max{0,l−1}] = qmax{0,l−1} ≤ (1 + δ)ql

= (1 + δ) Pr
v ′

i∼D ′
i

[v ′
i ≥ v ′

i;l] = (1 + δ) Pr
v ′

i∼D ′
i

[v ′
i ≥ pi(v−i; D)]

= (1 + δ) Pr
vi∼Di

[v−
i ≥ pi(v−i; D)],

as desired. Indeed, the first inequality is because v+
i > vi , and the first equality is because v+

i ∈ V ′
i ∪ {+∞} and thus 

v+
i ≥ pi(v−i; D) if and only if v+

i ≥ v ′
i;l . Similarly, the second equality is because (v−

i , v+
i ) and (v ′

i;l−1, v
′
i;l) are two pairs 

of consecutive values in V ′
i ∪ {−1, +∞}, thus v+

i ≥ v ′
i;l if and only if v−

i ≥ v ′
i;l−1. The third equality is because v−

i ≥ v ′
i;0

always. The sixth equality is because qi(vi) ≤ ε1 implies vi ≥ v ′
i;k ≥ v ′

i;l , thus v−
i ≥ v ′

i;max{0,l−1} . The seventh equality is by 
the definition of the round-down scheme. The following two equalities and the inequality are by the construction of D ′

i

and the definition of the quantile vector q. Indeed, (1 + δ)q0 = 1 + δ > 1 = q0, (1 + δ)q1 = ε1(1 + δ)k ≥ ε1(1 + δ)
log1+δ

1
ε1 =

ε1 · 1
ε1

= 1 = q0, and (1 + δ)ql = ql−1 for any l ≥ 2. The second-last equality is because v ′
i ∈ V ′

i , thus v ′
i ≥ v ′

i;l if and only if 
v ′

i ≥ pi(v−i; D). Finally, the last equality is again by the definition of the round-down scheme. �
Claim 2 (restated). Rev(M∗(I ′)) ≥ 1

1+ε OPT(I).

Proof. Combining Equation (2) and Claim 1, we have

Rev(M∗(I ′)) ≥ 1

1 + δ

∑
i

E
v−i∼D−i

pi(v−i; D) · Pr
vi∼Di

[vi ≥ pi(v−i; D)|qi(vi) > ε1].

Accordingly,

Rev(M∗(I ′)) ≥ 1

1 + δ

∑
E

v−i∼D−i

pi(v−i; D) · Pr
vi∼Di

[vi ≥ pi(v−i; D)|qi(vi) > ε1]

i
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≥ 1

1 + δ

∑
i

E
v−i∼D−i

pi(v−i; D) · Pr
vi∼Di

[qi(vi) > ε1 and vi ≥ pi(v−i; D)]

= 1

1 + δ

∑
i

E
v−i∼D−i

E
vi∼Di

pi(v−i; D) · Iqi(vi)>ε1 · Ivi≥pi(v−i;D)

= 1

1 + δ
E

v∼D

∑
i

pi(v−i; D) · Iqi(vi)>ε1 · Ivi≥pi(v−i;D)

≥ 1

1 + δ
E

v∼D
I∀i,qi(vi)>ε1 ·

∑
i

pi(v−i; D)Ivi≥pi(v−i;D)

= 1

1 + δ
E

v∼D
I∀i,qi(vi)>ε1 · RevOPT(v;I)

≥ 1 − δ1

1 + δ
OPT(I). (11)

Here the second last equality holds by the definition of pi(v−i; D) and RevOPT(v; I), and last inequality holds by the Small-
Tail Assumption. Since δ = ε

3 and δ1 = 2ε
3(1+ε)

, we have

1 − δ1

1 + δ
= 1

1 + ε
,

thus Claim 2 holds. �
Appendix B. Missing proofs for Section 6

Theorem 7 (restated). ∀ε > 0, for any unit-demand instance I = (N, M, D) with values in [1, H], mechanism ME V U D is DSIC, has 
query complexity O (mn log1+ε H), and Rev(ME V U D(I)) ≥ OPT(I)

24(1+ε)
.

Proof. It is easy to see that the query complexity of ME V U D is O (mn log1+ε H), since each distribution Dij needs 
O (log1+ε H) value queries. Also, it is immediate that ME V U D is DSIC.

Below we prove the revenue bound. By construction,

Rev(ME V U D(I)) = Rev(MU D(I; D ′)). (12)

Let I ′ = (N, M, D ′) and I ′ C P = (NC P , MC P , D ′). We state the following lemma, which is proved later. Intuitively, the lemma 
states the fact that in mechanism MC P

U D , the revenue of the seller is not affected when the true valuation distributions of 
the players are shifted from D ′ to D .

Lemma 5. Rev(MU D(I; D ′)) ≥ Rev(MC P
U D(IC P ; D ′)) = Rev(MC P

U D(I ′ C P )).

By Theorem 1 of [36], the sequential post-price mechanism is at least a 6-approximation to the optimal BIC revenue in 
the COPIES setting. Thus

Rev(MC P
U D(I ′ C P )) ≥ 1

6
OPT(I ′ C P ). (13)

Next, because the COPIES setting is a single-parameter setting, and because of the way we discretize the value space in 
algorithm AV , by Lemma 5 of [22] we have

OPT(I ′ C P ) ≥ 1

1 + ε
OPT(IC P ). (14)

Finally, by Theorem 6 of [12], the optimal BIC revenue in the COPIES setting is a 4-approximation to the optimal BIC revenue 
in the original unit-demand setting. Thus

OPT(IC P ) ≥ 1

4
OPT(I). (15)

Combining Equations (12), (13), (14), (15) and Lemma 5, Theorem 7 holds. �
It remains to prove Lemma 5.
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Proof of Lemma 5. The inequality is already explained in Section 6.1.1. Now we prove the equality. For any value profile 
v ∼ D , let v ′ be v rounded down to the support of D ′ . That is, for each vij , v ′

i j is the largest value in the support of D ′
i j

that is less than or equal to vij . Recall that the support of D ′
i j is the set {v0, · · · , vk} as defined in the query algorithm AV . 

By the definition of D ′
i j , for any 0 ≤ l ≤ k − 1,

Pr
vi j∼Dij

[v ′
i j = vl] = Pr

vi j∼Dij

[vij ≥ vl] − Pr
vi j∼Dij

[vij ≥ vl+1] = q(vl) − q(vl+1) = ql − ql+1 = D ′
i j(vl),

and

Pr
vi j∼Dij

[v ′
i j = vk] = Pr

vi j∼Dij

[vij ≥ vk] = q(vk) = qk = D ′
i j(vk).

That is, if v is distributed according to D then v ′ is distributed according to D ′ .
For any value profile v and the corresponding v ′ , arbitrarily fix an order σ of the players in NC P , which is a bijection 

from {1, · · · , mn} to {1, · · · , mn}. Without loss of generality, each player σ(s) gets the corresponding item σ(s) whenever 
his true value is greater than or equal to the posted price for him. Below we show that mechanism MC P

U D produces the 
same outcome no matter the players’ true values are v or v ′ . That is, for any s ∈ {1, . . . , mn}, (1) MC P

U D produces the same 
price pσ(s) under v and v ′ for player σ(s), and (2) vσ(s) ≥ pσ(s) if and only if v ′

σ(s) ≥ pσ(s) .

To prove these two properties, note that by the construction of mechanism MC P
U D , the price pσ(s) posted to σ(s) depends 

only on the distribution D ′ and the set Aσ(s) of items sold to the players arriving before σ(s). Here pσ(s) may be randomized 
if D ′

σ(s) is irregular, but it always takes value in the support of D ′
σ(s) (except that, if selling the corresponding item σ(s) to 

player σ(s) is not feasible anymore, then pσ(s) = +∞).
We prove the two desired properties by induction. When s = 1, property (1) trivially holds, because Aσ(1) = ∅ under 

both value profiles. Furthermore, because a realization of pσ(1) is always in the support of D ′
σ(1) , and because v ′

σ(1) is vσ(1)

rounded down to the support of D ′
σ(1) , property (2) holds when s = 1.

Now assume (1) and (2) hold for any s ≤ t with t < mn. We show they also hold for s = t + 1. Indeed, the inductive 
hypothesis implies that for any s ≤ t , Aσ(s) is the same under the two value profiles. In particular, Aσ(t+1) is the same, 
which means the price pσ(t+1) is the same. Thus property (1) holds. Property (2) also holds because a realization of pσ(t+1)

is always in the support of D ′
σ(t+1) . In sum, for any order σ , mechanism MC P

U D produces the same outcome under the two 
value profiles v and v ′ , thus the same revenue.

Accordingly, under the online adaptive adversary for (IC P ; D ′), the revenue Rev(MC P
U D(IC P ; D ′)) is the same as the rev-

enue when the players’ true values are obtained by rounding v ∼ D to v ′ . Because the resulting v ′ is distributed according 
to D ′ , Rev(MC P

U D(IC P ; D ′)) is at least the expected revenue of MC P
U D under the online adaptive adversary for I ′ C P . Indeed, 

a randomized adversary for I ′ C P can simulate the adversary for (IC P ; D ′): in each step, given v ′
s with s ∈ NC P being the 

player in this step, the former first samples vs from Ds conditional on vs rounded down to v ′
s , and then uses the latter to 

decide which player arrives next. Thus,

Rev(MC P
U D(IC P ; D ′)) ≥ Rev(MC P

U D(I ′C P
)).

Similarly,

Rev(MC P
U D(IC P ; D ′)) ≤ Rev(MC P

U D(I ′C P
)).

Therefore Rev(MC P
U D(IC P ; D ′)) = Rev(MC P

U D(I ′C P
)) and Lemma 5 holds. �

Theorem 8 (restated). ∀ε > 0, for any additive instance I = (N, M, D) with values in [1, H], mechanism ME V A is DSIC, has query 
complexity O (mn log1+ε H), and Rev(ME V A(I)) ≥ OPT(I)

8(1+ε)
.

Proof. First, it is easy to see that the query complexity of mechanism ME V A is O (mn log1+δ H), since there are in to-
tal mn distributions and each one of them needs O (log1+δ H) value queries in the algorithm AV . Since δ = √

ε + 1 − 1, 
O (mn log1+δ H) = O (mn log1+ε H). Second, since mechanisms MB V C G and MI M are both DSIC, ME V A is DSIC.

Recall that mechanism ME V A randomly chooses between running ME V I M and running ME V B V C G . Therefore, to upper-
bound the optimal revenue OPT(I) using Rev(ME V A(I)), we only need to upper-bound OPT(I) using Rev(ME V I M(I)) and 
Rev(ME V B V C G(I)).

As in [12], we only need to consider the prior distribution D with finite support. Let V ij be the support of Dij for each 
player i and item j, V i = × j∈M V ij and V = ×i∈N V i . In the optimal BIC mechanism, when player i bids vi , let πi j(vi) be 
the probability for him to get item j and pi(vi) be his expected payment, taken over the randomness of the other players’ 
values and the randomness of the mechanism. Let π = (πi j(vi))i∈N, j∈M,vi∈V i and p = (pi(vi))i∈N,vi∈V i . The pair (π, p) is 
called the reduced form (of the optimal BIC mechanism) [10].

Denote by ϕ̃i j(vij) Myerson’s (ironed) virtual value when player i’s value on item j is vij . For any value sub-profile v−i
of the players other than i, let βi j(v−i) = maxi′ �=i vi′ j : that is, the highest bid on item j excluding player i. Moreover, let 
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ri j(v−i) = maxx≥βi j(v−i){x · Prvij∼Dij [vij ≥ x]}, ri(v−i) = ∑
j ri j(v−i), ri = Ev−i∼D−i [ri(v−i)], and finally r = ∑

i ri . Note that r
is the expected revenue by running the 1-look-ahead mechanism of [41] for each item separately, and r ≤ Rev(MI M(I)).

Next, we use a different method from [12] to partition each player i’s value space V i into m + 1 subsets. More precisely, 
given δ > 0 and v−i , let R

(v−i)

0 = {vi ∈ V i | vij < (1 + δ)βi j(v−i), ∀ j}. For any vi /∈ R
(v−i)

0 , let j = arg max{vij − (1 + δ)βi j(v−i)}
with ties broken lexicographically, and add vi to the set R

(v−i )

j : note that vij − (1 + δ)βi j(v−i) ≥ 0 in this case. Similar to 
Theorem 3 of [12], the optimal BIC revenue can be upper-bounded by the sum of the following terms, where Di(vi) and 
D−i(v−i) are respectively the probabilities of vi and v−i under D , and I is the indicator function:

OPT(I) ≤ Single + Under + Over + Tail + Core, (16)

where

Single =
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) · ϕ̃i j(vij) · Pr
v−i∼D−i

[vi ∈ R
(v−i)

j ],

Under =
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

vi j · D−i(v−i)Ivi j<(1+δ)βi j(v−i),

Over =
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

(1 + δ)βi j(v−i)D−i(v−i)Ivi j≥(1+δ)βi j(v−i),

Tail =
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij) · (vij − (1 + δ)βi j(v−i))

· Pr
vi,− j∼Di,− j

[∃k �= j, vik − (1 + δ)βik(v−i) ≥ vij − (1 + δ)βi j(v−i)],

and

Core =
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
(1+δ)βi j(v−i)≤vi j≤(1+δ)βi j(v−i)+ri(v−i)

Dij(vij) · (vij − (1 + δ)βi j(v−i)).

In the following, we bound these terms in Inequality (16) separately. Note that when ME V I M uses the value-query 
algorithm AV to learn a distribution, the parameters are also set to be H and δ = √

ε + 1 − 1. Thus, applying Theorem 1 to 
each item, we have

Rev(MI M(I)) ≤ (1 + δ)Rev(ME V I M(I)).

For the terms Single, Under, Over and Tail, we are able to upper-bound them using Rev(ME V I M(I)). Following Lemma 13 
of [12], although the term Single has changed from its original form, we still have

Single =
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) · ϕ̃i j(vij) · Pr
v−i∼D−i

[vi ∈ R
(v−i)

j ]

≤ Rev(MI M(I)) ≤ (1 + δ)Rev(ME V I M(I)). (17)

Next, using Lemmas 14 and 15 of [12], we upper-bound the term Under as follows:

Under =
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

D−i(v−i) · vij · Ivi j<(1+δ)βi j(v−i)

=
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

D−i(v−i) · vij · (Ivi j<βi j(v−i) + Iβi j(v−i)≤vi j<(1+δ)βi j(v−i))

≤
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

D−i(v−i) · (vij · Ivi j<βi j(v−i) + (1 + δ)βi j(v−i) · Ivi j≥βi j(v−i))

≤ Rev(MI M(I)) + (1 + δ)Rev(MI M(I)) ≤ 2(1 + δ)2Rev(ME V I M(I)).

The second inequality above is by Lemmas 14 and 15 of [12], which respectively upper-bound the term Over and the term 
Under in the original setting. Indeed, we split our term Under into the sum of the original terms Under and Over. Using the 
above equation, the approximation ratio to OPT(I) will be 9(1 + ε) eventually. To get the desired 8(1 + ε)-approximation, 
we prove a variant of Lemma 15 of [12], which directly upper-bounds our term Under as

Under ≤ (1 + δ)Rev(MI M(I)) ≤ (1 + δ)2Rev(ME V I M(I)). (18)

The actual proof of this alternative lemma is tedious and does not provide new insights to our result, thus has been omitted.
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Next, we upper-bound the term Over:

Over =
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

(1 + δ)βi j(v−i)D−i(v−i)Ivi j≥(1+δ)βi j(v−i)

≤ (1 + δ)
∑

i

∑
vi∈V i

∑
j

Di(vi) · πi j(vi) ·
∑

v−i∈V−i

βi j(v−i)D−i(v−i)Ivi j≥βi j(v−i)

≤ (1 + δ)Rev(MI M(I)) ≤ (1 + δ)2Rev(ME V I M(I)). (19)

The second inequality above is by Lemma 14 of [12].
Next, we upper-bound the term Tail, which is similar to the analysis of [12], but with the threshold price βi j(v−i) scaled 

up by a factor of (1 + δ).

Tail =
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij) · (vij − (1 + δ)βi j(v−i))

· Pr
vi,− j∼Di,− j

[∃k �= j, vik − (1 + δ)βik(v−i) ≥ vij − (1 + δ)βi j(v−i)]

≤
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij) · (vij − (1 + δ)βi j(v−i))

· Pr
vi,− j∼Di,− j

[∃k �= j, vik − βik(v−i) ≥ vij − (1 + δ)βi j(v−i)]

≤
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij) · (vij − (1 + δ)βi j(v−i))

·
m∑

k=1

Pr
vik∼Dik

[vik ≥ vij − (1 + δ)βi j(v−i) + βik(v−i)]

≤
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij)

·
m∑

k=1

(vij − (1 + δ)βi j(v−i) + βik(v−i)) Pr
vik∼Dik

[vik ≥ vij − (1 + δ)βi j(v−i) + βik(v−i)]

≤
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

∑
vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij)

m∑
k=1

rik(v−i)

=
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

ri(v−i)
∑

vi j>(1+δ)βi j(v−i)+ri(v−i)

Dij(vij)

≤
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

((1 + δ)βi j(v−i) + ri(v−i)) · Pr
vi j∼Dij

[vij > (1 + δ)βi j(v−i) + ri(v−i)]

≤
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

ri j(v−i) =
∑

i

∑
v−i∈V−i

D−i(v−i)ri(v−i) =
∑

i

ri

= r ≤ Rev(MI M(I)) ≤ (1 + δ)Rev(ME V I M(I)). (20)

The second inequality above is by union bound. The fourth and sixth inequalities use twice the definition of ri j (v−i), which 
sets the optimal price to maximize the expected revenue generated by selling item j to i. The second equality is by the 
definition of ri(v−i).

Finally, we upper-bound the term Core. The Core part is the most complicated, and we use ME V B V C G and ME V I M

together to upper-bound it. To do so, below we rewrite Core into a different form. Similar to [12], arbitrarily fixing v−i and 
letting vij ∼ Dij , define the following two new random variables, which again scale the threshold price βi j(v−i) up by a 
factor of (1 + δ):

bij(v−i) = (vij − (1 + δ)βi j(v−i))Ivi j≥(1+δ)βi j(v−i),

and

ci j(v−i) = bij(v−i)Ibij(v−i)≤ri(v−i).

Therefore, we have
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Core =
∑

i

∑
v−i∈V−i

D−i(v−i)
∑

j

Evi j∼Dij [ci j(v−i)].

Letting ei(v−i) = ∑
j Evij∼Dij [ci j(v−i)] − 2ri(v−i), following the proof of Lemma 12 in [12], we still have

Pr[
∑

j

bi j(v−i) ≥ ei(v−i)] ≥ 1

2
.

In the following, we use the revenue of mechanisms ME V B V C G and ME V I M to bound the Core. To do so, first note that 
by the construction of mechanism ME V B V C G ,

Rev(ME V B V C G(I)) = Rev(MB V C G(I; D ′)).

Let V ′
i j be the support of D ′

i j , V ′
i = × j∈M V ′

i j , V ′ = ×i∈N V ′
i . As before, given vi ∼ Di , denote by v ′

i ∈ V ′
i the value vector 

obtained by rounding vi down to the support of D ′
i . That is, each v ′

i j is the largest value in V ′
i j that is less than or equal to 

vij . Then,

Rev(MB V C G(I; D ′)) ≥
∑

i

Ev−i∼D−iEvi∼Di Rev(MB V C G(v ′
i, v−i; D ′))

=
∑

i

Ev−i∼D−iEv ′
i∼D ′

i
Rev(MB V C G(v ′

i, v−i; D ′)).

The inequality is because each player i can potentially buy item j only when j is in his winning set (i.e., he is the player 
with highest value for j), and i’s winning set under v ′

i is a subset of his wining set under vi . Moreover, the entry fee of i
is the same under both (vi, v−i) and (v ′

i, v−i), as it only depends on D ′
i and v−i . Thus the revenue inside the expectation 

does not increase when vi is replaced by v ′
i . The equality is again because drawing vi from Di and then rounding down to 

v ′
i is equivalent to drawing v ′

i from D ′
i directly.

Next, we lower-bound 
∑

i Ev−i∼D−iEv ′
i∼D ′

i
Rev(MB V C G(v ′

i, v−i; D ′)). As before, arbitrarily fixing v−i and letting v ′
i j ∼ D ′

i j , 
define

b′
i j(v−i) = (v ′

i j − βi j(v−i))Iv ′
i j≥βi j(v−i)

.

Note that b′
i j(v−i) is a random variable that represents player i’s utility in the second price mechanism on item j with value 

v ′
i j ∼ D ′

i j , when the other players’ bids are v−i, j . Also note that MB V C G uses the optimal entry fee for each i with respect 
to v−i and D ′ , which generates expected revenue from i (over D ′

i ) greater than or equal to that by using the following entry 
fee,

e′
i(v−i) = ei(v−i)

1 + δ
.

Now we show player i accepts the entry fee e′
i(v−i) with probability at least 1

2 . Indeed, for any vi and the corresponding 
v ′

i , ∑
j

b′
i j(v−i) =

∑
j

(v ′
i j − βi j(v−i))Iv ′

i j≥βi j(v−i)
≥

∑
j

(
vij

1 + δ
− βi j(v−i))I vi j

1+δ
≥βi j(v−i)

= 1

1 + δ

∑
j

(vij − (1 + δ)βi j(v−i))Ivi j≥(1+δ)βi j(v−i) = 1

1 + δ

∑
j

bi j(v−i).

The inequality is because v ′
i j ≥ vij

1+δ
, and because vij

1+δ
≥ βi j(v−i) implies v ′

i j ≥ βi j(v−i). Therefore

Pr
v ′

i∼D ′
i

[
∑

j

b′
i j(v−i) ≥ e′

i(v−i)] ≥ Pr
vi∼Di

[ 1

1 + δ

∑
j

bi j(v−i) ≥ ei(v−i)

1 + δ
]

= Pr
vi∼Di

[
∑

j

bi j(v−i) ≥ ei(v−i)] ≥ 1

2
,

as desired. Thus we have
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Rev(ME V B V C G(I))

≥
∑

i

Ev−i∼D−iEv ′
i∼D ′

i
Rev(MB V C G(v ′

i, v−i; D ′)) ≥ 1

2

∑
i

∑
v−i∈V−i

D−i(v−i) · ei(v−i)

1 + δ

= 1

2(1 + δ)

∑
i

∑
v−i∈V−i

D−i(v−i)

⎛
⎝∑

j

Evi j∼Dij [ci j(v−i)] − 2ri(v−i)

⎞
⎠ = 1

2(1 + δ)
Core − r

1 + δ
.

That is,

Core ≤ 2(1 + δ)Rev(ME V B V C G(I)) + 2r

≤ 2(1 + δ) [Rev(ME V B V C G(I)) + Rev(ME V I M(I))] . (21)

Combining Inequalities (16), (17), (18), (19), (20) and (21),

OPT(I) ≤ (1 + δ)2 (2Rev(ME V B V C G(I)) + 6Rev(ME V I M(I)))

= (1 + ε) (2Rev(ME V B V C G(I)) + 6Rev(ME V I M(I))) .

Accordingly, by running mechanism ME V B V C G with probability 1
4 and mechanism ME V I M with probability 3

4 , the expected 
revenue of mechanism ME V A is

Rev(ME V A(I)) ≥ 1

8(1 + ε)
OPT(I).

This finishes the proof of Theorem 8. �
Theorem 10 (restated). ∀ε > 0, any additive instance I = (N, M, D) satisfying Small-Tail Assumption, ME Q A is DSIC, has query 
complexity O (−m2n log1+ ε

5
h( ε

10(1+ε)
), and Rev(ME Q A(I)) ≥ OPT(I)

8(1+ε)
.

Before proving Theorem 10, we first analyze mechanism ME Q B V C G , and we have the following new lemma.

Lemma 6. ∀ε > 0, for any additive Bayesian instance I = (N, M, D) satisfying Small-Tail Assumption, ME Q B V C G is DSIC, has query 
complexity O (−m2n log1+ ε

5
h( ε

10(1+ε)
)), and

Rev(ME Q B V C G(I)) ≥ 1

1 + ε
5

(
Rev(MB V C G(I)) − ε

10(1 + ε)
OPT(I)

)
.

Proof. First, mechanism ME Q B V C G is DSIC because MB V C G is DSIC. The query complexity is also immediate.
We now focus on the revenue of this mechanism. We explicitly write MB V C G(I; D ′) to emphasize the fact that the seller 

runs mechanism MB V C G on the true valuation profile v ∼ D , but uses D ′ to compute the entry fees ei . Given a player i
and a valuation profile v , pi(vi, Di, v−i) is the price for i under Di : that is,

pi(vi, Di, v−i) = I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)(e(Di, v−i) +
∑

j

βi jIvi j≥βi j ),

where we omit v−i in βi j(v−i) when v−i is clear from the context.10 The price pi(vi, D ′
i, v−i) is similarly defined. By the 

definition of the mechanism, we have

Rev(ME Q B V C G(I)) = Rev(MB V C G(I; D ′)) =
∑

i

E
v−i∼D−i

E
vi∼Di

pi(vi, D ′
i, v−i). (22)

Next, let V ′
i j be the support of D ′

i j , V ′
i = × j∈M V ′

i j , round vi down to the closest valuation v ′
i in V ′

i and compare the two 
valuation profiles (v ′

i, v−i) and (vi, v−i). By definition, v ′
i j ≥ βi j implies vij ≥ βi j . Moreover, the entry fee of i is the same 

under both valuation profiles, as it only depends on D ′
i and v−i . Similarly, the reserve price βi j is the same for any item j. 

Thus we have e(D ′
i, v−i) +∑

j βi jIvij≥βi j ≥ e(D ′
i, v−i) +∑

j βi jIv ′
i j≥βi j

and I∑
j:vi j≥βi j

(vij−βi j)≥e(Di ,v−i) ≥ I∑
j:vi j≥βi j

(v ′
i j−βi j)≥e(D ′

i ,v−i)
. 

Therefore

E
v−i∼D−i

E
vi∼Di

pi(vi, D ′
i, v−i) ≥ E

v−i∼D−i

E
vi∼Di

pi(v ′
i, D ′

i, v−i) = E
v−i∼D−i

E
v ′

i∼D ′
i

pi(v ′
i, D ′

i, v−i), (23)

10 If there are ties in the players’ values, then we distinguish between β+
i j and β−

i j , depending on the identity of the player with the highest bid for j in 
N \ {i}.
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where the equality is again because drawing vi from Di and then rounding down to v ′
i is equivalent to drawing v ′

i from D ′
i

directly.
In mechanism MB V C G , given v−i and D ′

i , e(D ′
i, v−i) is the optimal entry fee for maximizing the expected revenue 

generated from i, where the expectation is taken over D ′
i . Accordingly,

E
v ′

i∼D ′
i

pi(v ′
i, D ′

i, v−i) ≥ E
v ′

i∼D ′
i

pi(v ′
i, Di, v−i). (24)

Combining Equations (22), (23) and (24), we have

Rev(ME Q B V C G(I)) ≥
∑

i

E
v−i∼D−i

E
v ′

i∼D ′
i

pi(v ′
i, Di, v−i). (25)

Thus we will use 
∑

i
E

v−i∼D−i

E
v ′

i∼D ′
i

pi(v ′
i, Di, v−i) to upper-bound Rev(MB V C G(I)).

To do so, first, for any player i, item j and value vij , if vij < v ′
i j;k where v ′

i j;k is the largest value in V ′
i j , then denote by 

vij the smallest value in V ′
i j that is strictly larger than vij ; otherwise, let vij = vij . Moreover, denote by vij the largest value 

in V ′
i j that is weakly smaller than vij . The valuation vi and vi are defined correspondingly given vi . Then We have

Rev(MB V C G(I)) =
∑

i

E
v−i∼D−i

E
vi∼Di

pi(vi, Di, v−i)

=
∑

i

E
v−i∼D−i

E
vi∼Di

I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

=
∑

i

E
v−i∼D−i

E
vi∼Di

I∀ j,qij(vi j)>ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

+
∑

i

E
v−i∼D−i

E
vi∼Di

I∃ j,qij(vi j)≤ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠ . (26)

Below we upper-bound the last two lines in Equation (26) separately. For the first part, we have

∑
i

E
v−i∼D−i

E
vi∼Di

I∀ j,qij(vi j)>ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

≤
∑

i

E
v−i∼D−i

E
vi∼Di

I∀ j,qij(vi j)>ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

=
∑

i

E
v−i∼D−i

∑
ui∈V ′

i :
∑

j:ui j≥βi j
(uij−βi j)≥e(Di ,v−i)

Pr
vi∼Di

[vi = ui]
⎛
⎝e(Di, v−i) +

∑
j

βi jIuij≥βi j

⎞
⎠ . (27)

The inequality above is because vij ≤ vij for each player i and item j, which implies
I∑

j:vi j≥βi j
(vij−βi j)≥e(Di ,v−i) ≤ I∑

j:vi j≥βi j
(vij−βi j)≥e(Di ,v−i) and 

∑
j βi jIvij≥βi j ≤ ∑

j βi jIvij≥βi j .

Next, by the definition of the quantile vector q, for any uij ∈ V ′
i j we have

Pr
vi j∼Dij

[vij = uij] ≤ (1 + δ) Pr
vi j∼Dij

[vij = uij].

Indeed, when uij = v ′
i j;0, Pr[vij < uij] = 0 < (1 + δ)(1 − ε1(1 + δ)k−1) = (1 + δ)(q0 − q1) = (1 + δ) Pr[vij ∈ [v ′

i j;0, v
′
i j;1)]. When 

uij = v ′
i j;l with 0 < l < k, Pr(vij ∈ [v ′

i j;l−1, v
′
i j;l)) = ql−1 −ql ≤ (1 + δ)ql −ql = δql = (1 + δ)δql+1 = (1 + δ)((1 + δ)ql+1 −ql+1) =

(1 + δ)(ql − ql+1) = (1 + δ) Pr[vij ∈ [v ′
i j;l, v

′
i j;l+1)]. And when uij = v ′

i j;k , Pr[vij ∈ [v ′
i j;k−1, v

′
i j;k]] = qk−1 − qk = δε1 < ε1 =

Pr[vij ≥ v ′
i j;k]. Since all distributions are independent, for any ui ∈ V ′

i we have

Pr
vi∼Di

[vi = ui] ≤ (1 + δ)m Pr
vi∼Di

[vi = ui]. (28)

Combining Equations (27) and (28), we have
28
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∑
i

E
v−i∼D−i

E
vi∼Di

I∀ j,qij(vi j)>ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

≤
∑

i

E
v−i∼D−i

∑
ui∈V ′

i :
∑

j:ui j≥βi j

(uij−βi j)≥e(Di ,v−i)

(1 + δ)m · Pr
vi∼Di

[vi = ui] ·
⎛
⎝e(Di, v−i) +

∑
j

βi jIuij≥βi j

⎞
⎠

= (1 + δ)m
∑

i

E
v−i∼D−i

E
v ′

i∼D ′
i

I∑
j:v′

i j≥βi j
(v ′

i j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIv ′
i j≥βi j

⎞
⎠

= (1 + δ)m
∑

i

E
v−i∼D−i

E
v ′

i∼D ′
i

pi(v ′
i, Di, v−i) ≤ (1 + δ)mRev(MEC B V C G(Î)). (29)

The first equality above holds because drawing vi from Di and rounding down to the support of D ′
i is equivalent to drawing 

v ′
i from D ′

i . The second equality is by the definition of pi(v ′
i, Di, v−i), and the last inequality holds by Equation (25).

By Equations (26) and (29), we have

Rev(MB V C G(I))

≤ (1 + δ)mRev(ME Q B V C G(I))

+
∑

i

E
v−i∼D−i

E
vi∼Di

I∃ j,qij(vi j)≤ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠ . (30)

For the last line of Equation (30), we have

∑
i

E
v−i∼D−i

E
vi∼Di

I∃ j,qij(vi j)≤ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

= E
v∼D

∑
i

I∃ j,qij(vi j)≤ε1 I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

≤ E
v∼D

I∃i, j,qij(vi j)≤ε1

∑
i

I∑
j:vi j≥βi j

(vi j−βi j)≥e(Di ,v−i)

⎛
⎝e(Di, v−i) +

∑
j

βi jIvi j≥βi j

⎞
⎠

= E
v∼D

I∃i, j,qij(vi j)≤ε1 Rev(MB V C G(v;I)) ≤ ε

10(1 + ε)
OPT(I). (31)

The first inequality above is because, for each player i and valuation profile v , I∃ j,qij(vij)≤ε1 ≤ I∃i, j,qij(vij)≤ε1 . The second 
inequality is by the Small-Tail Assumption.

Combining Equations (30) and (31), we have

Rev(MB V C G(I)) ≤ (1 + δ)mRev(ME Q B V C G(I)) + ε

10(1 + ε)
OPT(I).

By the construction of Mechanism 10, (1 + δ)m = 1 + ε
5 . Therefore Lemma 6 holds. �

Proof of Theorem 10. First, as both ME Q B V C G and ME Q I M are DSIC, ME Q A is DSIC. Second, note that ME Q A runs both 
mechanisms with δ = (1 + ε

5 )1/m −1 and ε1 = h( ε
10(1+ε)

). To ease the analysis, when running mechanism ME Q I M , let δ = ε
15

and ε1 = h( 2ε
3(5+ε)

): that is, set ε′ = ε
5 and run mechanism ME Q M with parameter ε′ for each item. By Theorem 2, with 

O (−mn log1+ ε
15

h( 2ε
3(5+ε)

)) queries,

Rev(ME Q I M(I)) ≥ 1

1 + ε
5

Rev(MI M(I)).

By Lemma 6, with O (−m2n log1+ ε
5

h( ε
10(1+ε)

)) queries,

Rev(ME Q B V C G(I)) ≥ 1

1 + ε
5

(
Rev(MB V C G(I)) − ε

10(1 + ε)
OPT(I)

)
.

Note that the total query complexity is still O (−m2n log1+ ε h( ε )).

5 10(1+ε)
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Let mechanism ME Q A run ME Q B V C G with probability 1
4 and ME Q I M with probability 3

4 . We have

Rev(ME Q A(I)) = 1

4
Rev(ME Q B V C G(I)) + 3

4
Rev(ME Q I M(I))

≥ 1

4(1 + ε
5 )

(
Rev(MB V C G(I)) − ε

10(1 + ε)
OPT(I)

)
+ 3

4(1 + ε
5 )

Rev(MI M(I))

≥ 1

1 + ε
5

(
1

4
Rev(MB V C G(I)) + 3

4
Rev(MI M(I)) − ε

10(1 + ε)
OPT(I)

)

≥ 1

1 + ε
5

(
1

8
OPT(I) − ε

10(1 + ε)
OPT(I)

)
= 1

8(1 + ε)
OPT(I).

The last inequality above holds because 2MB V C G(I) + 6MI M(I) ≥ OPT(I) proved in [12]. Thus Theorem 10 holds. �
Appendix C. Missing proofs for Section 7

Theorem 11 (restated). ∀ε > 0 and γ ∈ (0, 1), for any Bayesian instance I = (N, M, D),

• for single-item auctions satisfying the Small-Tail Assumption, with Õ(h−2( 2ε
3(1+ε)

) · ( ε
1+ε )−2) samples, mechanism MS M achieves 

revenue at least 1
1+ε OPT(I) with probability at least 1 − γ ;

• for unit-demand auctions satisfying the Small-Tail Assumption, with Õ (h−2( 2ε
3(1+ε)

) · ( ε
1+ε )−2) samples, mechanism MS M

achieves revenue at least 1
24(1+ε)

OPT with probability at least 1 − γ ;

• for additive auctions satisfying the Small-Tail Assumption, with Õ(h−2( ε
10(1+ε)

)( 1
2 − 1

1+(1+ ε
5 )1/m ))−2) samples, mechanism MS M

achieves revenue at least 1
8(1+ε)

OPT with probability at least 1 − γ .

Proof of Theorem 11. After constructing the distributions, we simply run the existing DSIC mechanisms as a Blackbox, and 
if the constructed distribution satisfies the property that for any quantile ql ,

qij(v
t·ql+1
i j ) ≥ 1

1 + ε
3

(
qij(vt·ql

i j )
)

. (32)

all our query complexity results for single-item and unit-demand auctions directly apply here.
Since here for sampling mechanism, we slice the quantile interval uniformly, in the ideal case, the selected sampled 

values correspond to the desired quantiles and Dij(vt·ql
i j ) = Dij(v

t·ql+1
i j ). However, since these samples are random, we may 

not obtain the ideal case. In fact, given parameter d = 12+3ε
ε , if for any quantile ql ,

ql − ql

d
≤ qij(vt·ql

i j ) ≤ ql + ql

d
, (33)

then

qij(v
t·ql+1
i j )

qij(vt·ql
i j )

≥ ql+1(1 − 1
d )

ql(1 + 1
d )

≥
1

1+ ε
6
(1 − 1

d )

1 + 1
d

= 1

1 + ε
3

,

for any ε > 0, that is, Equation (32) holds. In the following, we show how many samples are enough to obtain Inequality 
(33).

First, we bound the probability that vt·ql
i j locates in the quantile interval [ql − ql

d , ql + ql
d ]. Let Elef t

i j,l be the event that vt·ql
i j

locates in the quantile interval [0, ql − ql
d ], and Eright

i j,l be the event that vt·ql
i j locates in the quantile interval [ql + ql

d , 1]. Then

Pr[Elef t
i j,l ] =

t−t·ql∑
s=0

(
t

s

)(
ql − ql

d

)s (
1 − ql + ql

d

)t−s
,

and

Pr[Eright
i j,l ] =

t·ql∑
s=0

(
t

s

)(
1 − ql − ql

d

)s (
ql + ql

d

)t−s
.

By Chernoff’s inequality and ∀i, j, l, letting Pr[Elef t
i j,l ] and Pr[Eright

i j,l ] be no more than γ
2mn(k+1)

, t = Õ (( ε1
d )−2) = Õ (( ε·ε1

(1+ε)
)−2). 

That is with Õ (h−2( 2ε ) · ( ε )−2) samples, the probability that vt·ql does not locate in the quantile interval [ql − ql , ql +
3(1+ε) 1+ε i j d
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ql
d ] is less than γ

mn(k+1)
. By union bound, there exists one vt·ql

i j for all i ∈ [n], j ∈ [m], l ∈ [k +1] does not locate in the quantile 
interval [ql − ql

d , ql + ql
d ] is less than γ . Then with probability 1 − γ , Inequality (33) holds.

For additive auctions, if the constructed distribution satisfies the property that for any quantile ql ,

qij(vt·ql
i j ) − qij(v

t·ql+1
i j ) ≥ 1

(1 + ε
5 )1/m

(
qij(v

t·ql+1
i j ) − qij(v

t·ql+2
i j )

)
, (34)

all our query complexity results for additive auctions directly apply here. In fact, if for any quantile ql ,

ql − ε1(
1

2
− 1

1 + (1 + ε
5 )1/m

) ≤ qij(vt·ql
i j ) ≤ ql + ε1(

1

2
− 1

1 + (1 + ε
5 )1/m

),

then,

qij(vt·ql
i j ) − qij(v

t·ql+1
i j )

qij(v
t·ql+q

i j ) − qij(v
t·ql+2
i j )

≥
ε1 − ε1(1 − 2

1+(1+ ε
5 )1/m )

ε1 + ε1(1 − 2
1+(1+ ε

5 )1/m )
= 1

(1 + ε
5 )1/m

,

Using the same technique of applying the Chernoff’s inequality, with Õ (h−2( ε
10(1+ε)

)( 1
2 − 1

1+(1+ ε
5 )1/m ))−2) samples, Equa-

tion (34) holds with probability 1 − γ . Thus Theorem 11 holds. �
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