
BNL-113769-2017-CP

 A success-history based learning procedure to optimize
server throughput in large distributed control systems

Y. Gao

16th International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS 2017)

Barcelona, Spain
October 8 – 13, 2017

October 2017

Collider-Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy
Office of Science,

Office of Nuclear Physics

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript
for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

A SUCCESS-HISTORY BASED LEARNING PROCEDURE TO OPTIMIZE

SERVER THROUGHPUT IN LARGE DISTRIBUTED CONTROL

SYSTEMS∗

Y. Gao†, J. Chen, T. Robertazzi, Stony Brook University, Stony Brook, NY 11794, USA

K. A. Brown, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Large distributed control systems typically can be mod-

eled by a hierarchical structure with two physical layers:

Console Level Computers (CLCs) and Front End Comput-

ers (FECs). The control system of the Relativistic Heavy

Ion Collider (RHIC) at Brookhaven consists of more than

500 FECs, each acting as a server providing services to

a potentially unlimited number of clients. This can lead

to a bottleneck in the system, as heavy traffic can slow

down or even crash a system, making it momentarily un-

responsive. In this paper, we consider this problem from a

game theory perspective. Specifically, we consider the case

where the server has a varying capacity. First, we model

this problem as an integer programming problem. Second,

we adopt a regret-based procedure as a basic solution and

then propose a success-history based scheme to better ac-

commodate the dynamic server capacity. Finally, simula-

tion results show that both algorithms perform well and

lead to a significant improvement of system performance.

Moreover, compared with the regret-based procedure, the

proposed success-history based scheme results in a higher

server throughput and lower crash probability under the dy-

namic environment.

INTRODUCTION

The control system of the Relativistic Heavy Ion Col-

lider (RHIC) at Brookhaven is a large distributed discrete

system. It provides operational interfaces to the collider

and injection beam lines [1]. The architecture consists of

two hierarchical physical layers: Console Level Comput-

ers (CLCs) level and Front End Computers (FECs) level,

as shown in Fig. 1. The console level is the upper layer

of the control system hierarchy, which consists of opera-

tor consoles, physicist workstations and server processors

that provide shared files, database and general computing

resources. The front end system contains more than 500

FECs, running on VxWorksTM real-time operating system.

Each of them consists of a VME chassis with a single-board

computer, network connection, and I/O modules. FECs are

distributed around 38 locations, including the control cen-

ter, service buildings and 18 equipment alcoves accessible

only via the ring tunnel. Along with data links and hardware

modules, they are the control systems’ interface to acceler-

ator equipment.

∗ Work supported by Brookhaven Science Associates, LLC under Contract

No. DE-SC0012704 with the U.S. Department of Energy.
† ygao@bnl.gov

Figure 1: RHIC system hardware architecture.

One of the most fundamental concepts in RHIC control

system is the Accelerator Device Object (ADO) [1]. ADOs

are instances of C++ or Java classes which abstract features

from underlying control hardware into a collection of col-

lider control points known as parameters, and each param-

eter can possess one or more properties to better describe

characteristics of devices. The number of parameters and

names of parameters are determined by ADO designers to

meet the needs of the system. The most important ADO

class methods for device control are the set() and get() meth-

ods. They are processed by the ADO that acts as the inter-

face to device drivers in order to access control hardware.

The collider is controlled by users or applications which sets

and gets the parameters in instances of these classes using

a suite of interface routines.

In this paper, we consider a practical performance issue

in the front end system, where every FEC acts as a server

which holds different kinds of ADOs, providing services to

a large number of clients. When the number of clients in

an FEC reaches its limit, it slows down the system or even

crashes it. When the system crashes, all current applica-

tions’ communication get lost and it takes time to restore

them.

Fig. 2 demonstrates this performance issue. In this exam-

ple, the arrival procedure of clients’ requests is represented

by a Poisson process with various rates. For each of those

different arrival rates, we measure the ratio of the time spent

by the server to process requests between the case where the

server has a certain message arrival rate and the case where

the server has no arrival messages. The result indicates how

well the system behaves for different server load. We can

see that the performance of the system deteriorates dramat-

ically when the number of clients1 approaches the server’s

capacity.

1 Here we assume one client only sends one request at each time. The max-

imum number of clients the server can hold depends on the size of clients’

0 10 20 30 40 50 60 70 80 90 100
Poisson Average Msgs Rate (msgs/sec)

0

5

10

15

20

25

T
im
e
 D
e
la
y
 R
a
ti
o

Time Delay Ratio Under Different Server Load

Figure 2: Illustration of the client-server problem.

Moreover, in our system, there are asynchronous pro-

cesses residing on FECs. Those processes will share FECs’

resources when their required information are updated by

FECs, resulting in a varying server capacity circumstance.

One difficulty with this scenario is how to regulate clients’

behaviors, so that they can learn the server’s limitations and

adjust their strategies properly.

We address this client-server problem with dynamic

server capacity in a novel approach using game theory. Our

goal is to manage clients’ behaviors, so that the server’s

throughput is maximized, and at the same time the server

crashes as little as possible.

The main contributions of this paper can be summarized

as follows. First, we formulate the client-server problem

with varying server capacity into an integer programming

problem2. Second, to tackle the problem we provide a

basic solution to regulate clients’ behaviors by adopting a

discrete regret-based learning algorithm. Third, in order

to better accommodate the dynamic server capacities, we

improve the basic algorithm and propose an adaptive pro-

cedure, which employs a success-history based scheme to

update parameters. Finally through extensive simulations,

we demonstrate that both schemes can efficiently manage

clients’ activities, and produce a significant improvement

on both server’s throughput and reliability over the case

where there is no activity management. Moreover, the pro-

posed success-history based scheme further enhances the

regret-based algorithm, resulting in a notably higher server

throughput and lower crash probability.

PRELIMINARIES

In this section, we present a brief literature review on

game dynamics, followed by a description of the discrete

adaptive algorithm [2,3] we adopted, which serves as the ba-

sic routine for our parameter adaptation scheme introduced

in a later section.

requests and hardware specifications of the server. In this example, it is

around 98.
2 An integer programming problem is a mathematical optimization or fea-

sibility program in which some or all of the variables are restricted to be

integers.

Literature Review

Game dynamics study how a game evolves when players

interact with each other repeatedly. Learning procedures

have been developed to achieve some overall optimization

goals or convergence to the game’s equilibrium.

In work [4], the authors proposed a multi-agent learn-

ing algorithm through gradient ascent method, and showed

that in the simple setting of two-player, two-action repeated

general-sum games, it either leads the agents to play a Nash

equilibrium, or leads the agents’ payoffs to Nash equilib-

rium payoffs. Work [5] extended [4] by introducing a vary-

ing learning rate to “Win or Learn Fast”, and proved conver-

gence in the same game settings as [4]. Work [6] general-

ized the convergence results of [4] to games with more than

two actions, and proved all clients’ regrets are bounded by

a constant number. Work [7] proposed a discrete procedure

which achieves the no-regret result in work [6] and part of

the convergence result in work [5], and proved convergence

in two-player, two-action games.

There are also many works that study game dynamics for

convergence to equilibrium. Work [8] introduced a hypothe-

sis testing procedure in which, the joint mixed strategy pro-

files are within distance ǫ of the set of Nash equilibria in

a fraction of at least 1-ǫ of time, though almost sure con-

vergence is not achieved. Work [9] proposed the calibrated

learning dynamics leading to correlated equilibria, in which

every player computes “calibrated forecasts” on the behav-

ior of the other players, and then plays a best reply to these

forecasts. Work [10] offered a class of adaptive procedures

called “calibrated smooth fictitious play”, which guaranteed

almost sure convergence to the set of correlated approxi-

mate equilibria.

However, those procedures mentioned above cannot guar-

antee convergence for n-player (n > 2) general-sum games

(which is our case), and require global information about

the game and observation of the opponent’s actions, which

is not likely to be available in practical situations. In this pa-

per, we adopt another regret-based procedure that works for

any n-player game [2, 3]. It is a discrete algorithm, which

does not require sophisticated updating or prediction, and

leads the game to converge to the set of correlated equilib-

ria.

A Regret-based Learning Procedure

In this part, we describe the discrete adaptive learning

procedure proposed in work [2,3] which leads to the game’s

correlated equilibria, and is used as the basis for our param-

eter adaptation scheme proposed later.

The basic idea of the procedure is as follows: At each pe-

riod, a player may either continue playing the same strategy

as in the previous period, or switch to other strategies, with

probabilities that are proportional to how much higher his

accumulated payoff would have been had he always made

that change in the past. Specifically, let U be his total pay-

off up to now. For each strategy k different from his last

period strategy j, let V (k) be the total payoff he would have

received if he had played k every time in the past that he

chose j (and everything else remained unchanged). Then

only those strategies k with V (k) larger than U may be

switched to, with probabilities that are proportional to the

differences V (k) −U, which we call the “regret” for having

played j rather than k. These probabilities are normalized

by a fixed factor, so that they add up to strictly less than 1;

with the remaining probability, the same strategy j is cho-

sen as in the last period.

It is worthwhile to point out two properties [2, 3] of this

procedure. First, each player only needs to know the pay-

offs he received in past periods. He needs not know the

game he is playing - neither his own payoff function nor the

other players’ payoffs. Second, due to the discrete nature

of this algorithm, all regret values are calculated based on

realized information. Thus an exogenous statistical “noise”

is needed to make sure every action to be played with some

minimal frequency.

CLIENT-SERVER PROBLEM WITH

DYNAMIC SERVER CAPACITY

In this section, we present the formulation of the client-

server problem with dynamic server capacity.

We model the problem as a repeated game, which is

played over discrete time slots among n clients (players)

and one server3. During each time slot, a stage game is

played in which all n clients simultaneously decide whether

to Send (S) or Hold (H) their traffic to the server. Depend-

ing on the result of the stage game as a consequence of

clients’ actions, payoffs will be assigned to each client in

the following way.

At any time t, if the traffic coming from clients exceeds

server’s capacity Ct (which stands for the capacity value at

time t), then the server is crashed and clients get punish-

ment payoff −c. Otherwise, they get profits equal to their

amount of traffic transmitted to the server (Li for client i).

The payoff function for client i can be expressed as:

ui (Li, ai) =




Li if server is alive

−c if server crashes
(1)

where ai is client i’s action, with value 1 standing for action

Send and 0 for Hold. Table 1 summarizes these notations.

Suppose the game is played for T periods. Denote as at
i

the action played by client i at time t. Our goal is to safely

and efficiently route clients’ traffic so that server’s through-

put is maximized:

Max :

T∑

t=1

n∑

i=1

at
i Li (2)

3 Since in our system, FECs do not share information between each other,

this allows us to model each FEC separately by using the same game

model.

Table 1: Notations

Notation Definition

N, |N | = n Set of clients

Ai = {S, H } Action set for client i

Li, 0 < Li ≤ LMAX Amount of traffic client i

possesses

Li as above Benefit gained for client

i from a successful traffic

transmission

Ct Server’s capacity at time t

−c, c > 0 Cost of server crash

ui Payoff function for client i

Subject to

n∑

i=1

at
i Li ≤ Ct,∀t = 1, 2, . . . ,T (3)

at
i ∈ {0, 1},∀i = 1, 2, . . . , n,∀t = 1, 2, . . . ,T (4)

Li ∈ (0, LMAX],∀i = 1, 2, . . . , n (5)

where constraint (3) restricts that the server does not crash

during the game. Constraint (4) specifies that clients’ ac-

tions are binary variables, where 1 stands for action Send,

and 0 for Hold. Constraint (5) states that the maximum

traffic load a client can have is greater than 0 and below a

threshold LMAX > 0.

Note that a special case of the optimization problem

above is to keep the server’s capacity constant all the time,

then the problem is equivalent to the Knapsack problem,

which is well known to be NP-hard (see, for example, [11]).

This reduction along with the dynamic aspect of our prob-

lem make it very difficult to seek optimal solutions. In the

next section, we propose a heuristic scheme to tackle it.

A SUCCESS-HISTORY BASED

PARAMETER ADAPTATION SCHEME

In this section, we introduce the proposed parameter up-

date scheme. As mentioned before, we adopt the discrete

reinforcement learning algorithm described in [2,3] as a ba-

sic routine, and then build upon it a success-history based

adaptive scheme to better accommodate the varying server

capacity in our system.

The discrete reinforcement learning algorithm adjusts

clients’ behaviors based on regret values, which are calcu-

lated from clients’ realized payoffs. It performs well when

the server’s capacity does not change. However, due to the

dynamic nature of our problem, clients’ realized payoffs

may reflect their intentions inaccurately. If so, it can cause

a slower convergence rate of the algorithm, resulting in a

degraded system performance.

In order to properly manage clients’ behaviors to handle

the dynamic factors, we propose a success-history based

Index 1 2 . . . H − 1 H

SCCF SCCF,1 SCCF,2 . . . SCCF,H−1 SCCF,H

Swt Swt,1 Swt,2 . . . Swt,H−1 Swt,H

Figure 3: Successful historical memory of SCCF , Swt .

adaptive scheme to improve the algorithm’s performance,

which uses a different parameter adaptation mechanism

based on a historical record of successful parameter set-

tings.

The general idea of the scheme is to adapt clients’ strate-

gies in the game by adjusting their server crash costs. If

during a specific period the server has a smaller capacity,

then at the same time each client modifies its crash cost

to be larger, and vice versa. The reason is that a larger

crash cost alters clients’ realized payoffs, causes it to de-

crease whenever server is crashed (and everything else re-

mained unchanged). Then by applying the regret-based pro-

cedure [2, 3], clients’ intentions of sending traffic to the

server will be suppressed, resulting the server being less

crashed, and vice versa. This should render the original al-

gorithm a better performancein the circumstance of varying

server capacity.

We allow clients to modify their own crash costs based on

the amount of traffic they possess. More precisely, we lever-

age a parameter called Crash Cost Factor (CCF), denoted

by α, to perform the server crash cost adaptation, which is

defined as the ratio of server crash cost c and the amount of

traffic a client possesses L, e.g. ci = αLi for client i. Intu-

itively, the parameter describes how many times the punish-

ment value a client gets from a server crash is as large as the

benefit value it gets from a successful traffic transmission.

In practice, each client maintains a history of successful

crash cost factor values in a memory with H entries, which

is shown in Fig. 3. The definition of successful values and

the steps of the procedure are explained below:

In the beginning, each client randomly chooses a

crash cost factor α, denoted by MCCF , from an uni-

fied cost factor options, denoted by Cset (e.g. Cset =

{1, 5, 10, · · · , 95, 100}), then generates their initial crash

cost factors as following:

CCF = randn(MCCF, var) (6)

where MCCF is the cost factor value selected from the avail-

able options Cset , and randn(MCCF, var) is the value se-

lected randomly from normal distributionwith mean MCCF

and variance var.

Then during the game, each client collects statistics about

its average amount of effective traffic “e f f _tra f f ic_avg”

periodically. The amount of effective traffic of one client

is defined as the amount of traffic it successfully routes to

the server (note that this value is usually smaller than the

total amount of traffic a client intends to route). If period

i’s average amount of effective traffic (over the time slots in

it) is larger than its previous period’s, then the crash cost

factor used in period i is recorded in the memory as a suc-

cessful value SCCF , and the corresponding increment in

“e f f _tra f f ic_avg” is recorded as its weight Swt . An in-

dex k(1 ≤ k ≤ H) determines the position in the memory

to update. At the beginning, k is initialized to 1. k is in-

creased whenever a new pair of elements, SCCF,k and Swt,k ,

are inserted. If k > H , k is set to 1. If there is no increment

in “e f f _tra f f ic_avg”, the memory is not updated.

Clients update their crash cost factors after they ana-

lyze the statistics. Before the memory is filled up, each

client updates its crash cost factor using the random selec-

tion method in Eq. (6). Once all H entries in the memory

are filled, with probability p each client generates the next

MCCF as indicated in Eq. (7), and with probability 1 − p

they keep applying the same method in Eq. (6).

MCCF = meanCCF (SCCF) (7)

where meanCCF (SCCF) is the weighted mean of all values

in the successful historical memory of SCCF , and defined

as:

meanCCF (SCCF) =

H∑

k=1

wk · SCCF,k (8)

wk =
Swt,k∑H
i=1 Swt,i

(9)

The complete adaptive procedure is shown in Algo-

rithm 1. The adaptability of the algorithm to dynamic server

capacity is achieved through the following algorithm’s prop-

erties.

First, by using the amount of effective traffic as a metric

to guide the parameter adaptation process, it properly inte-

grates server throughput with server crash probability. Only

more profitable candidate values are retained, which even-

tually optimizes the objective in (2). Moreover, different

server capacities usually need different sets of crash cost fac-

tors to cope with. The algorithm makes clients to compare

the amount of effective traffic only with previous period’s

and keep those successful candidates, which preserves the

trend of changes on the sets of crash cost factors as a result

of varying server capacity. It gives the algorithm more ro-

bust adaptability. Second, at the end of each statistic period,

each client has at least probability 1 − p to explore new op-

tions, which increases the chances for the algorithm to find

new appropriate values after server capacity changes. Third,

by applying the weighted mean operation, the amount of im-

provement is used in order to influence the parameter adap-

tation. The weighted mean is therefore helpful to propagate

high quality candidates under the current server capacity,

which in turn facilitates the progress rate. Fourth, the gen-

eration of actual crash cost factors by a normal distribution

focuses on the primary values while adding diversity to the

algorithm, which further enhances its adaptability.

PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the

adopted regret-based procedure as well as our proposed

Algorithm 1 Success-History Based Parameter Adaptation

Scheme

Input: Game length T , statistics period length Ts , memory size

H , probability p, variance var , cost factor options Cset .

1: Initialize average amount of effective traffic Le f f ,0 to be 0,

initialize memory updating index k = 1.

2: Randomly uniformly select a value MCCF from Cset .

3: Initialize crash cost factor as CCF = randn(MCCF , var).

4: for t = 1, 2, . . . ,T do

5: Make strategies according to the regret-based procedure [2,

3].

6: if it is time to collect statistics and update crash cost factor

then

7: Calculate average amount of effective traffic Le f f ,i in

current statistic period i.

8: if Le f f ,i is greater than Le f f ,i−1 then

9: if memory updating index is H then

10: Reset memory updating index k = 1.

11: end if

12: Store statistic period i’s crash cost factor and corre-

sponding weight Le f f ,i − Le f f ,i−1 into memory lo-

cation k.

13: Update memory updating index k = k + 1.

14: end if

15: if memory is not full then

16: Randomly uniformly select a value MCCF from

Cset .

17: Generate a new crash cost factor as CCF =

randn(MCCF , var).

18: else

19: Randomly uniformly select a value x in [0, 1].

20: if x < p then

21: Calculate MCCF according to Eq. (7).

22: Generate a new crash cost factor as CCF =

randn(MCCF , var).

23: else

24: Randomly uniformly select a value MCCF from

Cset .

25: Generate a new crash cost factor as CCF =

randn(MCCF , var).

26: end if

27: end if

28: end if

29: end for

success-history based adaptive scheme based on parameters

from our control system.

We assume there are 500 clients, they send get() requests

to an FEC to query their interested machine parameters at a

constant rate. The specific FEC we used is equipped with a

MVME2100 VME processor module [12]. The largest pa-

rameter size clients can get from that FEC is an array with

256 integers. All message sizes are generated randomly uni-

formly between 0 and the maximum size4. We run the simu-

lations for 12 hours, and assume the server changes capacity

4 256 ∗ 8 bytes.

every 3 hours5. In the next part, we discuss the effects of

the parameters in our scheme on the system performance. It

also remains an interesting topic for future study to experi-

ment different combinations of those parameters, and verify

their impacts on the system performance.

Effects of the Parameters

Several parameters in the proposed scheme need to be

set that will influence the overall performance in different

ways.

Crash Cost Factor Options Cset Clients use a ran-

dom selection method which chooses values from a prede-

fined cost factor set Cset to update their successful histor-

ical memory. The values in the available set will decide

the overall values in their memory. Generally, a set with

larger values causes more holding requests among clients,

hence reducing the server’s throughput and crash probabil-

ity, and vice versa. According to experiments and history

of the system, in this simulation we use a cost factor set of

increasing values from 1 to 100 with 5 as the step size, i.e.

Cset = {1, 5, 10, · · · , 95, 100}.

Memory Size H and Statistic Period Length Ts As

mentioned above, clients collect statistics about their effec-

tive amount of traffic in every statistic period with length Ts ,

and adaptively update their memory with size H . If Ts and

H are small, then only recent cost factors are used (since

older values are rapidly overwritten as a result of frequent

memory updates and limited memory size), which makes

clients learn the current circumstance faster. However, it

could also make clients short sighted. Since Ts is small, the

information clients gathered from that short period of time

may inaccurately reflect the real situation in the long run.

Moreover, a small memory buffer can only store recent val-

ues that are only suitable for the current short period, some

potentially more profitable values for the long run could get

eliminated. Those factors may result in degraded system

performance. On the other hand, if Ts and H are large, the

system performance could get improved due to more accu-

rate statistic data, but the convergence rate of the algorithm

is expected to slow down because older parameters continue

to have influence for a long time. In this simulation, clients

collect statistics every 5 minutes, and each has a memory

size of 20.

Adaptive Probability p and Normal Variance var

The adaptive probability decides how much likely the algo-

rithm uses the weighted mean method to update server crash

cost for the next period. A large value makes clients to do

adaptive updates frequently, resulting in fast learning to the

current situation. However, due to the small chance of intro-

ducing new individuals, it may cause slow responses among

clients to a server capacity variation. On the other hand, a

5 Since we know the total amount of traffic Lsum from clients, every 3

hours, we randomly pick a fraction between 0 and 1 and multiples it with

Lsum , then the result is the server’s new capacity for the next period.

Table 2: Parameter Settings

Parameter Value

Number of clients 500

Simulation length 12 hours

Stage game length (one time slot) 1 second

Clients message rate 1 msgs/sec

Maximum traffic load 256 ∗ 8 bytes

Server capacity variation period 3 hours

Crash cost factor options 1, 5, 10, . . . , 100

Memory size 20

Statistic period 5 minutes

Adaptive probability 0.9

Normal variance 3

small adaptive probability will impair the adaptive learning

process, make it more dominated by random “noise”. Sim-

ilar conclusions can be drawn for normal variance. In this

simulation, we use an adaptive probability of 0.9 and a nor-

mal variance of 3.

Table 2 summarizes the parameter settings in this simu-

lation.

Simulation Results

In this part, we present the simulation results and demon-

strate that, first, both the adopted regret-based procedure

and the proposed success-history based scheme can effec-

tively manage clients’ behaviors. Moreover, the proposed

scheme can better handle the dynamic server capacity in our

system, resulting in a higher server throughput and lower

crash probability. For simplicity reason, we refer to the

adopted regret-based procedure as RR scheme and the pro-

posed success-history based procedure as SHB scheme.

Figure 4 to 6 show the comparison results of various sys-

tem performances achieved by clients, when there is no reg-

ulation on their behaviors, when they apply the RR scheme,

and when they apply the SHB scheme.

Figure 4 shows the comparison results on effective

amount of traffic routed by clients to the server. As we

can see, first, both the adopted regret-based scheme and

our proposed success-history based scheme achieve a sig-

nificant improvement over the naive case (magenta plot),

where there is no regulation on clients’ behaviors6. Second,

for both cases clients are able to adapt their strategies prop-

erly to the capacity changes so that the server’s extent of us-

age is consistent with the amount of resources it possesses.

Third, with the success-history based scheme (green plot),

6 As shown by the dotted line on top, the actual amount of traffic clients

route to the server will always be greater than the server’s capacity, since

clients tend to send their traffic all the time when there is no regulation,

resulting in an all-0 effective amount of traffic.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Time(s)

0

100000

200000

300000

400000

500000

600000

A
m
o
u
n
t
o
f
T
ra
ff
ic
 (
b
y
te
)

Comparison of Effective Amount of Traffic
no scheme

RR scheme

SHB scheme

server capacity

no scheme

RR scheme

SHB scheme

server capacity

Figure 4: Comparison results of effective amount of traffic

routed by clients.

0 5000 1000015000200002500030000350004000045000
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

S
e
rv
e
r
A
liv

e

(a) Server alive time using the regret-based scheme.

0 5000 1000015000200002500030000350004000045000
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

S
e
rv
e
r
A
liv

e

(b) Server alive time using the success-history based scheme.

Figure 5: Comparison results of server alive time.

clients adapt their strategies better to the capacity changes

compared with the case where they use the regret-based

scheme (blue plot), which demonstrates that our proposed

scheme can more effectively adjust clients’ behaviors so that

the server’ resources are utilized in a more efficient way.

Figure 5 shows the comparison results on the server alive

time during the entire simulation. The downward spikes

represent the server is crashed at the corresponding time

periods. We can see that, in most of the time both cases

achieve a robust server performance, which is a huge im-

provement than the no regulation case where server crashes

all the time (green plots). Furthermore, Fig. 5(b) exhibits a

smaller server crash probability, which proves that the pro-

posed success-history based scheme can better accommo-

0 100 200 300 400 500
Client

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
C
o
u
n
ts
 o
f
"S

e
n
d
"

(a) Counts of “Send” for each client using the regret-based scheme.

0 100 200 300 400 500
Client

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C
o
u
n
ts
 o
f
"S

e
n
d
"

(b) Counts of “Send” for each client using the success-history based

scheme.

Figure 6: Comparison results of counts of “Send”.

date the dynamic server capacity scenario and hence pro-

vide a more reliable server operation.

Figure 6 shows the comparison results of the statistic plot

on the counts of “Send” for every client. The count of

“Send” for a client is the number of times a client chooses

to route its traffic to the server. It implies how many times

a client has been serviced by the server during the entire

time (if the server is not crashed by a heavy traffic). As

shown in the plot, Fig. 6(b) reveals a less intense varia-

tion across the whole population, which indicates that the

proposed success-history based scheme helps to promote a

more equal user experience. From the following chart, we

can see that the standard deviation for the counts of “Send”

among all clients is reduced by 45.5% on average.

Scheme “Send” Count Std.

SHB 6326.699

RR 11599.990

Table 3 summarizes the performance statistics during

each server capacity period and the whole simulation time

from both the cases where the proposed SHB scheme is ap-

plied and where the RR scheme is applied. In periods 2

and 4 where the server has higher capacities, neither algo-

rithm causes any crash. Besides, the SHB scheme helps

clients adapt faster to the capacity changes than the RR

scheme, hence has 18.8% and 22% improvement on the

server throughput, respectively. In periods 1 and 3 where

the server has lower capacities, both schemes utilize the

Table 3: Comparison Results of System Metrics

Scheme

Crash Probability

Period #

1 2 3 4 All

SHB 0.0446 0.0 0.0815 0.0 0.0315

RR 0.0643 0.0 0.1693 0.0 0.0584

Scheme

Effective Traffic Avg. (×105)

Period #

1 2 3 4 All

SHB 1.295 2.700 0.795 1.495 1.569

RR 1.285 2.273 0.778 1.225 1.393

server to its full capacity, and the SHB scheme results in a

30.6% and 52% less crash probability than the RR scheme,

respectively. On average, the SHB scheme reduces server

crash probability by 46%, while at the meantime increas-

ing the server’s throughput by 12.7%. It validates that the

SHB scheme can more effectively accommodate the dy-

namic server capacity circumstance in our system than the

RR scheme.

CONCLUSIONS

In this paper, we apply game theory approach to ana-

lyze a practical performance bottleneck in the RHIC con-

trol system, which is the client-server problem with varying

server capacity. We formulate it as an integer programming

problem and model it as a repeated game. To tackle it, we

adopt a discrete regret-based learning procedure as a base-

line, then propose a success-history based parameter adap-

tation scheme to improve the algorithm to better deal with

the specialty in our system. Simulation results show that

both schemes are efficient on managing clients’ behaviors

and produce a significant system improvement over the case

where there is no activity management. Furthermore, com-

pared with the regret-based scheme the proposed success-

history based scheme can more effectively handle the dy-

namic aspect of the system, and provide a promising server

performance improvement.

ACKNOWLEDGEMENT

The first author would like to thank Robert Olsen for his

expert advice to help the author understand the control sys-

tem. Thanks to John Morris and Peter Zimmerman for their

efforts to set up an experimental machine.

REFERENCES

[1] D. S. Barton et al., “RHIC control system”, in Nuclear Instru-

ments and Methods in Physics Research Section A: Acceler-

ators, Spectrometers, Detectors and Associated Equipment,

March 2003, vol. 499, issues 2-3, pp. 356-371.

[2] S. Hart, A. Mas-Colell, “A Simple Adaptive Procedure Lead-

ing to Correlated Equilibrium”, in Econometrica, 2000, vol.

68, No.5, pp. 1127-1150.

[3] S. Hart, A. Mas-Colell, “A Reinforcement Procedure Lead-

ing to Correlated Equilibrium”, in Economic Essays, 2001,

pp. 181-200.

[4] S. Singh, M. Kearns and Y. Mansour, “Nash Convergence of

Gradient Dynamics in General-Sum Games”, in Uncertainty

in Artificial Intelligence, 2000, pp. 541-548.

[5] M. Bowling, M. Veloso, “Multiagent Learning Using a Vari-

able Learning Rate”, in Artificial Intelligence, 2002, pp. 215-

250.

[6] M. Zinkevich, “Online Convex Programming and General-

ized Infinitesimal Gradient Ascent”, in International Confer-

ence on Machine Learning, 2003.

[7] M. Bowling, “Convergence and No-Regret in Multiagent

Learning”, in Advances in Neural Information Processing

Systems, 2005, pp. 209-216.

[8] D. P. Foster, P. H. Young, “Learning, hypothesis testing, and

Nash equilibrium”, in Games and Economic Behavior, 2003,

pp. 73-96.

[9] D. P. Foster, R. V. Vohra, “Calibrated Learning and Corre-

lated Equilibrium”, in Games and Economic Behavior, 1997,

pp. 40-55.

[10] D. Fudenberg, D. K. Levine, “Conditional Universal Consis-

tency”, in Games and Economic Behavior, 1999, pp. 104-

130.

[11] M. Garey, D. S. Johnson, Computers and Intractability. San

Francisco, USA: W. H. Freeman and Company, 1979.

[12] “MVME2100 Series VME Processor Modules Data Sheet”,

http://www-csr.bessy.de/control/Hard/IOC/ds0055.pdf.

	95405
	BNL-113769-2017-CP
	A success-history based learning procedure to optimize server throughput in large distributed control systems
	Y. Gao
	16th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017)
	Barcelona, Spain
	October 8 – 13, 2017
	Collider-Accelerator Department
	Brookhaven National Laboratory

	Gao2

