Complex Contagion and The Weakness of Long Ties in Social Networks: Revisited

Jie Gao
Stony Brook University
Social Ties and Tie Strength

• **Strong ties**
 – Family members, close friends, colleagues
 – People who regularly spend time together
 – Typically a small number

• **Weak ties**
 – People you know, acquaintances
 – Could be a lot
How to Measure Tie Strength?

• Infer from frequency of interactions
• Facebook
 – **Reciprocal communication**: A, B send msg to each other;
 – **One-way communication**: A sends msg to B;
 – **Maintained relationship**: A follows info of B (click content, visit profile page).
Examples: facebook data

Strong Ties: Triadic closure

• Your friends are likely friends of each other.
 – More opportunities to meet
 – Higher level of trust
 – Incentive

• Lots of triangles, small cliques

• High clustering coefficient
 – $\text{Prob\{}\text{two friends of A being friend of each other}\text{\}}$
 – $\# \text{ edges between n friends} / (n \text{ choose } 2)$
Strong Ties: Homophily

• Friends are alike, they share similar traits
 – Live close; go to same school; have the same hobbies, etc.

• Two forces leading to homophily
 – Selection: people who are alike become friends.
 – Influence: one adopts behaviors from friends.
Strength of Weak Ties

• [Granovetter 1960s] ask “how do you find your new job?”
 – Mostly through personal contacts;
 – Mostly through acquaintances rather than close friends.
Weak Ties: Bridges & Brokers

• Information broker, “structural hole”
• Connects different communities
• Local measure: neighborhood overlap
 – \(N(A) \): set of neighbors of A
 – \(|N(A) \cap N(B)| / |N(A) \cup N(B)| \)
• Global measure: betweenness centrality
 – # shortest paths through a link
Outline

1. Social ties & tie strength
2. Small world phenomenon
3. Network models
4. Complex contagion & weakness of strong ties
5. Our analysis
Small World Phenomenon

• [Milgram 1967] Ask randomly chosen people in Kansas to mail letter to a target person living in MA.
 – Info of target: name, address, occupation.
 – Forward to **ONE** friend known on a first name basis
• 1/3 letters arrived with a median of 6 hops;
• Six degree of separation.
Implication of Small World Experiments

- Network diameter is small!
- Can it be strong ties?
- No – due to triadic closure.
- So it must be the weak ties.

[Granovetter 1973] “Whatever is to be diffused can reach a larger number of people, and traverse a greater social distance, when passed through weak ties rather than strong.”
Outline

1. Social ties & tie strength
2. Small world phenomenon
3. Network models
 - How to generate graphs with prescribed properties?
4. Complex contagion & weakness of strong ties
5. Our analysis
Random Graphs: Erdös-Renyi Model

- $G(n, p)$: a random graph on n vertices; each edge exists with probability p.
- Has small diameter.
- **But, clustering coefficient is small.**
Watts-Strogatz Model

- Start with nodes on a ring
- k-hop neighbors on the ring are connected.
- Randomly “rewire” the endpoint by prob \(p \).

\[p = 0 \quad \text{Increasing randomness} \quad p = 1 \]
Watts-Strogatz Model

- For a suitable range of p, clustering coefficient is large; graph diameter is small.
Re-examine Milgram’s Experiment

• [Milgram 1967]
 – Forward to ONE acquaintance on a first name basis
• Forwarding decisions are purely local.
• No global knowledge is available.
• Watts-Strogatz Model: there exists a short path.
• Question: can we find it using local info?
Kleinberg’s Small World Model

- Add random edges, with a spatial distribution
- When $\alpha=2$, greedy routing $\sim O(\log^2 n)$ hops

The Small-World Phenomenon: An Algorithmic Perspective, STOC’00.
Kleinberg’s Model

- \(\text{Prob}\{p \rightarrow q\} = \frac{1}{\pi \ln n} \cdot \frac{1}{|pq|^2} \)
- \# \text{ nodes inside a ring of radius } [2^i, 2^{i+1}] = 3\pi 2^{2i}
- \text{Prob}\{\text{Link to ring } i\} \approx \Theta(1/ \ln n)
- \text{Equal prob of choosing a link in each annulus}
Why Greedy Routing Works?

• Path is distance decreasing & loop-free
• With expected $O(\log n)$ steps, the message gets to within 2^i of t.
• Total # steps: $O(\log^2 n)$
An Example

Milgram: “The geographic movement of the [message] from Nebraska to Massachusetts is striking. There is a progressive closing in on the target area as each new person is added to the chain”
Magic Exponent

- Spatial probability $\sim 1/d^\alpha$
- Greedy routing with short paths: $\alpha=2$.
- For α too big, most random links are too short.
- For α too small, links are too random and lack of direction.
Outline

1. Social ties & tie strength
2. Small world phenomenon
3. Network models
4. Complex contagion & weakness of strong ties
5. Our analysis
Our Problem: Contagion in Social Networks

• Simple contagion
 – Spreads through a single contact
 – Virus infection, rumor, information

• Complex contagion
 – Needs multiple confirmations/contacts
 – Pricey technology innovations, social behavior changes, immigration [CKM66, MM64].
Speed of Diffusion

• Simple contagion
 – Spreads through a **single** contact
 – **Fast**, speed \approx **diameter**
 – Strength of weak ties.

• Complex contagion
 – Needs **multiple** confirmations/contacts
 – Need **wide** bridges.
 – **Slow? How slow?**
“The Weakness of Long Ties”

• Watts-Strogatz Model
• Requiring two active neighbors to be affected
 1. require a substantially large number of random ties to even create one single wide bridge;
 2. Random rewiring erodes the capability of spreading a complex contagion.

“How is it possible that complex contagions are able to spread through real social networks?”

Our Results: (I)

- On Kleinberg model, complex contagion can spread in speed $O(\text{polylog} n)$.
- The distribution of weak ties are important.
Network Model

• Network model
 – 2D Grid of n nodes wrapped as a torus;
 – Strong ties: nodes within Manhattan dist of 2.
 – Weak ties: each choosing 2 additional random edges with Prob\{p\rightarrow q\} = \Theta(1/\ln n) \cdot 1/|pq|^2

• Initial seeds
 – A pair of neighboring active nodes
Model of Diffusion

• Complex contagion requiring two active neighbors to be affected
• Proceed in rounds.
• A node with \geq two active neighbors in round i become active in round $i+1$.
• Goal: bound # rounds to cover the whole network.
3 Types of Diffusion

- **Local diffusion**
 - Through strong ties
 - Slow, local
 - Each round: nodes on periphery are activated
3 Types of Diffusion

• **Local diffusion**
 – Through strong ties
 – Slow, local

• **Random diffusion**
 – Through weak ties
 – Isolated active nodes.
3 Types of Diffusion

• **Local diffusion**
 – Through strong ties
 – Slow, local

• **Random diffusion**
 – Through weak ties
 – Isolated active nodes.

• **Generating new seeds**
 – Propagation speed doubles
Observations

• Set of active nodes S_i monotonically increases
• Edges that activate u can be
 – Weak ties built by u.
 – Weak ties built by other nodes to u.
 – Strong ties of u.
Observations

• Set of active nodes S_i monotonically increases
• Edges that activate u can be
 – Weak ties built by u. ← random diffusion
 – Weak ties built by other nodes to u.
 – Strong ties of u. ← local diffusion

Ignored – we get an upper bound.
Bound Rate of Diffusion: Two Phases

• Phase 1: using local diffusion, after $\log^{2.5}n$ rounds, a disk of radius $R = \log^{2.5}n$ is activated.

• Phase 2: After a disk of radius $R \geq \log^{2.5}n$ is activated, # rounds to cover a disk of radius $2R$ is $\log^{2.5}n$.

• Total # rounds = $O(\log^{3.5}n)$.
Suppose that a disk of radius $R \geq \log^{2.5} n$ is activated.

Claim: # rounds to cover a disk of radius $2R = O(\log^{2.5} n)$
Proof of the Claim

• Suppose that a disk of radius R is activated.

Consider neighbors q, q':
\[
\text{Prob}\{q, q' \text{ is new seed}\} = \text{Prob}\{q \text{ activated}\} \cdot \text{Prob}\{q' \text{ activated}\} \geq \Theta(1/\log^4 n)
\]
Proof of the Claim

• Suppose that a disk of radius R is activated.

The annulus has area $\Theta(R^2)$.

The annulus can be covered by $\frac{R^2}{\log^5 n}$ disks (bins) of radius $\log^{2.5} n$ each.
Proof of the Claim

• Suppose that a disk of radius R is activated.

seeds generated in the annulus is $\Theta(\frac{R^2}{\log^4 n})$, thrown into $\frac{R^2}{\log^5 n}$ bins.

W.h.p. each disk of radius $\log^{2.5} n$ has one seed.

After $\leq \log^{2.5} n$ rounds, the annulus is filled up. QED.
More Results

• Newman-Watts Model
• Kleinberg’s Hierarchical Model
• Preferential Attachment Model
Newman-Watts Model

• Similar to Watts-Strogatz model
 – Each node has 2 additional edges to randomly chosen nodes.

• What we show
 – # rounds is $\Omega(\sqrt{n}/ \log n)$.
 – Unable to generate new seeds
Proof Sketch

• Consider the interval F of length $\sqrt{n}/ \log n$ centered at the seeds

• Prob\{any node having 2 weak ties to F\} is small

• Diffusion within F is local & slow.
Kleinberg’s Hierarchical Model

- Kleinberg’s hierarchical model
 - Hierarchy: b-ary tree;
 - \(h(u, v) \): height of LCA of \(u, v \)
 - \(\text{Prob}\{uv\} \approx b^{h(u, v)}/\log n \)
 - Each node has \(j \) random edges

- What we show
 - \(j=\Theta(\log^2 n) \): # rounds = \(O(\log n) \)
Generalization

• K-complex contagion
• Different model parameters: # strong/weak ties
• Directed graphs
 – E.g. Twitter network
Recap

• Newman-Watts vs. Kleinberg’s models.
 – Distribution of weak ties: uniform random vs. spatial distribution
 – Speed of diffusion: slow vs. fast.

• Simple contagion vs. complex for Newman-Watts
 – Fast (\(~\text{diameter, polylog}\)) vs. slow (poly)
Ongoing Work

• Graphs with power law degree distribution
 – Preferential attachment model: $O(\log n)$.
• Complex contagion in real data sets
• Different threshold for different users
• How to choose initial seeds
 – NP-hard [KKT’03].
Questions & Comments

• Joint work with my students Golnaz Ghasemiesfeh, Roozbeh Ebrahimi @ Stony Brook