Multi-dimensional Data and Spatial Range Query in Sensor Networks
Orthogonal range search

- Find all the sensors inside a rectangular box.
- Find all the sensors with temperature readings above 70F.
Multi-dimensional data

• Monitor environments.
• Multiple sensors, multiple attributes.
• Query might be multi-dimensional as well.

List all sensors with temperature value 70-80 and light level 10-20.
Sensor network as a database

• Need an indexing scheme.
• …. In addition, a storage scheme.

• First we look at range query in a centralized setting.
1D range search

- Find the data inside a query interval \([x, x']\)
- 1D range tree: a balanced partitioning tree on a sorted list.
 - Each leaf stores an input value.
 - Each internal node stores the splitting value.
1D range search

- Find the data inside a query interval \([x, x']\)
 - Start from the root and descend the tree to find the interval where \(x\) and \(x'\) stays.
 - Include all the leaves in the sub-trees between the two traversing paths from the root.

- Example \([9, 33]\).
1D range search

- Storage: $n + n/2 + n/4 + \ldots + 1 = 2n = O(n)$
- Height of the tree: $O(\log n)$
- Query time: $O(\log n + k)$, where k is the output size.
Kd-tree

- A recursive space partitioning tree.
 - Partition along x and y axis in an alternating fashion.
 - Each internal node stores the splitting node along x (or y).
Kd-tree

- **2D query** $R=\left[x, x' \right] \times \left[y, y' \right]$.
 - Check with each internal node whether the cutting line intersects R.
 - If yes, recurse on both.
 - If no, only recurse on the half plane that intersects R.
Kd-tree

- Storage: $O(n)$
- Height of the tree: $O(\log n)$
- Query cost: $O(n^{1/2}+k)$, where k is the output size.
Kd-tree

- Query cost? $O(n^{1/2} + k)$, where k is the output size.
- Intuition: we visit 2 types of nodes:
 - $r(v)$ is fully contained in R (this is counted in k).
 - $r(v)$ is not fully contained in R – intersected by boundaries of R.
- Thus we bound the number of nodes intersected by a vertical line, denoted by $Q(n)$.
Kd-tree

- Thus we bound the number of nodes intersected by a vertical line, denoted by $Q(n)$.
- Look at the 4 grandchildren, the line intersects at most 2 of them.
- Thus $Q(n) = 2Q(n/4) + O(1) = O(n^{1/2})$.
- The query cost is $O(k) + 4Q(n) = O(n^{1/2} + k)$.

![Diagram of a Kd-tree](image)
Kd-tree in \mathbb{R}^d

- High dimensional kd-tree.
- If the dimension is d, we can build a kd-tree with $O(n)$ size, and query cost $O(n^{1-1/d}+k)$, where k is the output size.

- Query cost is too high.
- We can get it down if we sacrifice on space.

- Range tree: $O(n \log^{d-1} n)$ space and $O(\log^d n + k)$ query cost.
Range tree

1. Recall the 1D range tree.
2. 2D range tree:
 - First build a 1D range tree on x-coordinates
 - For each internal node, take all the nodes in its subtree, build a 1D range tree on y-coordinates.

Total space: \(O(n \log n)\)
Range tree

- **Query:**
 - First search the 1D range tree on the x-coordinates
 - For each node on the traversal path, search on the y-coordinates.
- **Query cost:** $O(\log^2 n+k)$
Quad-tree

- A recursive space partitioning tree.
- The depth might be as high as $\Omega(n)$.
- Worst-case query cost is not bounded. For uniform sensor distribution the depth is $O(\log n)$.
Indexing in a sensor network?

• Where is the index stored?
• How to traverse the tree?

• 1st approach: map a quad-tree to the sensor field.
• 2nd approach: distributed storage and indexing.
DIMENSIONS: summaries

- Use a quad-tree partitioning.

Spatial Summarization
Compressed data from Level 1 is decompressed, and re-compressed jointly with higher compression factor. This jointly compressed data is forwarded up the hierarchy.

Temporal Summarization

Coarsest Resolution (Level 2)

Finer Resolution (Level 1)

Finest Resolution (Raw Data) (Level 0)

Time-series summaries are communicated from level 0 to 1.
DIMENSIONS: query

• Top-down query processing
Issues with DIMENSIONs

- Uneven load: nodes holding coarse data are visited more often.
- Root becomes traffic bottleneck.
Distributed index for multi-dimensional data

- Construct the distributed indices.

- Locality preserving geographic hash: events with close attributes values are likely to be stored close.

- Kd-tree partitioning.
Zones

- The sensor network is partitioned to equal (geographical) size regions along x and y directions alternatively.
- Each cell is given a zone code – left (bottom) is 0, right (top) is 1.
Zone-tree

- Each node \(x \) owns a zone – the largest one that contains \(x \) only.
- If a zone is empty, it is owned by the backup node – the rightmost zone in the left sibling tree, or the leftmost zone in the right sibling tree.
Data-centric hashing

- Hash a multi-dimensional event to a zone.
- A multi-dimensional event \(\{A_i\}, i=1, \ldots, m, A_i \in [0, 1] \).
- Suppose the zone code has \(k \) bits, \(k \) is a multiple of \(m \).
- For \(i=1 \) to \(m \), if \(A_i < 0.5 \), the \(i \)-th bit is assigned 0, otherwise 1.
- For \(i=m+1 \) to \(2m \), if \(A_{i-m} < 0.25 \) or \(0.5 \leq A_{i-m} < 0.75 \), the \(i \)-th bit is assigned 0, otherwise 1.

For example: \([0.3, 0.8]\) is stored at 5-bit zone code 01110.

The event is hashed to the node that owns the zone.
Data-centric routing

- The encoding node (where the event E is generated) may not know the # bits of the hashed zone.
- Node A encodes the node by using the length of its own code and generates the zone code c(E).
- Node A routes by GPSR to the centroid of the zone c(E).
- Intermediate nodes may refine code c(E).
- If the current node B finds a match of its own code and the event code c(E), then B stores the event.
Routing queries

- Looking for a point event is the same as routing an event.
- A range query is routed to a zone corresponding to the entire range, and then progressively split into smaller sub-queries.
Event routing helps resolving undecided zones

- How does each node know its own zone code?
- Assume that every node knows the outer boundary.
- A node checks its 1-hop neighbors and decides on the largest zone that only contains itself.
- This may not fully resolve all the boundaries.
Event routing helps resolving undecided zones

- A claims the ownership of event E.
- But A is not sure of its upper boundary. So A sends out the event E by GPSR (face routing) with a destination near A.
- Node B that receives this message shrink its zone.
DIM summary

- Data storage explores query locality. Range query can be supported.
- Events are not necessarily stored close to where they are generated.
- Each event costs about $O(n^{1/2})$ communication cost.
- When data is highly skewed, most data are handled by a small number of sensors which become bottleneck.
Major problem: data storage

• Similar data (in attribute space) should be stored close.

• Data should be stored close to where they were generated. --- location is an important attribute of the data.

• The two considerations may be in conflict.
Fractional cascading in sensor network

- Geographical range query \((q, R, T)\): \(q\) is where the query is generated, \(R\) is the rectangular range, \(T\) is a temperature range or other aggregates.
- Aggregates about region \(R\) should be returned to query node.
Storage scheme

- The aggregated value of a quad node is stored in all the sensors in the parent subtree.
- Each node stores $O(\log n)$ data.
- Construction: bottom up. Cost $O(n \log n)$.
Query scheme

• The query region R is partitioned into canonical regions – the maximal quads completely inside R.
• Use a spiral routing to visit a sensor in each canonical regions.
• Recurse on each canonical piece.
Query cost

- The query cost for \((q, R, [T, \infty))\) is \(O(D + \sqrt{Ak} + P \log P)\)
- \(A\) is the area, \(P\) is the perimeter, \(k\) is the output size.

- Cost 1: spiral visit: \(O(P\log P)\)
Query cost

- Cost 2: the communication cost of recursion in each canonical piece with side length $L(u)$ and output $k(u)$ is $O(L(u)\sqrt{k(u)})$.
- The total recursion cost is $\sum_{u \in C} L(u)\sqrt{k(u)}$.

$$
\sum_{u \in C} L(u)\sqrt{k(u)} \leq \sqrt{\sum_{u \in C} L(u)^2 \sum_{u \in C} (\sqrt{k(u)})^2} = \sqrt{Ak}.
$$
Summary

• Store similar data close
 – Work in the space of the data field
 – Bring all similar data together
 – May need to travel far

• Store data nearby
 – Respect space locality for geographical range query.
 – Communication cost is low.
 – Range search in data space is challenging.

• Can you get the best of both worlds?
The remaining classes

- Network boundary detection
- Coding theory with applications in routing and storage.
- Sensor selection.
- Synchronization.
- Gossip algorithms.
- Percolation theory and connectivity.
- Reminder on class project: you can email me for any questions/ideas and I’ll try to help.
Agenda

• Thursday lecture by Rik Sarkar on boundary detection algorithms
• Next week: spring break, no class.
• April 14th, invited speaker in CS2311.
• April 16th, lecture
• April 21st, student presentation: Nikhil Joshi and Michele Albano