Data Collection and Aggregation
Q-digest

- Input data: frequency of data value \(\{f_1, f_2, \ldots, f_\sigma\} \).

- Compress the data:
 - detailed information concerning frequent data are preserved;
 - less frequently occurring values are lumped into larger buckets resulting in information loss.

- Buckets: the nodes in a binary partition of the range \([1, \sigma]\). Each bucket \(v\) has range \([v.\text{min}, v.\text{max}]\).

- Only store non-zero buckets.
Example

Input data bucketed

Q-digest

Information loss
Q-digest properties

- Store values in buckets.
 1. $\text{Count}(v) \leq \frac{n}{k}$. (except leaf)
 - Control information loss.
 2. $\text{Count}(v) + \text{Count}(p) + \text{Count}(s) > \frac{n}{k}$. (except root)
 - Ensure sufficient compression.
 - K: compression parameter.
Construct a q-digest

- Each sensor constructs a q-digest based on its value.
- Check the digest property bottom up: two “small” children’s count are added up and moved to the parent.
Merging two q-digests

- Merge q-digests from two children
- Add up the values in buckets
- Re-evaluate the digest property bottom up.

Information loss: t undercounts since some of its value appears on ancestors.
Space complexity

Claim: A q-digest with compression parameter k has at most 3k buckets.

- By property 2, for all buckets v in Q,
 - $\sum_{v \in Q} [\text{Count}(v) + \text{Count}(p) + \text{Count}(s)] > |Q| \cdot n/k$.
 - $\sum_{v \in Q} [\text{Count}(v) + \text{Count}(p) + \text{Count}(s)] \leq 3 \sum_{v \in Q} \text{Count}(v) = 3n$.
 - $|Q| < 3k$.
Error bound

Claim: Any value that should be counted in \(v \) can be present in one of the ancestors.

1. \(\text{Count}(v) \) has max error \(\log \sigma \cdot n/k \).
 - \(\text{Error}(v) \leq \sum_{\text{ancestor } p} \text{Count}(p) \leq \sum_{\text{ancestor } p} n/k \leq \log \sigma \cdot n/k \).

2. MERGE maintains the same relative error.
 - \(\text{Error}(v) \leq \sum_{i} \text{Error}(v_i) \leq \sum_{i} \log \sigma \cdot n_i/k \leq \log \sigma \cdot n/k \).
Median and quantile query

- Given \(q \in (0, 1) \), find the value whose rank is \(qn \).
- Relative error \(\varepsilon = |r - qn|/n \), where \(r \) is the true rank.
- Post-order traversal on \(Q \), sum the counts of all nodes visited before a node \(v \), which is \(\leq \) # of values less than \(v\.max \). Report it when it is first time larger than \(qn \).
- Error bound: \(\varepsilon = \log \sigma / k \).
Other queries

- **Inverse quantile**: given a value, determine its rank.
 - Traverse the tree in post-order, report the sum of counts v for which $x > v$.max, which is within $[\text{rank}(x), \text{rank}(x) + \varepsilon n]$

- **Range query**: find # values in range $[l, h]$.
 - Perform two inverse quantile queries and take the difference. Error bound is $2\varepsilon n$.

- **Frequent items**: given $s \in (0, 1)$, find all values reported by more than sn sensors.
 - Count the leaf buckets whose counts are more than $(s - \varepsilon)n$.
 - Small false positive: values with count between $(s - \varepsilon)n$ and sn may also be reported as frequent.
Simulation setup

- A typical aggregation tree (BFS tree) on 40 nodes in a 200 by 200 area. In the simulation they use 4000~8000 nodes.
Simulation setup

- Random data;
- Correlated data: 3D elevation value from Death Valley.
Histogram v.s. q-digest

- Comparison of histogram and q-digest.

![Histogram vs q-digest comparison graph](image)
Tradeoff between error and msg size
Saving on message size

![Graph showing the relationship between the maximum size of a message and the number of sensors, with lines for list-correlated, list-random, q-digest size-400, and Naïve solution.]
2nd problem: Aggregation tree in practice

• Tree is a fragile structure.
 – If a link fails, the data from the entire subtree is lost.

• Fix #1: use a DAG instead of a tree.
 – Send $1/k$ data to each of the k upstream nodes (parents).
 – A link failure lost $1/k$ data
Aggregation tree in practice

(a) Nodes counted in TAG (b) Computing Avg with TAG

- tree
- DAG
- True value
Fundamental problem

- Aggregation and routing are coupled
- Improve routing robustness by multi-path routing?
 - Same data might be delivered multiple times.
 - Message over-counting.
- Decouple routing & aggregation
 - Work on the robustness of each separately
Order and duplicate insensitive (ODI) synopsis

- Aggregated value is insensitive to the sequence or duplication of input data.
- Small-sizes digests such that any particular sensor reading is accounted for only once.
 - Example: MIN, MAX.
 - Challenge: how about COUNT, SUM?
Aggregation framework

- Solution for robustness aggregation:
 - Robust routing (e.g., multi-hop) + ODI synopsis.

- Leaf nodes: **Synopsis generation**: \(SG(\cdot)\).

- Internal nodes: **Synopsis fusion**: \(SF(\cdot)\) takes two synopsis and generate a new synopsis of the union of input data.

- Root node: **Synopsis evaluation**: \(SE(\cdot)\) translates the synopsis to the final answer.
An easy example: ODI synopsis for MAX/MIN

- **Synopsis generation**: SG(·).
 - Output the value itself.
- **Synopsis fusion**: SF(·)
 - Take the MAX/MIN of the two input values.
- **Synopsis evaluation**: SE(·).
 - Output the synopsis.
Three questions

• What do we mean by ODI, rigorously?
• Robust routing + ODI
• How to design ODI synopsis?
 – COUNT
 – SUM
 – Sampling
 – Most popular k items
 – Set membership – Bloom filter
Definition of ODI correctness

- A synopsis diffusion algorithm is ODI-correct if `SF()` and `SG()` are order and duplicate insensitive functions.
- Or, if for any aggregation DAG, the resulting synopsis is identical to the synopsis produced by the canonical left-deep tree.
- The final result is independent of the underlying routing topology.
 - Any evaluation order.
 - Any data duplication.
Definition of ODI correctness

(a) Aggregation DAG
(b) Canonical left-deep tree

Connection to streaming model: data item comes 1 by 1.
Test for ODI correctness

1. SG() preserves duplicates: if two readings are duplicates (e.g., two nodes with same temperature readings), then the same synopsis is generated.
2. SF() is commutative.
3. SF() is associative.
4. SF() is same-synopsis idempotent, SF(s, s)=s.

Theorem: The above properties are sufficient and necessary properties for ODI-correctness.
Proof idea: transfer an aggregation DAG to a left-deep tree with the same output by using these properties.
Proof of ODI correctness

1. Start from the DAG. Duplicate a node with out-degree k to k nodes, each with out degree 1. ← duplicates preserving.
Proof of ODI correctness

2. Re-order the leaf nodes by the increasing value of the synopsis. \(\Leftarrow\) Commutative.
Proof of ODI correctness

3. Re-organize the tree s.t. adjacent leaves with the same value are input to a SF function.
 \[\text{Associative.} \]
Proof of ODI correctness

4. Replace SF(s, s) by s. \(\Rightarrow\) same-synopsis idempotent.
Proof of ODI correctness

5. Re-order the leaf nodes by the increasing canonical order. \(\Rightarrow\) Commutative.

6. QED.
Design ODI synopsis

• Recall that MAX/MIN are ODI.
• Translate all the other aggregates (COUNT, SUM, etc.) by using MAX.
• Let’s first do COUNT.
• Idea: use probabilistic counting.
• Counting distinct element in a multi-set. (Flajolet and Martin 1985).
Counting distinct elements

- Each sensor generates a sensor reading. Count the total number of different readings.
 - Each element chooses a random number \(i \in [1, k] \).
 - \(\Pr\{CT(x)=i\} = 2^{-i} \), for \(1 \leq i \leq k-1 \). \(\Pr\{CT(x)=k\} = 2^{-(k-1)} \).
- Use a pseudo-random generator so that \(CT(x) \) is a hash function (deterministic).

\[
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \ldots
\end{array}
\]
Counting distinct elements

- Synopsis: a bit vector of length $k \geq \log n$.
- $SG()$: output a bit vector s of length k with $CT(k)$’s bit set.
- $SF()$: bit-wise boolean OR of input s and s'.
- $SE()$: if i is the lowest index that is still 0, output $2^{i-1}/0.77351$.
- Intuition: i-th position will be 1 if there are 2^i nodes, each trying to set it with probability $1/2^i$.

![Bit vector example]

1 0 0 0 0 0 0
OR
0 1 0 0 0 0 0
↓
1 1 0 0 0 0 0
i=3
Distinct value counter analysis

- Lemma: For $i \leq \log n - 2 \log \log n$, $FM[i] = 1$ with high probability (asymptotically close to 1). For $i \geq 3/2 \log n + \delta$, with $\delta \geq 0$, $FM[i] = 0$ with high probability.

- The expected value of the first zero is $\log(0.7753n) + P(\log n) + o(1)$, where $P(u)$ is a periodic function of u with period 1 and amplitude bounded by 10^{-5}.

- The error bound (depending on variance) can be improved by using multiple copies or stochastic averaging.
Counting distinct elements

- Check the ODI-correctness:
 - Duplication: by the hash function. The same reading x generates the same value $CT(x)$.
 - Boolean OR is commutative, associative, same-synopsis idempotent.

- Total storage: $O(\log n)$ bits.
Robust routing + ODI

• Use Directed Acyclic Graph (DAG) to replace tree.
• Rings overlay:
 – Query distribution: nodes in ring R_j are j hops from q.
 – Query aggregation: node in ring R_j wakes up in its allocated time slot and receives message from nodes in R_{j+1}.
Rings and adaptive rings

- Adaptive rings: cope with network dynamics, node deletions and insertions, etc.
- Each node on ring j monitor the success rate of its parents on ring j-1.
- If the success rate is low, the node connects to other node whose transmission is overheard a lot.
- Nodes at ring 1 may transmit multiple times to ensure robustness.
Implicit acknowledgement

• **Explicit acknowledgement:**
 – 3-way handshake.
 – Used for wired networks.

• **Implicit acknowledgement:**
 – Used on ad hoc wireless networks.
 – Node u sending to v snoops the subsequent broadcast from v to see if v indeed forwards the message for u.
 – Explores broadcast property, saves energy.

• **With aggregation this is problematic.**
 – Say u sends value x to v, and subsequently hears value z.
 – U does not know whether or not x is incorporated into z.
Implicit acknowledgement

- ODI-synopsis enables efficient implicit acknowledgement.
 - u sends to v synopsis x.
 - Afterwards u hears that v transmitting synopsis z.
 - u verifies whether SF(x, z)=z ?
Error of approximate answers

- Two sources of errors:
 - Algorithmic error: due to randomization and approximation.
 - Communication error: the fraction of sensor readings not accounted for in the final answer.
- Algorithmic error depends on the choice of algorithm and thus relatively controllable.
- Communication error depends on the network dynamics and robustness of routing algorithms.
Simulation results

(a) Rings

(b) Adaptive Rings

Unaccounted node
Simulation results

<table>
<thead>
<tr>
<th>Scheme</th>
<th>% nodes</th>
<th>Error (Uniform)</th>
<th>Error (Skewed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG</td>
<td>< 15%</td>
<td>0.87</td>
<td>0.99</td>
</tr>
<tr>
<td>TAG2</td>
<td>N/A</td>
<td>0.85</td>
<td>0.98</td>
</tr>
<tr>
<td>RINGS</td>
<td>65%</td>
<td>0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>ADAPT. RINGS</td>
<td>95%</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>FLOOD</td>
<td>≈ 100%</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Relative root mean square error
More ODI synopsis

- Distinct values
- SUM
- Second moment
- Uniform sample
- Most popular items
- Set membership --- Bloom Filter
• Naïve approach: for an item \(x \) with value \(c \) times, make \(c \) distinct copies \((x, j), j=1, \ldots, c\). Now use the distinct count algorithm.
• When \(c \) is large, we set the bits as if we had performed \(c \) successive insertions to the FM sketch.
• First set the first \(\delta = \log c - \log \log c \) bits to 1.
• Those who reached \(\delta \) follow a binomial distribution: each item reaches \(\delta \) with prob \(2^{-\delta} \).
• Explicitly insert those that reached bit \(\delta \) by coin flipping.
• Powerful building block.
Second moment

- Kth moment $\mu_k = \sum x_i^k$, x_i is the number of sensor readings (frequency) of value i.
 - μ_0 is the number of distinct elements.
 - μ_1 is the sum.
 - μ_2 is the square of L_2 norm (variance, skewness of the data).

- The sketch algorithm for frequency moments can be turned into an ODI easily by using ODI-sum.

Second moment

- Random hash \(h(x) : \{0, 1, \ldots, N-1\} \rightarrow \{-1, 1\} \)
- Define \(z_i = h(i) \)
- Maintain \(X = \sum_i x_i z_i \)
- \(\mathbb{E}(X^2) = \mathbb{E}(\sum_i x_i z_i)^2 = \mathbb{E}(\sum_i x_i^2 z_i^2) + \mathbb{E}(\sum_{i,j} x_i x_j z_i z_j) \).
- Choose the hash function to be pairwise independent: \(\Pr\{h(i)=a, h(j)=b\} = \frac{1}{4} \).
- \(\mathbb{E}(z_i^2) = 1, \mathbb{E}(z_i z_j) = \mathbb{E}(z_i) \mathbb{E}(z_j) = 0. \)
- Now \(\mathbb{E}(X^2) = \sum_i x_i^2 \).

- ODI: Each sensor generates \(x_i z_i \), then use ODI-sum.