Landmark-based routing
Landmark-based routing

[Fonseca05] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee and David Culler, Scott Shenker, Ion Stoica, Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets, NSDI’05. Landmark-based routing scheme.

Landmark-based schemes

- k nodes are selected as landmarks (beacons) that flood the network. Each node records hop distances to these landmarks.
 - estimate pair-wise distances,
 - point-to-point routing.

- Pros:
 - simplicity,
 - location-free,
 - independent of dimensionality (works for 3D networks).
 - No unit disk graph assumption
Use landmarks to estimate pair-wise distances

- Triangulation: estimate via triangle inequality
 - \((u,v),\) beacon \(b: |d(u,b)-d(v,b)| \leq d(u,v) \leq d(u,b)+d(v,b)\)
 - lower bound: \(d^-(u,v) = \max_b |d(u,b)-d(v,b)|\)
 - upper bound: \(d^+(u,v) = \min_b d(u,b)+d(v,b)\)
- Internet setting, IDMaps [Francis+ ’01], etc

- magic: relative error <1 on 90% node pairs
 - 900 random nodes, 15 beacons
 - relative error\((x,y) = |x-y| / \min(x,y)\)
A simple case

- With $O(1)$ random landmarks, $d^+(u,v) \leq 3d(u,v)$ for all but ε fraction of pairs with prob $1-\gamma$.
 - At least one beacon inside $B(u)$.
 - For any point v outside $B(u)$,
 - $d(v,b) \leq d(u,b)+d(u,v) \leq 2d(u,v)$
 - $d^+(u,v) \leq d(u,b)+d(v,b) \leq 3d(u,v)$