Tackle problem I:
Find a planar spanner
Find a good subgraph

- Goal: a **planar spanner** such that the shortest path is at most α times the shortest path in the unit disk graph.
 - **Euclidean spanner**: The shortest path length is measured in total Euclidean length.
 - **Hop spanner**: The shortest path length is measured in hop count.
- α: spanning ratio.
 - Euclidean spanning ratio $\geq \sqrt{2}$
 - Hop spanning ratio ≥ 2.
- Let’s first focus on Euclidean spanner.
Delaunay triangulation is an Euclidean spanner

- DT is a 2.42-spanner of the Euclidean distance.
- For any two nodes uv, the Euclidean length of the shortest path in DT is at most 2.42 times $|uv|$.
Restricted Delaunay graph

- Keep all the Delaunay edges no longer than 1.
- Claim: RDG is a 2.42-spanner (in total Euclidean length) of the UDG.
- Proof sketch: If an edge in UDG is deleted in RDG, then it’s replaced by a path with length at most 2.42 longer.
Construction of RDG

- Easy to compute a superset of RDG: Each node computes a local Delaunay of its 1-hop neighbors.
 - A global Delaunay edge is always a local Delaunay edge, due to the empty-circle property.
 - A local Delaunay may not be a global Delaunay edges.

- What if the superset has crossing edges?
Crossing Lemma

- **Crossing lemma**: if two edges cross in a UDG, then one node has edges to the three other nodes in UDG.

\[|uw| \leq |wpl| + |upl| \]
\[|vx| \leq |vpl| + |xpl| \]
\[\Rightarrow |wul| + |vx| \leq |wx| + |ux| \leq 2 \]

Also, \[|wvl| + |uxl| \leq |wx| + |ux| \leq 2 \]

There must be 2 edges on the quad adjacent to the same node.
Detect crossings between local delaunay edges

• By the crossing Lemma: if two edges cross in a UDG, one of them has 3 nodes in its neighborhood and can tell which one is not Delaunay.

• Neighbors exchange their local DTs to resolve inconsistency.
 • A node tells its 1-hop neighbors the non-Delaunay edges in its local graph.
 • A node receiving a “forbidden” edge will delete it from its local graph.

• Completely distributed and local.
RDG construction

- 1-hop information exchange is sufficient.
 - Planar graph;
 - All the short Delaunay edges are included.
 - We may have some planar non-Delaunay edges but that does not hurt spanning property.

![Diagram](image)

a’s local Delaunay

b’s local Delaunay
Overview of geographical routing

- Routing with geographical location information.
 - Greedy forwarding.
 - If stuck, do face routing on a planar sub-graph.
Find a hop spanner

- Restricted Delaunay graph is not a hop spanner.
 - Take \(n \) nodes uniformly in a segment of length 1. The hop count can be as large as \(n-1 \).
- Reduce the density of the sensors.
 - Use clustering to reduce density.
 - Compute RDG on the subset to get a hop spanner.
 - Clustering also reduce interference and enables efficient resource reuse such as bandwidth.
Reduce node density

- Find a subset of nodes, called clusterheads
 - Each node is directly connected to at least 1 clusterhead.
 - No two clusterheads are connected.
- Use a greedy algorithm. Pick a node as a clusterhead, remove all the 1-hop neighbors, continue.
- Constant density: \(\leq 6 \) clusterheads in any unit disk.
 - The angle spanned by two clusterheads is at least \(\pi/3 \).
Connect clusterheads by gateways

- For two clusterheads, if their clients have an edge, then we pick one pair as **gateway** nodes.

- Notice that clusterheads x, y are within 3 hops to have a pair of gateways.

- There are constant clusterheads and gateways inside any unit disk.
Path on clusterheads and gateways

- For two nodes u, v that are k hops away, there is a path through clusterheads and gateways with at most 3k+2 hops.

- Construct RDG on clusterheads and gateways, which have constant bounded density.
Select clusterheads

Clusterheads select gateways

RDG on clusterheads & gateways
Restricted Delaunay graph

• Claim: (RDG on clusterheads and gateways + edges from clients to clusterheads) is a constant hop spanner of the original UDG.

• Proof sketch:
 – The shortest path P in the unit disk graph has k hops.
 – Through clusterheads and gateways \exists a path Q with $\leq 3k+2$ hops.
 – Q’s total Euclidean length is $\leq 3k+2$.
 – The shortest path on the RDG, H, has Euclidean length $\leq 2.42 \times (3k+2)$.
 – By constant density property a region with width 1 and length $2.42 \times (3k+2)$ has $O(k)$ nodes inside. So # hops of H is $O(k)$.
 – This concludes the hop spanner property.
Restricted Delaunay graph

RNG

RDG

Clusterhead
Gateway
Restricted Delaunay graph

RNG

RDG
Tackle problem II:
Improve face routing to find a short path &
Geographic routing in practice
Overview

• How to find a planar subgraph?
 – Use distributed construction: relative neighborhood graph, Gabriel graph, etc.
 – A planar subgraph that contains a short path: restricted Delaunay graph: short Delaunay edges.

• Big problem: how is the performance of geo-routing?
 – Can we always find a short path?
Bad news: Lower bound of localized routing

- Any deterministic or randomized localized routing algorithm takes a path of length $\Omega(k^2)$, if the optimal path has length k.

- The adversary decides where the chain w_t is. Since we store no information on nodes, in the worst case we have to visit about $\Omega(k)$ chains and pay a cost of $\Omega(k^2)$.
Good news: greedy forwarding is optimal

- If greedy routing gets to the destination, then the path length is at most $O(k^2)$, if the optimal path has length k.

- $|uv|$ is at most k. On the greedy path, every other node is not visible, so they are of distance at least 1 away. By a packing lemma, there are at most $O(k^2)$ nodes inside a disk of radius k.

How is face routing? How is greedy + face routing?
Performance of face routing
Performance of face routing

• What if we choose the wrong side?

- Clusterhead
- Gateway
Adaptive face routing

- Suppose the shortest path on the planar graph is bounded by L hops.
- Bound the search area by an ellipsoid \{x \mid |xs| + |xt| \leq L\} \Rightarrow never walk outside the ellipsoid.
- Follow one direction, if we hit the ellipsoid; turn back.
- If we find a better intersection p of the face with line st, change to the face containing pt.
- In the worst case, visit every node inside the ellipsoid: \(O(L^2)\) by the bounded density property (through clustering).
Adaptive face routing

- How to guess the upper bound L?
- Start from a small value say $|st|$; if we fail to find a path, then we double L and re-run adaptive face routing.
- By the time we succeed, L is at most twice the shortest path length k. The number of phases is $O(\log k)$.
- Total cost $= O(\sum_i (k/2^i)^2) = O(k^2)$. \leftarrow asymptotically optimal.
A simple worst-case optimal routing alg

• It’s easy to get a worst-case \(O(k^2) \) bound.

• Do adaptive restricted flooding.
 • Start with a small threshold \(t \). Flood all the nodes within distance \(t \) from the source.
 • If the destination is not reached, double the radius and retry.

• On a network with bounded density, the total cost is \(O(k^2) \) if the shortest path has length \(k \).

 Not quite efficient for most good cases.
Fall back to greedy

• When a node visits a node closer to the destination than that at which it enters the face routing mode, it returns to greedy mode.

• Other fall-back schemes are proposed. E.g., GOAFR+ considers falling back to greedy mode when considering a face change and when there are sufficient nodes closer to the destination than the local minimum.