Location-based Routing in Sensor Networks I

Jie Gao
Computer Science Department
Stony Brook University
Papers

Routing in ad hoc networks

- Obtain route information between pairs of nodes wishing to communicate.
- **Proactive protocols**: maintain routing tables at each node that is updated as changes in the network topology are detected.
 - Heavy overhead with high network dynamics (caused by link/node failures or node movement).
 - Not practical for ad hoc networks.
Routing in ad hoc networks

- **Reactive protocols**: routes are constructed on demand. No global routing table is maintained.
- Due to the high rate of topology changes, reactive protocols are more appropriate for ad hoc networks.
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)
- However, both depend on flooding for route discovery.
Geographical routing

- **“Data-centric” routing**: routing is frequently based on a nodes’ attributes and sensed data, rather than on pre-assigned network address.
- **Geographical routing** uses a node’s location to discover path to that route.
Geographical routing

- Assumptions:
 - Nodes know their geographical location
 - Nodes know their 1-hop neighbors
 - Routing destinations are specified geographically (a location, or a geographical region)
 - Each packet can hold a small amount \(O(1) \) of routing information.
 - The connectivity graph is modeled as a unit disk graph.
Geographical routing

- The source node knows
 - The location of the destination node;
 - The location of itself and its 1-hop neighbors.
- Geographical forwarding: send the packet to the 1-hop neighbor that makes most progress towards the destination.
 - No flooding is involved.
- Many ways to measure “progress”.
 - The one closest to the destination in Euclidean distance.
 - The one with smallest angle towards the destination: “compass routing”.
Greedy progress

compass routing

greedy distance routing

x

y

y'

d
Compass routing may get in loops

- Compass routing may get in a loop.

Send packets to the neighbor with smallest angle towards the destination.
Geographical routing may get stuck

- Geographical routing may get stuck at a node whose neighbors are all further away from the destination than itself.

Send packets to the neighbor closest to the destination.
How to get around local minima?

• Use a planar subgraph: a straight line graph with no crossing edges. It subdivides the plane into connected regions called faces.
Face Routing

- Keep left hand on the wall, walk until hit the straight line connecting source to destination.
- Then switch to the next face.
Face Routing Properties

- All necessary information is stored in the message
 - Source and destination positions
 - The node when it enters face routing mode.
 - The first edge on the current face.

- Completely local:
 - Knowledge about direct neighbors’ positions is sufficient
 - Faces are implicit. Only local neighbor ordering around each node is needed.

“Right Hand Rule”
What if the destination is disconnected?

- Face routing will get back to where it enters the perimeter mode.
- Failed – no way to the destination.
- Guaranteed delivery of a message if there is a path.
Face routing needs a planar graph.

Compute a planar subgraph of the unit disk graph.

- Preserves connectivity.
- Distributed computation.
A detour on Delaunay triangulation
Delaunay triangulation

- First proposed by B. Delaunay in 1934.
- Numerous applications since then.
Voronoi diagram

- Partition the plane into cells such that all the points inside a cell have the same closest point.
Delaunay triangulation

- Dual of Voronoi diagram: Connect an edge if their Voronoi cells are adjacent.
- Triangulation of the convex hull.
Delaunay triangulation

- “Empty-circle property”: the circumcircle of a Delaunay triangle is empty of other points.
- The converse is also true: if all the triangles in a triangulation are locally Delaunay, then the triangulation is a Delaunay triangulation.
Greedy routing on Delaunay triangulation

• Claim: Greedy routing on DT never gets stuck.
Delaunay triangulation

- For an arbitrary point set, the Delaunay triangulation may contain long edges.
- Centralized construction.

- If the nodes are uniformly placed inside a unit disk, the longest Delaunay edge is $O((\log n/n)^{1/3})$. [Kozma et al. PODC’04]

- Next: 2 planar subgraphs that can be constructed in a distributed way: relative neighborhood graph and the Gabriel graph.
Relative Neighborhood Graph and Gabriel Graph

- **Relative Neighborhood Graph (RNG)** contains an edge uv if the lune is empty of other points.
- **Gabriel Graph (GG)** contains an edge uv if the disk with uv as diameter is empty of other points.
- Both can be constructed in a distributed way.
Relative Neighborhood Graph and Gabriel Graph

- Claim: MST \(\subseteq \) RNG \(\subseteq \) GG \(\subseteq \) Delaunay

- Thus, RNG and GG are planar (Delaunay is planar) and keep the connectivity (MST has the same connectivity of UDG).
MST \subseteq RNG \subseteq GG \subseteq Delaunay

1. RNG \subseteq GG: if the lune is empty, then the disk with uv as diameter is also empty.
2. GG \subseteq Delaunay: the disk with uv as diameter is empty, then uv is a Delaunay edge.
MST \subseteq RNG \subseteq GG \subseteq Delaunay

3. MST \subseteq RNG:
 - Assume uv in MST is not in RNG, there is a point w inside the lune. $|uv|>|uw|$, $|uv|>|vw|$.
 - Now we delete uv and partition the MST into two subtrees.
 - Say w is in the same component with u, then we can replace uv by wv and get a lighter tree. \Rightarrow contradiction.

RNG and GG are planar (Delaunay is planar) and keep the connectivity (MST has the same connectivity of UDG).
An example of UDG

200 nodes randomly deployed in a 2000×2000 meters region. Radio range = 250 meters
An example of GG and RNG
Two problems remain

- Both RNG and GG remove some edges → a short path may not exist!

- The shortest path on RNG or GG might be much longer than the shortest path on the original network.

- Even if the planar subgraph contains a short path, can greedy routing and face routing find a short one?
Tackle problem I:
Find a planar spanner
Find a good subgraph

• Goal: a planar spanner such that the shortest path is at most α times the shortest path in the unit disk graph.
 – Euclidean spanner: The shortest path length is measured in total Euclidean length.
 – Hop spanner: The shortest path length is measured in hop count.

• α: spanning ratio.
 – Euclidean spanning ratio $\geq \sqrt{2}$
 – Hop spanning ratio ≥ 2.

• Let’s first focus on Euclidean spanner.
Delaunay triangulation is an Euclidean spanner

- DT is a 2.42-spanner of the Euclidean distance.
- For any two nodes uv, the Euclidean length of the shortest path in DT is at most 2.42 times |uv|.
Restricted Delaunay graph

- Keep all the Delaunay edges no longer than 1.
- Claim: RDG is a 2.42-spanner (in total Euclidean length) of the UDG.
- Proof sketch: If an edge in UDG is deleted in RDG, then it’s replaced by a path with length at most 2.42 longer.
Construction of RDG

- Easy to compute a superset of RDG: Each node computes a local Delaunay of its 1-hop neighbors.
 - A global Delaunay edge is always a local Delaunay edge, due to the empty-circle property.
 - A local Delaunay may not be a global Delaunay edges.

- What if the superset has crossing edges?
Crossing Lemma

- **Crossing lemma**: if two edges cross in a UDG, then one node has edges to the three other nodes in UDG.

\[
|uw| \leq |wp| + |up| \\
|vx| \leq |vp| + |xp| \\
|wu| + |vx| \leq |wx| + |ux| \leq 2
\]

Also, \(|wv| + |ux| \leq |wx| + |ux| \leq 2 \)

There must be 2 edges on the quad adjacent to the same node.
Detect crossings between local delaunay edges

- By the crossing Lemma: if two edges cross in a UDG, one of them has 3 nodes in its neighborhood and can tell which one is not Delaunay.

- Neighbors exchange their local DTs to resolve inconsistency.
 - A node tells its 1-hop neighbors the non-Delaunay edges in its local graph.
 - A node receiving a “forbidden” edge will delete it from its local graph.

- Completely distributed and local.
RDG construction

- 1-hop information exchange is sufficient.
 - Planar graph;
 - All the short Delaunay edges are included.
 - We may have some planar non-Delaunay edges but that does not hurt spanning property.
More on RDG construction

- RDG can be constructed without the full location information.

- Only local angle information suffices.

- Key operation: If two edges in the unit-disk graph cross, remove the one that is not in the Delaunay triangulation.

- How to tell that an edge is not in the Delaunay triangulation?
Removing non-Delaunay edges

If two edges AB, CD cross, there are only three cases:

(i)
(ii)
(iii)
Removing non-Delaunay edges

If two edges AB, CD cross, there are only three cases:

(i)

(ii)

(iii)

With angle info, the shape is fixed! Node C can tell which edge is not Delaunay.
Removing non-Delaunay edges

Case (i) : Use the “empty-circle” test of Delaunay triangulation

\[|AC| > 1 \geq |CD| \]
\[|BC| > 1 \geq |CD| \]

Conclusion: The edge AB is not a Delaunay edge.
Find a hop spanner

• Restricted Delaunay graph is not a hop spanner.
 • Take n nodes uniformly in a segment of length 1. The hop count can be as large as $n-1$.
• Reduce the density of the sensors.
 • Use clustering to reduce density.
 • Compute RDG on the subset to get a hop spanner.
 • Clustering also reduce interference and enables efficient resource reuse such as bandwidth.
Reduce node density

- Find a subset of nodes, called clusterheads
 - Each node is directly connected to at least 1 clusterhead.
 - No two clusterheads are connected.
- Use a greedy algorithm. Pick a node as a clusterhead, remove all the 1-hop neighbors, continue.
- Constant density: ≤ 6 clusterheads in any unit disk.
 - The angle spanned by two clusterheads is at least $\pi/3$.

\[\pi/3 \]
Connect clusterheads by gateways

- For two clusterheads, if their clients have an edge, then we pick one pair as gateway nodes.

- Notice that clusterheads x, y are within 3 hops to have a pair of gateways.

- There are constant clusterheads and gateways inside any unit disk.
Path on clusterheads and gateways

- For two nodes u, v that are k hops away, there is a path through clusterheads and gateways with at most $3k+2$ hops.

- Construct RDG on clusterheads and gateways, which have constant bounded density.

Shortest path
A Routing Graph Sample

Select clusterheads

Clusterheads select gateways

RDG on clusterheads & gateways
Restricted Delaunay graph

- Claim: (RDG on clusterheads and gateways + edges from clients to clusterheads) is a constant hop spanner of the original UDG.

- Proof sketch:
 - The shortest path P in the unit disk graph has k hops.
 - Through clusterheads and gateways \exists a path Q with $\leq 3k+2$ hops.
 - Q’s total Euclidean length is $\leq 3k+2$.
 - The shortest path on the RDG, H, has Euclidean length $\leq 2.42 \times (3k+2)$.
 - By constant density property a region with width 1 and length $2.42 \times (3k+2)$ has $O(k)$ nodes inside. So # hops of H is $O(k)$.
 - This concludes the hop spanner property.
Restricted Delaunay graph

RNG

RDG

Clusterhead
Gateway
Restricted Delaunay graph

RNG

RDG

Clusterhead
Gateway