Review of data aggregation

Query distribution

AVERAGE

Count: $c_4 = c_6 + c_5$
Sum: $s_4 = s_6 + s_5$
1nd problem: how to compute median?

• In a naïve way, the size of the message is in the same order as \# nodes in the subtree.

• Last lecture: approximate median.
2nd problem: Aggregation tree in practice

- Tree is a fragile structure.
 - If a link fails, the data from the entire subtree is lost.

- Fix #1: use multipath, a DAG instead of a tree.
 - Send 1/k data to each of the k upstream nodes (parents).
 - A link failure lost 1/k data.
Aggregation tree in practice

(a) Nodes counted in TAG (b) Computing Avg with TAG
Fundamental problem

• Aggregation and routing are coupled
• Improve routing robustness by multi-path routing?
 – Same data might be delivered multiple times.
 – Problem: double-counting!
• Decouple routing & aggregation
 – Work on the robustness of each separately
Order and duplicate insensitive (ODI) synopsis

• Aggregated value is **insensitive** to the **sequence** or **duplication** of input data.

• Small-sizes digests such that any particular sensor reading is accounted for only once.

 – Example: MIN, MAX.

 – Challenge: how about COUNT, SUM?
Aggregation framework

• Solution for robustness aggregation:
 – Robust routing (e.g., multi-hop) + ODI synopsis.

• Leaf nodes: Synopsis generation: SG(·).

• Internal nodes: Synopsis fusion: SF(·) takes two synopsis and generate a new synopsis of the union of input data.

• Root node: Synopsis evaluation: SE(·) translates the synopsis to the final answer.
An easy example: ODI synopsis for MAX/MIN

- **Synopsis generation**: SG(·).
 - Output the value itself.
- **Synopsis fusion**: SF(·)
 - Take the MAX/MIN of the two input values.
- **Synopsis evaluation**: SE(·).
 - Output the synopsis.
Three questions

• What do we mean by ODI, rigorously?
• Robust routing + ODI
• How to design ODI synopsis?
 – COUNT
 – SUM
 – Sampling
 – Most popular k items
 – Set membership – Bloom filter
Definition of ODI correctness

• A synopsis diffusion algorithm is ODI-correct if \(SF() \) and \(SG() \) are order and duplicate insensitive functions.

• Or, if for any aggregation DAG, the resulting synopsis is identical to the synopsis produced by the canonical left-deep tree.

• The final result is independent of the underlying routing topology.
 – Any evaluation order.
 – Any data duplication.
Connection to streaming model: data item comes 1 by 1.
Test for ODI correctness

1. **SG() preserves duplicates**: if two readings are duplicates (e.g., two nodes with same temperature readings), then the same synopsis is generated.
2. **SF() is commutative.**
3. **SF() is associative.**
4. **SF() is same-synopsis idempotent**, $\text{SF}(s, s) = s$.

Theorem: The above properties are **sufficient and necessary** properties for ODI-correctness.

Proof idea: transfer an aggregation DAG to a left-deep tree with the same output by using these properties.
Proof of ODI correctness

1. Start from the DAG. Duplicate a node with out-degree k to k nodes, each with out degree 1. \(\Rightarrow \) duplicates preserving.
2. Re-order the leaf nodes by the increasing value of the synopsis. ← Commutative.
3. Re-organize the tree s.t. adjacent leaves with the same value are input to a SF function. \(\leftarrow \) Associative.
Proof of ODI correctness

4. Replace SF(s, s) by s. \(\Rightarrow\) same-synopsis idempotent.
Proof of ODI correctness

5. Re-order the leaf nodes by the increasing canonical order. \(\Leftarrow\) Commutative.

6. QED.
Design ODI synopsis

- Recall that MAX/MIN are ODI.
- Translate all the other aggregates (COUNT, SUM, etc.) by using MAX.
- Let’s first do COUNT.
- Idea: use probabilistic counting.
Counting distinct elements

- Each sensor generates a sensor reading. Count the total number of different readings.
- Each element chooses a random number $i \in [1, k]$.
- $\Pr\{\text{CT}(x) = i\} = 2^{-i}$, for $1 \leq i \leq k-1$. $\Pr\{\text{CT}(x) = k\} = 2^{-(k-1)}$.
- Use a pseudo-random generator so that CT(x) is a hash function (deterministic).

| 1 | 0 | 0 | 0 | 0 | 0 |

$\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{8} \quad \frac{1}{16} \ldots$
Counting distinct elements

- Synopsis: a bit vector of length $k > \log n$.
- $SG()$: output a bit vector s of length k with $CT(k)$’s bit set.
- $SF()$: bit-wise boolean OR of input s and s'.
- $SE()$: if i is the lowest index that is still 0, output $2^{i-1}/0.77351$.
- Intuition: i-th position will be 1 if there are 2^i nodes, each trying to set it with probability $1/2^i$
Distinct value counter analysis

- Lemma: For $i < \log n - 2\log \log n$, $FM[i] = 1$ with high probability (asymptotically close to 1). For $i \geq 3/2 \log n + \delta$, with $\delta \geq 0$, $FM[i] = 0$ with high probability.

- The expected value of the first zero is $\log(0.7753n) + P(\log n) + o(1)$, where $P(u)$ is a periodic function of u with period 1 and amplitude bounded by 10^{-5}.

- The error bound (depending on variance) can be improved by using multiple trials.
Counting distinct elements

- Check the ODI-correctness:
 - Duplication: by the hash function. The same reading x generates the same value $CT(x)$.
 - Boolean OR is commutative, associative, same-synopsis idempotent.
- Total storage: $O(\log n)$ bits.

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
\[
\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[i=3\]
Robust routing + ODI

• Use Directed Acyclic Graph (DAG) to replace tree.

• Rings overlay:
 – Query distribution: nodes in ring R_j are j hops from q.
 – Query aggregation: node in ring R_j wakes up in its allocated time slot and receives messages from nodes in R_{j+1}.
Rings and adaptive rings

- Adaptive rings: cope with network dynamics, node deletions and insertions, etc.
- Each node on ring j monitor the success rate of its parents on ring $j-1$.
- If the success rate is low, the node may change its parent to other nodes with higher success rate.
- Nodes at ring 1 may transmit multiple times to ensure robustness.
Implicit acknowledgement

- **Explicit acknowledgement:**
 - 3-way handshake.
 - Used for wired networks.

- **Implicit acknowledgement:**
 - Used on ad hoc wireless networks.
 - Node u sending to v snoops the subsequent broadcast from v to see if v indeed forwards the message for u.
 - Explores broadcast property, saves energy.

- **With aggregation this is problematic.**
 - Say u sends value x to v, and subsequently hears value z.
 - U does not know whether or not x is incorporated into z.
Implicit acknowledgement

- ODI-synopsis enables efficient implicit acknowledgement.
 - u sends to v synopsis x.
 - Afterwards u hears that v transmitting synopsis z.
 - u verifies whether $SF(x, z) = z$
Error of approximate answers

- Two sources of errors:
 - Algorithmic error: due to randomization and approximation.
 - Communication error: the fraction of sensor readings not accounted for in the final answer.
- Algorithmic error depends on the choice of algorithm and is under control.
- Communication error depends on the network dynamics and robustness of routing algorithms.
Simulation results

(a) Rings

(b) Adaptive Rings

Unaccounted node
Simulation results

<table>
<thead>
<tr>
<th>Scheme</th>
<th>% nodes</th>
<th>Error (Uniform)</th>
<th>Error (Skewed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG</td>
<td>< 15%</td>
<td>0.87</td>
<td>0.99</td>
</tr>
<tr>
<td>TAG2</td>
<td>N/A</td>
<td>0.85</td>
<td>0.98</td>
</tr>
<tr>
<td>Rings</td>
<td>65%</td>
<td>0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>Adapt. Rings</td>
<td>95%</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>Flood</td>
<td>≈ 100%</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Relative root mean square error

![Graph showing RMS Error vs Loss Rate](image)
More ODI synopsis

• Distinct values
• SUM
• Second moment
• Uniform sample
• Most popular items
• Set membership --- Bloom Filter
• Naïve approach: for an item x with value c times, make c distinct copies $(x, j), j=1, \ldots, c$. Now use the distinct count algorithm.
• When c is large, we set the bits as if we had performed c successive insertions to the FM sketch.
• First set the first $\delta = \log c - \log \log c$ bits to 1.
• Those who reached δ follow a binomial distribution: each item reaches δ with prob $2^{-\delta}$.
• Explicitly insert those that reached bit δ by coin flipping.
• Powerful building block.
Second moment

- Kth moment $\mu_k = \Sigma x_i^k$, x_i is the number of sensor readings (frequency) of value i.
 - μ_0 is the number of distinct elements.
 - μ_1 is the sum.
 - μ_2 is the square of L_2 norm (variance, skewness of the data).
- The sketch algorithm for frequency moments can be turned into an ODI easily by using ODI-sum.

The space complexity of approximating the frequency moments, N. Alon, Y. Matias, and M. Szegedy. STOC 1996.
Second moment

- Random hash \(h() : \{0,1,\ldots,N-1\} \to \{-1,1\} \)
- Define \(z_i = h(i) \)
- Maintain \(X = \sum_i x_i z_i \)
- \(\mathbb{E}(X^2) = \mathbb{E}(\sum_i x_i z_i)^2 = \mathbb{E}(\sum_i x_i^2 z_i^2) + \mathbb{E}(\sum_{i,j} x_i x_j z_i z_j) \).
- Choose the hash function to be pairwise independent: \(\Pr\{h(i)=a,h(j)=b\} = \frac{1}{4} \).
- \(\mathbb{E}(z_i^2)=1, \mathbb{E}(z_i z_j) = \mathbb{E}(z_i) \mathbb{E}(z_j) = 0. \)
- Now \(\mathbb{E}(X^2) = \sum_i x_i^2. \)

- ODI: Each sensor of value \(i \) generates \(z_i \), then use ODI-sum.
- The final answer is \(X^2 \)
More ODI synopsis

- Distinct values
- SUM
- Second moment
- Uniform sample
- Most popular items
- Set membership --- Bloom Filter
Uniform sample

- Each sensor has a reading. Compute a uniform sample of a given size k.
- Synopsis: a sample of k tuples.
- SG(): output (value, r, id), where r is a uniform random number in range [0, 1].
- SF(): output the k tuples with the k largest r values. If there are less than k tuples in total, out them all.
- SE(): output the values in s.
- ODI-correctness is implied by “MAX” and union operation in SF().
- Correctness: the largest k random numbers is a uniform k sample.
Most popular items

- Return the k values that occur the most frequently among all the sensor readings.
- Synopsis: a set of k most popular items.
- $SG()$: output (value, weight) pair, with weight=CT(k), $k>\log n$.
- $SF()$: for each distinct value v, discard all but the pair with max weight. Then output the k pairs with max weight.
- $SE()$: output the set of values.
- Note: we attach a weight to estimate the frequency.
- Many aggregates that can be approximated by using random samples now have ODI-synopsis, e.g., median.
Set membership: Bloom Filter

• A compact data structure to encode set containment.
• Widely used in networking applications.

• Given: \(n \) elements \(S = \{x_1, x_2, \ldots, x_n\} \).
• Answer query: whether \(x \) is in \(S \)?

• Allow a small false positive (an element not in \(S \) might be reported as “yes”).
Bloom filter

- An array of m bits.
- Insert: for $x \in S$, use k random hash functions and set $h_j(x)$ to “1”.
- Query: to check if y is in S, search all buckets $h_j(y)$, if all “1”, answer “yes”.
- No false negative. Small false positive.
Bloom filter tricks

• Union of S_1 and S_2:
 – Take “OR” of their bloom filters.
 – ODI aggregation.

• Shrink the size to half:
 – OR the first and second halves.
Counting bloom filter

- Handle element insertion and deletion
- Each bucket is a counter.
- Insert: increase by “1” on the hashed locations.
- Delete: decrease by “1”.
- Be careful about buffer overflow.
Spectral bloom filter

- Record multi-set \{x_1, x_2, \ldots, x_n\}, each item \(x_i\) has a frequency \(f_i\).
- Insert: add \(f_i\) to each bucket.
- Retrieve: return the smallest bucket value from the hashed locations.
- Idea: the smallest bucket is unlikely to be polluted.
Bloom filter applications

• Traditional applications:
 – Dictionary, UNIX-spell checker.

• Network applications:
 – Cache summary in content delivery network.
 – Resource routing, etc.
 – Read the survey for more….

• Good for sensor network setting:
 – ODI, compact, many algebraic properties.
Conclusion

• Due to the high dynamics in sensor networks, robust aggregates that are insensitive to order and duplication are very attractive – they provide the flexibility of using any multi-path routing algorithms and re-transmission.

• Use ODI-synopsis as black box operators to replace naïve operators in more complex data structures.
Is the problem solved? NO

• Best effort multi-path routing does not guarantee all data have been incorporated.
 – Blackbox setting.

• ODI synopsis translates everything to MAX, which is not robust to outliers!
 – Sensor malfunction.
 – Malicious attacks.

• For exemplary aggregations (MAX, MIN), the final result is a single sensor value, but all nodes are examined. – Can we improve?
CountTorrent

- To improve routing robustness, deliver each value multiple times to make sure at least one copy arrives
 - Synopsis diffusion: aggregation of the same value for multiple times does **not** result in double counting.
 - CountTorrent: remember what value has been included in the aggregation in an implicit manner.
How to record the members in the aggregate?

- In the naive way, keep the members explicitly.
 - Storage cost /communication cost too high
 - It loses the point of aggregation.
- In the implicit way
 - Label the aggregate
CountTorrent

- Each node has a label: a 0,1 string
- Two nodes can have their data aggregated if their labels are the same except the last bit.
- After aggregation, remove the last bit and assign the label to the aggregated data.
- Gossip-style communication: each node exchanges its value with neighbors.
CountTorrent example

- For any 2 nodes, their labels are neither the same nor is either one a substring of the other.
- All N labels can be merged pairwise and recursively to yield ε, the empty string.
Aggregation

• Each node keeps a buffer of received value/label pair
• Consolidate: try to merge the data in the buffer

```
Node i's prefix buffer          new tuple
Step 1:  (011, 3)  (101, 2)  (0101, 1) + (0100, 3)

Step 2:  (011, 3)  (101, 2)  (010, 4)

Step 3:  (01, 7)  (101, 2)
```
How to assign labels?

• Each node is given the label of a leaf node.
Conclusion

• Aggregation sometimes requires careful design to tradeoff accuracy & storage/message size.

• Aggregation incurs information loss, making robust estimation more difficult. E.g. a single outlier reading can screw up MAX/MIN aggregates.