Coding and Applications in Sensor Networks

Jie Gao
Computer Science Department
Stony Brook University
Paper

Why coding?

• Information compression
• Robustness to errors (error correction codes)
Source coding

- Compression.
- What is the minimum number of bits to represent certain information? What is a measure of information?
- Entropy, Information theory.
Channel coding

- Achieve fault tolerance.
- Transmit information through a noisy channel.
- Storage on a disk. Certain bits may be flipped.
- Goal: recover the original information.
Source coding and Channel coding

- Source coding and channel coding can be separated without hurting the performance.
Coding in sensor networks

• Compression
 – Sensors generate too much data.
 – Nearby sensor readings are correlated.

• Fault tolerance
 – Communication failures. Corrupted messages by a noisy channel.
 – Node failures – fault tolerance storage.
 – Adversary inject false information.
Channels

- The media through which information is passed from a sender to a receiver.
- **Binary symmetric channel**: each symbol is flipped with probability p.
- **Erasure channel**: each symbol is replaced by a “?” with probability p.
- We first focus on binary symmetric channel.
Encoding and decoding

- **Encoding:**
 - Input: a string of length k, “data”.
 - Output: a string of length n>k, “codeword”.

- **Decoding:**
 - Input: some string of length n (might be corrupted).
 - Output: the original data of length k.
Error detection and correction

- Error detection: detect whether a string is a valid codeword.
- Error correction: correct it to a valid codeword.

- Maximum likelihood Decoding: find the codeword that is “closest” in Hamming distance, i.e., with minimum # flips.

- How to find it?
- For small size code, store a codebook. Do table lookup.
- NP-hard in general.
Scheme 1: repetition

- Simplest coding scheme one can come up with.
- Input data: 0110010
- Repeat each bit 11 times.
- Now we have
 - 0000000000011111111111111111111100000000
 - 000000000000001111111111100000000
- Decoding: do majority vote.
- Detection: when the 10 bits don’t agree with each other.
- Correction: 5 bits of error.
Scheme 2: Parity-check

- Add one bit to do parity check.
- Sum up the number of “1”s in the string. If it is even, then set the parity check bit to 0; otherwise set the parity check bit to 1.
- Eg. 001011010, 111011111.
- Sum of 1’s in the codeword is even.
- 1-bit parity check can detect 1-bit error. If one bit is flipped, then the sum of 1s is odd.
- But can not detect 2 bits error, nor can correct 1-bit error.
More on parity-check

- Encode a piece of data into codeword.
- Not every string is a codeword.
- After 1 bit parity check, only strings with even 1s are valid codeword.
- Thus we can detect error.

- Minimum Hamming distance between any two codewords is 2.
- Suppose we make the min Hamming distance larger, then we can detect more errors and also correct errors.
Scheme 3: Hamming code

• Intuition: generalize the parity bit and organize them in a nice way so that we can detect and correct more errors.

• Lower bound: If the minimum Hamming distance between two code words is k, then we can detect at most $k-1$ bits error and correct at most $\left\lfloor \frac{k}{2} \right\rfloor$ bits error.

• Hamming code (7,4): adds three additional check bits to every four data bits of the message to correct any single-bit error, and detect all two-bit errors.
Hamming code \((7, 4)\)

- Coding: multiply the data with the encoding matrix.

\[
H_e := \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{pmatrix}
\]

- Decoding: multiply the codeword with the decoding matrix.

\[
H_d := \begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix}
\]
An example: encoding

- **Input data:**

 \[
 \mathbf{p} = \begin{pmatrix}
 1 \\
 0 \\
 1 \\
 1
 \end{pmatrix}
 \]

- **Codeword:**

 \[
 H_e \mathbf{p} = \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 \\
 1 & 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 & 0 \\
 0 & 1 & 1 & 1 & 1
 \end{pmatrix}
 \begin{pmatrix}
 1 \\
 0 \\
 1 \\
 1
 \end{pmatrix}
 = \begin{pmatrix}
 1 \\
 0 \\
 1 \\
 1 \\
 0 \\
 1 \\
 0
 \end{pmatrix}
 = \mathbf{r}
 \]

Systematic code: the first k bits is the data.

Original data is preserved
An example: decoding

- Decode:

\[H_d r = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

- Now suppose there is an error at the ith bit.
- We received \(r + e_i \)
- Now decode:

\[H_d (r + e_i) = H_d r + H_d e_i \]

\[H_d r + H_d e_i = 0 + H_d e_i = H_d e_i \]

- This picks up the ith column of the decoding vector!
An example: decoding

- Suppose

\[s = r + e_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \]

- Decode:

\[H_d s = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \]

- Data more than 4 bits? Break it into chunks and encode each chunk.

Second bit is wrong!
Linear code

- Most common category.
- Succinct specification, efficient encoding and error-detecting algorithms – simply matrix multiplication.

- Code space: a linear space with dimension k.
- By linear algebra, we find a set of basis

$$x_1, \ldots, x_k \subseteq \mathbb{F}_q^n$$

- Code space:

$$C = \{ \sum_{i=1}^{k} \alpha_i \cdot x_i \mid \alpha_1, \ldots, \alpha_k \in \mathbb{F}_q \}$$

- Generator matrix $G \in \mathbb{F}_q^{k \times n}$

$$C = \{ \alpha G \mid \alpha \in \mathbb{F}_q^k \}$$
Linear code

- Null space of dimension $n-k$:
 $$H^T \in \mathbb{F}_q^{(n-k) \times n}$$

- Parity check matrix.
 $$C = \{ y \mid yH = 0 \}$$

- Error detection: check
 $$yH \neq 0$$

- Hamming code is a linear code on alphabet $\{0,1\}$. It corrects 1 bit and detects 2 bits error.
Linear code

• A linear code is called systematic if the first k bits is the data.

• Generation matrix G:

\[
\begin{bmatrix}
I_{k \times k} & P_{k \times (n-k)}
\end{bmatrix}
\]

• If n=2k and P is invertible, then the code is called invertible.

• A message m maps to

\[
\begin{bmatrix}
m \\
Pm
\end{bmatrix}
\]

• Parity bits can be used to recover m.

• Detect more errors? Bursty errors?
Reed Solomon codes

- Most commonly used code, in CDs/DVDs.
- Handles bursty errors.
- Use a large alphabet and algebra.

- Take an alphabet of size $q>n$ and n distinct elements $\alpha_1, \ldots, \alpha_n \in F_q$.
- Input message of length k: c_0, \ldots, c_{k-1}.
- Define the polynomial
 $$C(x) \overset{\text{def}}{=} \sum_{j=0}^{k-1} c_j x^j$$
- The codeword is $\langle C(\alpha_1), \ldots, C(\alpha_n) \rangle$.
Reed Solomon codes

• Rephrase the encoding scheme.

• Unknowns (variables): the message of length k

 \[c_0, \ldots, c_{k-1} \]

• What we know: some equations on the unknowns.

 \[\{C(\alpha_1), \ldots, C(\alpha_n)\} \]

 \[C(x) \overset{\text{def}}{=} \sum_{j=0}^{k-1} c_j x^j \]

• Each of the coded bit gives a linear equation on the k unknowns. ⇒ A linear system.

• How many equations do we need to solve it?

• We only need length k coded information to solve all the unknowns.
Reed Solomon codes

- Write the linear system by matrix form:

\[
\begin{bmatrix}
1 & \alpha_1 & \alpha_1^2 & \alpha_1^{k-1} \\
1 & \alpha_2 & \alpha_2^2 & \alpha_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \alpha_k & \alpha_k^2 & \alpha_k^{k-1}
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_{k-1}
\end{bmatrix}
=
\begin{bmatrix}
C(\alpha_1) \\
C(\alpha_2) \\
\vdots \\
C(\alpha_k)
\end{bmatrix}
\]

- This is the Van de Ment matrix. So it’s invertible.

- This code can tolerate n-k errors.
- Any k bits can recover the original message.
- This property is called erasure code.
Use coding for fault tolerance

- If a sensor dies, we lose the data.
- For fault tolerance, we have to duplicate data so we can recover the data from other sensors.
- Straight-forward solution: duplicate it at other places.
- Storage size goes up!

- Use coding to keep storage size as the same.
- What we pay: decoding cost.
Problem setup

• Setup: we have k data nodes, and $n > k$ storage nodes (data nodes may also be storage nodes).
• Each data node generates one piece of data.
• Each storage node only stores one piece of (coded) data.
• We want to recover data by using any k storage nodes.

• Sounds familiar? Reed Solomon code.
• But it is centralized -- we need all the k inputs to generate the coded information.
Distributed random linear code

- Each node sends its data to $m=O(\ln k)$ random storage nodes.

- A storage node may receive multiple pieces of data $c_1, c_2, \ldots c_k$, but it stores a random combination of them. E.g., $a_1c_1+a_2c_2+\ldots+a_kc_k$ where a’s are random coefficients.
Coding and decoding

- Storage size keeps almost the same as before.
- The random coefficients can be generated by a pseudo-random generator. Even if we store the coefficients, the size is not much.
- Claim: we can recover the original k pieces of data from any k storage nodes.
- Think of the original data as unknowns (variables).
- Each storage node gives a linear equation on the unknowns $a_1c_1 + a_2c_2 + \ldots + a_kc_k = s$.
- Now we take k storage nodes and look at the linear system.
Coding and decoding

- Take arbitrary k storage nodes.

need to argue that this matrix has full rank, i.e., invertible.
Main theorem

• A bipartite graph $G=(X, Y)$, $|X|=k$, $|Y|=k$.
• X: the data nodes; Y: the k storage nodes.

Edmond’s theorem: the matrix has full rank if the bipartite graph has a perfect matching.

Now, we only need to show that the bipartite graph G has a perfect matching with high probability.
Main theorem

- Upper bound: if storage node picks $O(\ln k)$ storage randomly, the bipartite graph G has a perfect matching with high probability.
- Lower bound: $\Omega(\ln k)$ is necessary.
- Proof:
 - Any storage node has to have at least one piece of data.
 - Otherwise, the matrix has a zero row!
 - Throw data randomly to cover all the storage nodes.
 - **Coupon collector problem**: each time get a random coupon. In order to collect all n different types of coupon, with high probability one has to get in total $\Omega(n \ln n)$ coupons.
Protocol

- Each node sends its data to $O(\ln n)$ random nodes.
- In a grid, the cost is about $O(n^{1/2})$.
- Total communication cost: $O(n^{3/2})$.
Potential users outside the network have easy access to perimeter nodes; Gateway nodes are positioned on the perimeter.
Pros and Cons

• No extra infrastructure, only a point-to-point routing scheme is needed.
• Robust to errors – just take k good copies.
• Fault tolerance – sensors die? Fine…
• No centralized processing, no routing table or global knowledge of any sort.
• Very resilient to packet loss due to the random nature of the scheme.
• Achieves certain data privacy. If the coding scheme (the random coefficients) is kept from the adversary, the adversary only sees random data.
Pros and Cons

- Information is coded, in other words, scrambled.
- Have to decode the whole k pieces, even only 1 piece of data is desired.
- Doesn’t explore locality – usually we don’t go to arbitrary k storage nodes, we go to the closest k nodes.
Summary

• Combing coding idea with sensor storage and communication schemes is a very promising area.

• Distributed coding schemes.
• Locality-aware (geometry-aware) coding schemes.

• Network coding.