The following problems are due in 2 weeks (Feb 23rd) before class.

1. Let S be a set of triangles in the plane. The boundaries of the triangles are disjoint, but it is possible that a triangle lies completely inside another triangle. Let P be a set of n points in the plane. Give an $O(n \log n)$ algorithm that reports each point in P lying outside all triangles.

2. Let S be a set of n disjoint line segments in the plane, and let p be a point not on any of the line segments of S. We wish to determine all line segments of S that p can see. That is, all line segments of S that contain some point q so that the open segment pq does not intersect any line segment of S. Give an $O(n \log n)$ algorithm for this problem that uses a rotating half line with its endpoint at p.

3. Let S be a set of n segments in the plane. A line ℓ that intersects all segments of S is called a traversal or stabber of S. Give an $O(n^2)$ algorithm to decide if a stabber for S exists. Hint: Use duality.

4. Let H be a set of at least three half-planes with a non-empty intersection such that not all bounding lines are parallel. We call a half plane $h \in H$ redundant if it does not contribute to an edge to $\cap H$. Prove that for any redundant half-plane $h \in H$ there are two half-planes $h', h'' \in H$ such that $h' \cap h'' \subset h$. Give an $O(n \log n)$ algorithm to compute all redundant half-planes.

5. A simple polygon P is star-shaped if it contains a point q such that for any point p in P the line segment pq is contained in P. Give an algorithm whose expected running time is linear to decide whether a simple polygon is star-shaped.