DSDV & AODV

2/27/06
Last class

• Basic classification of ad hoc routing
 – Proactive
 – Reactive, on-demand
 – Geographical routing
 – Hierarchical routing
 – ...

• DSR: dynamic source routing
 – Reactive protocol
 – Route discovery phase + maintenance phase.
 – Packet contains the path information.
This class

• DSDV: Destination-sequenced Distance-Vector
 – Proactive
• AODV: Ad hoc on-demand distance vector routing
 – Reactive
 – Based on DSDV
Distance vector routing

• Routing protocol in wired networks.
• Distributed Bellman-Ford algorithm.
 – Each node maintains a hop count for each destination.
 – Nodes periodically send their routing tables to neighbors.
 – Nodes re-calculate shortest path upon the receipt of a routing table update.
• Proactive protocol.
• Shortest path routing.
Distance vector routing

• Routing protocol in wired networks.
 – Continuously update the “reachability” information at all the network nodes
 – Low route request latency and high overhead

• Problems in dynamic environment
 – Changes propagate slowly, slow convergence
 – Create loops
 – Count to infinity
Convergence of distance vector

<table>
<thead>
<tr>
<th>Time</th>
<th>Router A</th>
<th>Router B</th>
<th>Router C</th>
<th>Router D</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>10.1.1.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
<td>10.1.5.0</td>
</tr>
<tr>
<td></td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.4.0</td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Router A</th>
<th>Router B</th>
<th>Router C</th>
<th>Router D</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>10.1.1.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
<td>10.1.5.0</td>
</tr>
<tr>
<td></td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.4.0</td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Router A</th>
<th>Router B</th>
<th>Router C</th>
<th>Router D</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_2</td>
<td>10.1.1.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
<td>10.1.5.0</td>
</tr>
<tr>
<td></td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.4.0</td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Router A</th>
<th>Router B</th>
<th>Router C</th>
<th>Router D</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_3</td>
<td>10.1.1.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
<td>10.1.5.0</td>
</tr>
<tr>
<td></td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
<td>10.1.4.0</td>
</tr>
<tr>
<td></td>
<td>10.1.4.0</td>
<td>10.1.3.0</td>
<td>10.1.2.0</td>
<td>10.1.3.0</td>
</tr>
</tbody>
</table>
Convergence of distance vector
Distance vector, count to infty

Router C 10.1.4.0 Router D
 10.1.1.0 10.1.2.0
 \
 Router A 10.1.3.0 Router B
 10.1.5.0

Link Failure

I can reach 10.1.5.0 via D, 1 hop away, or via A, 3 hops away.
DSDV

• DSDV: Destination- Sequenced Distance- Vector
• Adds two things to distance-vector routing
 – Sequence number; avoid loops
 – Damping; hold advertisements for changes of short duration.
<table>
<thead>
<tr>
<th>Destination (Dest)</th>
<th>Next Hop (Nexthop)</th>
<th>Metric</th>
<th>Destination Sequence</th>
<th>Install Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN1</td>
<td>MN2</td>
<td>2</td>
<td></td>
<td>406</td>
</tr>
<tr>
<td>MN2</td>
<td>MN2</td>
<td>1</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>MN3</td>
<td>MN2</td>
<td>2</td>
<td></td>
<td>564</td>
</tr>
<tr>
<td>MN4</td>
<td>MN4</td>
<td>0</td>
<td></td>
<td>710</td>
</tr>
<tr>
<td>MN5</td>
<td>MN6</td>
<td>2</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>MN6</td>
<td>MN6</td>
<td>1</td>
<td></td>
<td>076</td>
</tr>
<tr>
<td>MN7</td>
<td>MN6</td>
<td>2</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>MN8</td>
<td>MN6</td>
<td>3</td>
<td></td>
<td>050</td>
</tr>
</tbody>
</table>
DSDV routing updates

• Each node periodically transmits updates
 – Includes its own sequences number, routing table updates
• Nodes also send routing table updates for important link changes
• When two routes to a destination received from two different neighbors
 – Choose the one with greatest destination sequence number
 – If equal, choose the smaller metric (hop count)
DSDV full dump

• Full Dumps
 – Carry all routing table information
 – Transmitted relatively infrequently

• Incremental updates
 – Carry only information changed since last full dump
 – Fits within one network protocol data unit
 – If can’t, send full dump
DSDV link addition

• When A joins network
 – Node A transmits routing table: <A, 101, 0>
 – Node B receives transmission, inserts <A, 101, A, 1>
 – Node B propagates new route to neighbors <A, 101, 1>
 – Neighbors update their routing tables: <A, 101, B, 2>
 and continue propagation of information
DSDV link breaks

• Link between B and D breaks
 – Node B notices break
 • Update hop count for D and E to be infinity
 • Increments sequence number for D and E
 – Node B sends updates with new route information
 • <D, 203, infinite>
 • <E, 156, infinite>
DSDV routing updates

- Each node periodically transmits updates
 - Includes its own sequence number, routing table updates
- Nodes also send routing table updates for important link changes
- When two routes to a destination received from two different neighbors
 - Choose the one with greatest destination sequence number
 - If equal, choose the smaller metric (hop count)
DSDV summary

- Routes maintained through periodic and event triggered routing table exchanges
- Incremental dumps and settling time used to reduce control overhead
- Lower route request latency, but higher overhead
- Perform best in network with low to moderate mobility, few nodes and many data sessions
- Problems:
 - Not efficient for large ad-hoc networks
 - Nodes need to maintain a complete list of routes.
DSDV, DSR

• DSDV performs well under low node mobility
 – High delivery rate
 – Fails to converge for increased mobility
• DSR performs well at all mobility rates
 – Increased overhead of routing tables and control packets
 – Scalability for dense networks
AODV

- DSR includes source routes in packet headers
- Resulting large headers can degrade performance
 - When data content is small
- AODV improves on DSR by maintaining routing tables (reverse paths) at nodes, instead of in data packets.
- AODV retains the desirable feature of DSR that routes are only maintained between communicating nodes.
AODV

- The Ad-hoc On-Demand Distance Vector Algorithm
- Descendant of DSDV
- Reactive
- Route discovery cycle used for route finding
- Maintenance of active routing
- Sequence number used for loop prevention and route freshness criteria
- Provides unicast and multicast communication
Goal of AODV

- Quick adaptation under dynamic link conditions
- Lower transmission latency
- Consume less network bandwidth (less broadcast)
- Loop-free property
- Scalable to large network
AODV – unicast route discovery

- RREQ (route request) is broadcast
 - Sequence Number:
 - Source SN: freshness on reverse route to source
 - Destination SN: freshness on route to destination
 - RREQ message
 - \(<\text{bcast_id, dest_ip, dest_seqno, src_seqno, hop_count}>\)

- RREP (route reply) is unicast back
 - From destination if necessary
 - From intermediate node if that node has a recent route
AODV multicast route discovery

• Message types
 – RREQ, with new flags:
 • Join and Repair
 – RREP
 – MACT (Multicast activation message)

• Multicast routes have destination sequence number and multiple next hops
 – Multicast group leader extension for RREQ and RREP
AODV route discovery

1. Node S needs a route to D
2. Create a route request (RREQ)
 - Enters D’s IP address, sequence number, S’s IP address, sequence number
 - Broadcasts RREQ to neighbors
AODV route discovery, cont.

3. Node A receives RREQ
 - Makes reverse route entry for S
 • Dest = S, nexthop = S, hopcount = 1
 - It has no route to D, so it broadcasts RREQ

4. Node C receives RREQ
 - Makes reverse route entry for S
 • Dest = S, nexthop = A, hopcount = 2
 - It has route to D && seq# for route D > seq# in RREQ
 • Creates a route reply (RREP)
 - Enters D’s IP address, sequence number, S’s IP address, hopcount
 • Unicasts RREP to A
AODV route discovery, cont.

5. Node A receives RREP
 - Unicasts RREP to S
 - Makes forward route entry to D
 • Dest = D, nexthop = C hopcount = 2

6. Node S receives RREP
 - Makes forward route entry to D
 • Dest = D, nexthop = A hopcount = 3
 - Sends data packets on route to D
AODV --- route maintenance (1)

- Link between C and D breaks
 - Node C invalidates route to D in routing table
 - Node C creates route error (RERR) message
 - Lists all destinations with are now unreachable
 - Sends to upstream neighbors
 - Node A receives RERR
 - Checks whether C is its next hop on route to D
 - Deletes route to D, and forwards RERR to S
Node S receives RERR
- Checks whether A is its next hop on route to D
- Deletes route to D
- RedisCOVERs route if still needed
AODV --- Optimizations

• Expanding ring search
 – Prevents flooding of network during route discovery
 – Control Time to Live of RREQ

• Local repair
 – Repair breaks in active routes locally instead of notifying source
 – Use small TTL because destination probably has not moved far
 – If first repair attempt is unsuccessful, send RERR to source
AODV --- Summary

- Reactive / On-demand
- Sequence numbers used for route freshness and loop prevention
- Route discovery cycle
- Maintains only active routes
- Optimization can be used to reduce overhead and increase scalability