The CPU and Memory

- Reading: Chapter 7

Reference

- USB
 - en.wikipedia.org/wiki/Universal_Serial_Bus
- 64 bit Intel Architecture
Intro

- Last session – reviewed actions of Little Man Computer (LMC)
- Compare architectural approaches of real computers with that of LMC
- Consider performance expectation based on components and architecture (other performance projection techniques later in the course)
- Specific examples next session

The Little Man Computer
CPU: Major Components

- **ALU** (arithmetic logic unit)
 - Performs calculations and comparisons

- **CU** (control unit)
 - Performs fetch/execute cycle
 - Accesses program instructions and issues commands to the ALU
 - Moves data to and from CPU registers and other hardware components
 - Subcomponents:
 - *Memory management unit*: supervises fetching instructions and data from memory
 - *I/O Interface*: sometimes combined with memory management unit as *Bus Interface Unit*

System Block Diagram

[Diagram showing the CPU, I/O interface, ALU, and Memory with the Control unit and Program counter]

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Concept of Registers

Distance equates to time in a computer
Tradeoff of access time vs. capacity

- Small, *permanent* storage locations within the CPU used for a particular purpose
- Manipulated directly by the Control Unit
- Wired for *specific function*
- Size in bits or bytes (not in MB like memory)
- Can hold data, an address or an instruction
- Registers in the LMC – calculator and location counter

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly

Registers

- Use of Registers
 - Scratchpad for currently executing program
 - Holds data needed quickly or frequently
 - Stores information about status of CPU and currently executing program
 - Address of next program instruction
 - Signals from external devices
- General Purpose Registers
 - *User-visible registers*
 - Hold intermediate results or data values, e.g., loop counters
 - Equivalent to LMC’s calculator
 - Typically several dozen in current CPUs

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Special-Purpose Registers

- **Program Count Register (PC)**
 - Also called instruction pointer
- **Instruction Register (IR)**
 - Stores instruction fetched from memory
- **Memory Address Register (MAR)**
- **Memory Data Register (MDR)**
- **Status Registers**
 - Status of CPU and currently executing program
 - **Flags** (one bit Boolean variable) to track condition like arithmetic carry and overflow, power failure, internal computer error

Register Operations

- Stores values from other locations (registers and memory)
- Addition and subtraction
- Shift or rotate data
- Test contents for conditions such as zero or positive
Operation of Memory

- Each memory location has a unique address
- Address from an instruction is copied to the MAR which finds the location in memory
- CPU determines if it is a store or retrieval
- Transfer takes place between the MDR and memory
- MDR is a two way register

Relationship between MAR, MDR and Memory

Data widths vary among processors
Memory Capacity

Primarily determined by two factors

1. Number of bits in the MAR
 - LMC = 100 (00 to 99)
 - 2^K where K = width of the register in bits

2. Size of the address portion of the instruction
 - 4 bits allows 16 locations
 - 8 bits allows 256 locations
 - 32 bits allows 4,294,967,296 or 4 GB

Compare this to the LMC
RAM: Random Access Memory

- **DRAM (Dynamic RAM)**
 - Most common, cheap, less electrical power, less heat, smaller space
 - **Volatile**: must be refreshed (recharged with power) 1000’s of times each second

- **SRAM (Static RAM)**
 - Faster and more expensive than DRAM
 - Volatile
 - Small amounts are often used in *cache memory* for high-speed memory access

Nonvolatile Memory

- **ROM**
 - Read-only Memory
 - Holds software that is not expected to change over the life of the system

- **EEPROM**
 - Electrically Erasable Programmable ROM

- **Flash Memory**
 - Faster than disks but more expensive
 - Uses hot carrier injection to store bits of data
 - Slow rewrite time compared to RAM
 - Useful for nonvolatile portable computer storage
Fetch-Execute Cycle

- Two-cycle process because both instructions and data are in memory
 - **Fetch**
 - Decode or find instruction, load from memory into register and signal ALU
 - **Execute**
 - Performs operation that instruction requires
 - Move/transform data

LMC vs. CPU

Fetch and Execute Cycle

Notation: PC → MAR indicates movement of data (e.g., program counter to memory address register)
Load Fetch/Execute Cycle

1. **PC → MAR**
 - Transfer the address from the PC to the MAR

2. **MDR → IR**
 - Transfer the instruction to the IR (instruction register)

3. **IR[address] → MAR**
 - Address portion of the instruction loaded in MAR

4. **MDR → A**
 - Actual data copied into the accumulator

5. **PC + 1 → PC**
 - Program Counter incremented

Notice how Step #4 differs for LOAD and STORE

Store Fetch/Execute Cycle

1. **PC → MAR**
 - Transfer the address from the PC to the MAR

2. **MDR → IR**
 - Transfer the instruction to the IR

3. **IR[address] → MAR**
 - Address portion of the instruction loaded in MAR

4. **A → MDR**
 - Accumulator copies data into MDR

5. **PC + 1 → PC**
 - Program Counter incremented

Notice how Step #4 differs for LOAD and STORE
ADD Fetch/Execute Cycle

1. PC → MAR
 Transfer the address from the PC to the MAR

2. MDR → IR
 Transfer the instruction to the IR

3. IR[address] → MAR
 Address portion of the instruction loaded in MAR

4. A + MDR → A
 Contents of MDR added to contents of accumulator

5. PC + 1 → PC
 Program Counter incremented

Bus

- The physical connection that makes it possible to transfer data from one location in the computer system to another
- Group of electrical or optical conductors for carrying signals from one location to another
 - Wires or conductors printed on a circuit board
 - Line: each conductor in the bus
- 4 kinds of signals
 1. Data
 2. Addressing
 3. Control signals
 4. Power (sometimes)

Bus protocol covers the way components communicate over the bus

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Bus Characteristics

- Number of separate conductors
- Data width in bits carried simultaneously
- Addressing capacity
- Lines on the bus are for a single type of signal or shared
- Throughput - data transfer rate (bps)
- Distance between two endpoints
- Number and type of attachments supported
- Type of control required
- Defined purpose
- Features and capabilities

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly

Bus Categorizations

- Parallel vs. serial buses
- Direction of transmission
 - Simplex – unidirectional
 - Half duplex – bidirectional, one direction at a time
 - Full duplex – bidirectional simultaneously
- Method of interconnection
 - Point-to-point – single source to single destination
 - Cables – point-to-point buses that connect to an external device
 - Multipoint bus – also broadcast bus or multidrop bus
 - Connect multiple points to one another

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Parallel vs. Serial Buses

- **Serial**
 - 1 bit transmitted at a time
 - Single data line pair and a few control lines
 - For many applications, throughput is higher than for parallel because of the lack of electrical interference

- **Parallel**
 - High throughput because all bits of a word are transmitted simultaneously
 - Expensive and require a lot of space
 - Subject to radio-generated electrical interference which limits their speed and length
 - Generally used for short distances such as CPU buses and on computer motherboards

Example - USB

- Universal Serial Bus
- Current generation – USB 2.0 (2000)
- Specification for communications between devices and a host
- Highlights
 - 5 meter max cable length
 - 5 volt DC power
 - 1-bit serial
 - 480 Mbps maximum bandwidth per controller
 - Controller directed (no requests from devices)

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly

7-25

7-26
USB Connectors

- A, B, mini (falling out of use), and micro

USB 3.0

- Higher transfer rate (5 Gbs)
- Device initiated communications
- Products becoming available during 2010
USB Alternatives

- FireWire
 - faster than USB 2.0 in actual use
 - Designed for audio/video applications
- 802.3af – Power over Ethernet (PoE)
 - Longer cable length, greater power
 - Useful for VoIP, security cameras, etc.

Classification of Instructions

- Data Movement (load, store)
 - Most common, greatest flexibility
 - Involve memory and registers
 - What’s the size of a word? 16? 32? 64 bits or variable?
- Arithmetic
 - Operators + - / * ^
 - Integers and floating point
 - Word size is older terminology, and not particularly useful to describe modern computers
- Boolean Logic
 - Often includes at least AND, XOR, and NOT
- Single operand manipulation instructions
 - Negating, decrementing, incrementing, set to 0
Example

- What is the boolean AND, XOR, and OR of the following 8-bit binary numbers?

 10110001
 01100000

More Instruction Classifications

- Bit manipulation instructions
 - Flags to test for conditions
- Shift and rotate
- Program control
- Stack instructions
- Multiple data instructions
- I/O and machine control
Register Shifts and Rotates

Before shift

0 1 0 1 1 0 1
0 1 0 1 1 0 1

After shift

a. Left logical shift register 1 bit
b. Rotate right 1 bit
c. Right arithmetic shift 2 bits

Program Control Instructions

- Program control
 - Jump and branch
 - Subroutine call and return

Some computers include instructions targeted to applications or programming languages
Stack Instructions

- Stack instructions
 - LIFO method for organizing information
 - Items removed in the reverse order from that in which they are added

(a) Adding to the stack
(b) Removing from the stack

Push

Pop

Block of Memory as a Stack

PUSH increments pointer, then STORES data

POP loads data, then decrements pointer

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Multiple Data Instructions

- Perform a single operation on multiple pieces of data simultaneously
 - SIMD: Single Instruction, Multiple Data
 - Commonly used in multimedia, vector and array processing applications

Instruction Elements

- OPCODE: task
- Source OPERAND(s)
- Result OPERAND
 - Location of data (register, memory)
 - Explicit: included in instruction
 - Implicit: default assumed

Addresses

<table>
<thead>
<tr>
<th>OPCODE</th>
<th>Source OPERAND</th>
<th>Result OPERAND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly 7-37
Instruction Format

- **Machine-specific** template that specifies
 - Length of the op code
 - Number of operands
 - Length of operands

Simple 32-bit Instruction Format

Number of bits for the op code corresponds to # of instructions

More complex instruction formats use multiple address fields

Instructions

- **Instruction**
 - Direction given to a computer
 - Causes electrical or optical signals to be sent through specific circuits for processing

- **Instruction set**
 - Design defines functions performed by the processor
 - Differentiates computer architecture by the
 - Number of instructions
 - Complexity of operations performed by individual instructions
 - Data types supported
 - Format (layout, fixed vs. variable length)
 - Use of registers
 - Addressing (size, modes)
Instruction Word Size

- Fixed vs. variable size
 - Pipelining has mostly eliminated variable instruction size architectures

- Most current architectures use byte multiples (32-bit or 64-bit) for addressing, data paths, etc.

Addressing Modes
- Direct - Mode used by the LMC
- Register Deferred
- Also immediate, indirect, indexed