Representing Numerical Data

Integers

Reading: Chapter 5.1-5.2
(except binary coded decimal and 10’s complement)

Representing Numbers

- If we attempt to add numbers stored as characters, simple binary addition does not provide the correct result.

<table>
<thead>
<tr>
<th>Character representation of 3</th>
<th>Character representation of 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>+ 0 1 1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>1 1 0 0 0 0 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Binary addition results in 63_{16} which is c.

3 is represented as 33_{16} and 0 is represented as 30_{16}.
Number Representation

- We need to use a non-character representation to enable mathematical operations (e.g., addition)
- Numbers can be integers (e.g., 3) or real (floating point) numbers (e.g., 2.75)
- Numbers can be represented as a combination of
 - Value or magnitude
 - Sign (plus or minus)

Example

```java
package lectures;
import java.io.*;
import java.lang.Object.*;

public class GeneralBinaryCreator {
    public static void main(String[] args) throws IOException {
        FileOutputStream out = null;
        File f = new File("primitiveFormats.txt");
        boolean result = f.createNewFile();
        out = new FileOutputStream("primitiveFormats.txt");
        ByteArrayOutputStream byte_out = new ByteArrayOutputStream();
        DataOutputStream data_out = new DataOutputStream(byte_out);
        int c = 17;
        data_out.writeInt(c);
        byte[] b = byte_out.toByteArray();
        out.write(b);
        out.close();
    }
}
```

Note the hex representation of 17

DataOutputStream does not always write the exact binary representation of a Java primitive
Example (continued)

- If we change the value of c in the program to -17, notice the new hex value

What is FF FF FF EF + 11 in hex arithmetic?

Is it the same as (-17+17)

Unsigned Numbers: Integers

- Unsigned whole number or *integer*
- Direct *binary* equivalent of decimal integer
 - 8 bits: 0 to 99
 - 16 bits: 0 to 9,999
 - 32 bits: 0 to 99,999,999

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>0100 0100</td>
</tr>
<tr>
<td></td>
<td>$2^6 + 2^2 = 64 + 4 = 68$</td>
</tr>
<tr>
<td>255</td>
<td>1111 1111</td>
</tr>
<tr>
<td></td>
<td>$2^8 - 1 = 255$</td>
</tr>
</tbody>
</table>

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Signed-Integer Representation

- No obvious direct way to represent the sign in binary notation
- Options:
 - Sign-and-magnitude representation
 - 1’s complement
 - 2’s complement (most common)

Sign-and-Magnitude

- Use left-most bit for sign
 - 0 = plus; 1 = minus
- Total range of integers the same
 - Half of integers positive; half negative
 - Magnitude of largest integer half as large
- Example using 8 bits:
 - Unsigned: 1111 1111 = +255
 - Signed: 0111 1111 = +127
 1111 1111 = -127
- Note: 2 values for 0:
 +0 (0000 0000) and -0 (1000 0000)
What Should Integers Do

- Leading bit tells us the sign of the integer
- The negative of a negative integer is the original integer (i.e., -(-17) is 17)
- \(x - y \) gives the same result as \(x + (-y) \) (i.e., 5 - 3 result is the same as 5 + -3)
- Negative and positive numbers are treated the same in integer operations (e.g., multiplication)

Complement Representation

- Sign of the number does not have to be handled separately
- Consistent for all different signed combinations of input numbers
- Two methods
 - 1’s complement - overflow bits are carried around back into the sum
 - 2’s complement - overflow bits are discarded
Overflow

- Fixed word size has a fixed range size
- Overflow: combination of numbers that adds to result outside the range
- End-around carry in modular arithmetic avoids problem
- Complementary arithmetic: numbers out of range have the opposite sign
 - Test: If both inputs to an addition have the same sign and the output sign is different, an overflow occurred

Overflow in Java

- Example causes an overflow of a short
- Notice that the overflow causes a wrap

```
package integer;

public static void main(String[] args) {
    short x = 32767;
    for (short i = 0; i < 10; i++) {
        System.out.println(x);
        x += 1;
    }
}
```

Output:
```
32767
32768
32769
-32768
-32767
-32766
-32765
-32764
-32763
-32762
```
1’s Binary Complement

- **Taking the complement**: subtracting a value from a standard basis value
 - Binary (base 2) system diminished radix complement
 - Radix minus 1 = 2 − 1 as the basis
- **Inversion**: change 1’s to 0’s and 0’s to 1’s
 - Numbers beginning with 0 are positive
 - Numbers beginning with 1 are negative
 - 2 values for zero
- **Example with 8-bit binary numbers**

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Negative</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation method</td>
<td>Complement</td>
<td>Number itself</td>
</tr>
<tr>
<td>Calculation</td>
<td>Inversion</td>
<td>None</td>
</tr>
<tr>
<td>Representation example</td>
<td>10000000</td>
<td>11111111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Negative</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation example</td>
<td>00000000</td>
<td>01111111</td>
</tr>
</tbody>
</table>

Example (1’s Complement)

- The 32 bit integer that represents 17 is stored as

 \[0011_{16} \quad (0000 \ldots 010001)\]
- The 1-complement inversion of the above number is

 \[\text{FFEE}_{16} \quad (1111 \ldots 101110)\]
- And the sum of the 2 numbers is \[\text{FFFF}_{16}\]
Addition

- Add 2 positive 8-bit numbers
 - \(0010\ 1101 = 45\)
 - \(0011\ 1010 = 58\)
 - \(0110\ 0111 = 103\)

- Add 2 8-bit numbers with different signs
 - Take the 1's complement of 58 (i.e., invert)
 - \(0011\ 1010\)
 - \(1100\ 0101 = -58\)
 - \(1111\ 0010 = -13\)
 - \(8 + 4 + 1 = 13\)

Addition with Carry

- 8-bit number
 - Invert
 - \(0000\ 0010 = 2_{10}\)
 - \(1111\ 1101\)
 - Add
 - 9 bits
 - End-around carry of overflow bit

Copyright 2010-2011 John Wiley & Sons, Inc. & Robert F. Kelly
Subtraction

- **8-bit number**
 - 0110 1010 = 106
 - Invert
 - 0101 1010 (90\text{\textsubscript{10}})
 - 1010 0101
 - Add
 - 9 bits
 - End-around carry of overflow bit

2’s Complement

- **Modulus = a base 2 “1” followed by specified number of 0’s**
 - For 8 bits, the modulus = 1000 0000
- **Two ways to find the complement**
 - Subtract value from the modulus or invert (+1)
Example (1’s Complement)

- The 32 bit integer that represents 17 is stored as 0011_{16} (0000 … 010001)
- The 2’s-complement of the above number is FFEE_{16} (1111 … 101111)
- And the sum of the 2 numbers is 0000_{16}

2’s complement formed by inverting original number and adding 1