Finite-State Machines

- A finite state machine (FSM)
 - An abstract representation of behavior exhibited by some systems
 - Derived from application requirements.
 - But, not all aspects of requirements are specified by an FSM. (e.g., real time requirements, performance requirements)
 - A part of UML 2.x
- Example (Moore machine- actions are associated with states)

Mealy vs. Moore Machine

Source: “State machines and Statecharts” by Bruce Powel Douglass
Embedded Systems and FSMs

- An embedded system often
 - Receives inputs from its environment and
 - Responds with appropriate actions.
 - While doing so, it moves from one state to another.
 - The response depends on its current state.

- Behavior of an embedded system is often modeled by a finite state machine (FSM).

Finite-State Machines

- Example with initial state, final state, and action
 - Mealy machine (actions are associated with transitions)

- Is FSM requirements spec or design spec?
 - Can be useful for both

- Application domains?
 - GUIs, network protocols, pacemakers, Teller machines, WEB applications, safety software modeling in nuclear plants, and many more.

FSM and Statecharts

- Note that FSMs are different from statecharts.
 - While FSMs can be modeled using statecharts, the reverse is not true.
 - Techniques for generating tests from FSMs are different from those for generating tests from statecharts.

- The term “state diagram”, a directed graph, is often used to denote a graphical representation of an FSM or a statechart.

FSM (Mealy machine): Formal definition

Deterministic

A finite-state machine is a six-tuple $(X, Y, Q, q_0, \delta, O)$, *where*

- X is a finite set of input symbols also known as the input alphabet.
- Y is a finite set of output symbols also known as the output alphabet.
- Q is a finite set of states.
- $q_0 \in Q$ is the initial state.
- $\delta : Q \times X \rightarrow Q$ is a next state or state transition function.
- $O : Q \times X \rightarrow Y$ is an output function.

Non-deterministic

$\delta : Q \times X \rightarrow 2^Q$
Formal Description Examples

<table>
<thead>
<tr>
<th>X</th>
<th>[Turn-CW]</th>
<th>[Turn-CW, Turn-CCW] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Q</td>
<td>[OFF, ON_DIM, ON_BRIGHT]</td>
<td>[OFF, ON_DIM, ON_BRIGHT] [q0, q1, q2]</td>
</tr>
<tr>
<td>q0</td>
<td>[OFF]</td>
<td>q0</td>
</tr>
<tr>
<td>F</td>
<td>None</td>
<td>q1</td>
</tr>
<tr>
<td>δ</td>
<td>See Figure</td>
<td>See Figure</td>
</tr>
<tr>
<td>O</td>
<td>Not applicable</td>
<td>See Figure</td>
</tr>
</tbody>
</table>

Test Generation from FSMs

Blue: Generated data

Our focus

Test generation algorithm

Requirements ----- FSM ----- Test generation algorithm

Test generation for application

Application Test inputs

FSM based Test inputs

Test inputs

Test driver

Application

Pass/fail

Oracle

Observed behavior

©Aditya P Mathur 2009

Tabular Representation

<table>
<thead>
<tr>
<th>Current state</th>
<th>Action</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>INIT (num, d)</td>
<td>q1</td>
</tr>
<tr>
<td>q1</td>
<td>ADD (num, d)</td>
<td>OUT (num)</td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FSM Properties

- **Completely specified**
 - An FSM M is said to be completely specified if from each state in M there exists a transition for each input symbol.

- **Strongly connected**
 - An FSM M is considered strongly connected if for each pair of states (q_i, q_j) there exists an input sequence that takes M from state q_i to q_j.
FSM Properties

- **V-Equivalence**
 - Let $M_1 = (X, Y, Q_1, m^1_0, T_1, O_1)$ and $M_2 = (X, Y, Q_2, m^2_0, T_2, O_2)$ be two FSMs.
 - Let V denote a set of non-empty strings over the input alphabet X, i.e., $V \subseteq X^*$.
 - Let q_i and q_j be two different states of machines M_1 and M_2, respectively.
 - q_i and q_j are considered \textit{V-equivalent} if $O_1(q_i, s) = O_2(q_j, s)$ for all $s \in V$.
 - q_i and q_j are considered \textit{equivalent} if $O_1(q_i, s) = O_2(q_j, s)$ for any set V.
 - Otherwise, they are \textit{distinguishable}.

- **k-equivalence**
 - Let $M_1 = (X, Y, Q_1, m^1_0, T_1, O_1)$ and $M_2 = (X, Y, Q_2, m^2_0, T_2, O_2)$ be two FSMs.
 - States $q_i \in Q_1$ and $q_j \in Q_2$ are considered \textit{k-equivalent} if, when excited by any input of length k, yield identical output sequences.
 - States that are not k-equivalent are considered \textit{k-distinguishable}.
 - It is also easy to see that if two states are k-distinguishable for any $k > 0$ then they are also distinguishable for any $n \geq k$.
 - If M_1 and M_2 are not k-distinguishable then they are said to be k-equivalent.
 - In other words, there is no $s \in X^k$ such that $O(q_i, s) \neq O(q_j, s)$

- **Machine equivalence**
 - Machines M_1 and M_2 are said to be equivalent if
 - (a) for each state σ in M_1 there exists a state σ' in M_2 such that σ and σ' are equivalent and,
 - (b) for each state σ in M_2 there exists a state σ' in M_1 such that σ and σ' are equivalent.

- **Minimal machine**
 - An FSM M is considered minimal if the number of states in M is less than or equal to any other FSM equivalent to M.

Fault Model

- An FSM serves to specify the correct requirement or design of an application. Hence tests generated from an FSM target faults related to the FSM itself.

- Fault model defines a small set of possible faults that can occur in the implementation.

\textit{What faults are targeted by the tests generated using an FSM?}
Fault Model (Sequencing Faults)

- Correct design
- Operation error
- Transfer error

Fault Model (Sequencing Faults)

- Correct design
- Extra state error
- Missing state error

Mutants of FSMs

- Mutants of the model M_d
 - Possible implementations of the model
 - Obtained by introducing 1^* faults 1^* times
 - Use the fault model introduced

Mutants of FSMs

- Some mutants may be equivalent to M_d
 - Output behaviors of M_d and the mutants are identical on all possible inputs
 - Note that this is different to program mutation

- Example first-order mutants
 - Find a test that distinguish M and M_1
 - Find a test that distinguish M and M_2
Fault Coverage

- How to evaluate the goodness of a test set?
 - Count how many faults it reveals in an implementation M_i

- Formal definition of fault coverage, given fault model
 - N_i: total number of first-order mutants of the machine M (i.e., the number of all possible implementations)
 - N_e: number of mutants that are equivalent to M
 - N_d: number of mutants distinguished by a test set T generated using a test-generation method.
 - N_f: number of mutants not distinguished by T

$$FC(T, M) = \frac{\text{Number of mutants not distinguished by } T}{\text{Number of mutants that are not equivalent to } M} = \frac{N_f - N_e - N_d}{N_i - N_e}$$

Test Generation using Chow’s Method

- Assumptions
 - Minimal, connected, deterministic
 - Completely specified

- Algorithm Sketch (derive test set from a given FSM M)
 - Estimate the max. number of states (m) in the correct implementation of M.
 - Construct the characterization set W for M.
 - Construct the testing tree for M and generate the transition cover set P from the testing tree.
 - Construct set Z from W and m.
 - Desired test set is $P-Z$

Step 1: Estimation of m

- We do not have access to the correct design or the correct implementation. So we need to estimate.
- This is based on a knowledge of the implementation. In the absence of any such knowledge, let $m=|Q|$.

Step 2: Construction of W. What is W?

- Let $M=(X, Y, Q, q_1, \delta, O)$ be a minimal and complete FSM.
- W is a finite set of input sequences that distinguish the behavior of any pair of states in M.
- Given states q_i and q_j in Q, W contains a string s such that: $O(q_i, s) \neq O(q_j, s)$
- Example
 - $W=\{\text{baaa,aa,aaa}\}$
 - e.g., baaa distinguishes state q_1 from q_2 as $O(\text{baaa},q_1) \neq O(\text{baaa},q_2)$
Steps to Construct W

- Step 1: Construct a sequence of \(k \)-equivalence partitions of \(Q \) denoted as \(P_1, P_2, \ldots, P_m \), \(m > 0 \).

- Step 2: Traverse the \(k \)-equivalence partitions in reverse order to obtain distinguishing sequence for each pair of states.

\[k \]-equivalence Partition of \(Q \)?

- A \(k \)-equivalence partition of \(Q \), denoted as \(P_k \), is a collection of \(n \) finite sets \(\Sigma_{k1}, \Sigma_{k2}, \ldots, \Sigma_{kn} \) such that

 \[\bigcup_{i=1}^{n} \Sigma_{ki} = Q \]

 - States in \(\Sigma_{ki} \) are \(k \)-equivalent.

 - If state \(v \) is in \(\Sigma_{ki} \) and \(v \) in \(\Sigma_{kj} \) for \(i \neq j \), then \(u \) and \(v \) are \(k \)-distinguishable.

\(k \)-equivalence

- Let \(M_1 = (X, Y, Q_1, m_1, T_1, O_1) \) and \(M_2 = (X, Y, Q_2, m_2, T_2, O_2) \) be two FSMs.

- States \(q_i \in Q_1 \) and \(q_j \in Q_2 \) are considered \(k \)-equivalent if, when excited by any input of length \(k \), yield identical output sequences.

How to Construct a \(k \)-equivalence Partition?

- Given an FSM \(M \), construct a 1-equivalence partition, start with a tabular representation of \(M \).

<table>
<thead>
<tr>
<th>Current state</th>
<th>Output</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>0</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>0</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>0</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_4)</td>
<td>1</td>
<td>(q_4)</td>
</tr>
<tr>
<td>(q_5)</td>
<td>1</td>
<td>(q_5)</td>
</tr>
</tbody>
</table>

Construct 1-equivalence Partition

- Group states identical in their Output entries. This gives us 1-partition \(P_1 \) consisting of \(\Sigma_1 = \{q_1, q_2, q_3\} \) and \(\Sigma_2 = \{q_4, q_5\} \).

<table>
<thead>
<tr>
<th>(\Sigma)</th>
<th>Current state</th>
<th>Output</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(q_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(q_2)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(q_3)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(q_4)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(q_5)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Construct 2-equivalence Partition

- Rewrite P_1 table.
 - Remove the output columns.
 - Replace a state entry q_i by q_{ij} where j is the group number in which lies state q_i.

<table>
<thead>
<tr>
<th>Σ</th>
<th>Current state</th>
<th>Next state</th>
<th>Group number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
<td>q_{11}</td>
<td>q_{42}</td>
</tr>
<tr>
<td></td>
<td>q_2</td>
<td>q_{11}</td>
<td>q_{52}</td>
</tr>
<tr>
<td></td>
<td>q_3</td>
<td>q_{52}</td>
<td>q_{11}</td>
</tr>
<tr>
<td>2</td>
<td>q_4</td>
<td>q_{31}</td>
<td>q_{42}</td>
</tr>
<tr>
<td></td>
<td>q_5</td>
<td>q_{21}</td>
<td>q_{52}</td>
</tr>
</tbody>
</table>

Construct 2-equivalence Partition (cont.)

- Construct P_2 table
 - Group all entries with identical **second subscripts** under the next state column.
 - Relabel the groups

<table>
<thead>
<tr>
<th>Σ</th>
<th>Current state</th>
<th>Next state</th>
<th>P_2 Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
<td>q_{11}</td>
<td>q_{43}</td>
</tr>
<tr>
<td></td>
<td>q_2</td>
<td>q_{11}</td>
<td>q_{53}</td>
</tr>
<tr>
<td>2</td>
<td>q_3</td>
<td>q_{53}</td>
<td>q_{11}</td>
</tr>
<tr>
<td>3</td>
<td>q_4</td>
<td>q_{32}</td>
<td>q_{43}</td>
</tr>
<tr>
<td></td>
<td>q_5</td>
<td>q_{21}</td>
<td>q_{53}</td>
</tr>
</tbody>
</table>

Construct 3-equivalence Partition (cont.)

- Construct P_3 table
 - Group all entries with identical **second subscripts** under the next state column.
 - Relabel the groups

<table>
<thead>
<tr>
<th>Σ</th>
<th>Current state</th>
<th>Next state</th>
<th>P_3 Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
<td>q_{11}</td>
<td>q_{44}</td>
</tr>
<tr>
<td></td>
<td>q_2</td>
<td>q_{11}</td>
<td>q_{54}</td>
</tr>
<tr>
<td>2</td>
<td>q_3</td>
<td>q_{54}</td>
<td>q_{11}</td>
</tr>
<tr>
<td>3</td>
<td>q_4</td>
<td>q_{32}</td>
<td>q_{43}</td>
</tr>
<tr>
<td>4</td>
<td>q_5</td>
<td>q_{21}</td>
<td>q_{54}</td>
</tr>
</tbody>
</table>

Construct 4-equivalence Partition (cont.)

- Construct P_4 table
 - Continue the regrouping and relabeling
 - Repeat constructing k-eq. partitions until converge

<table>
<thead>
<tr>
<th>Σ</th>
<th>Current state</th>
<th>Next state</th>
<th>P_4 Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
<td>q_{11}</td>
<td>q_{44}</td>
</tr>
<tr>
<td>2</td>
<td>q_2</td>
<td>q_{11}</td>
<td>q_{55}</td>
</tr>
<tr>
<td>3</td>
<td>q_3</td>
<td>q_{55}</td>
<td>q_{11}</td>
</tr>
<tr>
<td>4</td>
<td>q_4</td>
<td>q_{33}</td>
<td>q_{44}</td>
</tr>
<tr>
<td>5</td>
<td>q_5</td>
<td>q_{22}</td>
<td>q_{55}</td>
</tr>
<tr>
<td>k-Equivalence Partition: Convergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- The process is guaranteed to converge. (P_n = P_{n+1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- When the process converges, and the machine is minimal, each state will be in a separate group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- The next step is to obtain the distinguishing strings for each state.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>