Test Generation from Requirements

Lecture 6

Dr. Iichul Yoon (icyoon@sunykorea.ac.kr)
Sources: (1) Foundations of Software Testing (textbook), (2) slides by Prof. Mathur

Test Generation from Predicates

- Predicates arise from requirements in a variety of applications.

An example
- A boiler needs to be shut down when the following conditions hold:
 - The water level in the boiler is below X lbs. (a)
 - The water level in the boiler is above Y lbs. (b)
 - A water pump has failed. (c)
 - A pump monitor has failed. (d)
 - Steam meter has failed. (e)

The boiler is to be shut down when a or b is true or the boiler is in degraded mode and the steam meter fails. We combine these five conditions to form a compound condition (predicate) for boiler shutdown.

Boolean expression E that when true must force a boiler shutdown:

$$E = a + b + c + d + e$$

where the $+$ sign indicates "OR" and a multiplication indicates "AND."

Test Generation from Predicates

- Goal
 - The goal of predicate-based test generation is to generate tests from a predicate p that guarantee the detection of any fault, that belongs to a class of faults, in the coding of p.

Predicate testing

- Another example
 - A condition is represented formally as a predicate, also known as a Boolean expression. For example, consider the requirement

 "if the printer is ON and has paper then send document to printer."

 This statement consists of a condition part and an action part. The predicate for the condition part is:

 $$p_1: (\text{printer status = ON}) \land (\text{printer tray != empty})$$

Test Generation from Predicates

- Terms
 - Relational operators ($relop$)
 - $\{<, \leq, >, \geq, =, \neq\}$ ($= \text{ and } ==$ are considered equivalent.)
 - Boolean operators (bop)
 - $\{\land, \lor, \lor, \land\}$ also known as $\{\text{not, AND, OR, XOR}\}$.
 - Relational expression
 - $e_1 relop e_2$. (e.g. $a+b < c$)
 - e_1 and e_2 are expressions whose values can be compared using $relop$.
 - Simple predicate
 - A Boolean variable or a relational expression. $(x<0)$
 - Compound predicate
 - Join one or more simple predicates using bop.
 - e.g., $(\text{gender} == \text{"female"} \land \text{age} < 65)$
Test Generation from Predicates

Terms
- **Boolean expression**
 - One or more Boolean variables joined by bop. (e.g., a \(\land \) b \(\lor \) c)
 - a, b, and c are also known as *literals*.
 - Negation is also denoted by placing a bar over a Boolean expression
 - a\(\land \)b and a\(\lor \)b for a \(\land \) b and a \(\lor \) b when there is no confusion.
- **Singular Boolean expression**
 - When each literal appears only once in the expr (e.g., a \(\land \) b \(\lor \) c)
- **Mutually Singular**
 - In an expression \(E = e_1 \land e_2 \land \ldots \land e_k \land bop_1 \land bop_2 \land \ldots \land bop_m \land e_{k+1} \land \ldots \land e_n \land e_{k+2} \land k > 1 \) and \(e_i \) are mutually singular when \(e_i \) and \(e_j \) do not share any literal
 - \(e_i \) is considered singular if it is singular and mutually singular with the remaining elements of \(E \).
 - \(e_i \) is considered non-singular if it is non-singular by itself and mutually singular with the remaining elements of \(E \).

Disjunctive normal form (DNF)
- Sum of product terms: e.g., \((pq) + (rs) + (ac) \).

Conjunctive normal form (CNF)
- Product of sums: e.g., \([p+q][r+s][a+c] \)
- Any Boolean expression in DNF can be converted to an equivalent CNF and vice versa.
 - Example
 - CNF: \((p+q)(r+s)(a+c) \)
 - DNF: \((pq+rs) \)
- A predicate \(p \), can be converted to a Boolean expression by replacing each relational expression in \(P \), by a distinct Boolean variable.

Abstract Syntax Tree Representation

- **AST(\(P_r \))**
- \((a+b<c) \land \neg p \land (r > s) \)

Fault Model for Predicate Testing

Fault targets of predicate testing
- Boolean operator fault
- Relational operator fault
- Arithmetic expression fault

Boolean operator fault
- Correct predicate: \((a<b) \lor (c>d) \land e \)
 - Here a, b, c, and d are integer variables and e is a Boolean variable.
 - \((a>b) \land (c>d) \land e \) Incorrect Boolean operator
 - \((a<b) \lor (c>d) \land e \) Incorrect negation operator
 - \((a>b) \land (c>d) \lor e \) Incorrect Boolean operators
 - \((a<b) \lor (e>d) \land c \) Incorrect Boolean variable.
Fault Model for Predicate Testing

- Relational operator fault
 - Correct predicate: \((a < b) \lor (c > d) \land e\)
 - \((a == b) \lor (c > d) \land e\) Incorrect relational operator
 - \((a == b) \lor (c \leq d) \land e\) Two relational operator faults
 - \((a == b) \lor (c > d) \lor e\) Incorrect relational and Boolean operators

- Arithmetic expression fault
 - Assume that \(E_c: e_1 \text{ rop }_1 e_2\) is a correct expression, and \(E_i: e_3 \text{ rop}_2 e_4\) is an incorrect expr.
 - Assume that \(E_c\) and \(E_i\) use the same set of variables.
 - off-by-\(1\) fault, if any test making \(e_3 = e_2\) makes \(|e_3 - e_4| = 1\).
 - i.e., \(E_i\) is equivalent to either \((e_3 \text{ rop}_2 e_4 + 1)\) or \((e_3 \text{ rop}_2 e_4 - 1)\).
 - off-by-\(1\)^* fault, if any test making \(e_3 = e_2\) makes \(|e_3 - e_4| \geq 1\).
 - off-by-\(1\)^+ fault, if any test making \(e_3 = e_2\) makes \(|e_3 - e_4| > 1\).

Arithmetic expression faults: example

Suppose that the correct predicate \(E_c: a < b + c\), where \(a\) and \(b\) are integer variables. Assuming that \(c = 1\), three incorrect versions of \(E_i\) follow.

- \(a < b\)
 - Assuming that \(c = 1\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b\).
 - \(a < b + 1\)
 - Assume that \(c = 1\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b + 1\).
 - \(a < b - 1\)
 - Assuming that \(c > 0\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b - 1\).

\[\text{e.g. } a = 2, b = 1, c = 1 \]

- \(a < b + 1\)
 - Assume that \(c = 1\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b + 1\).
 - \(a < b - 1\)
 - Assuming that \(c > 0\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b - 1\).

\[\text{e.g. } a = 4, b = 2, c = 2 \]

- \(a < b + 1\)
 - Assume that \(c = 1\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b + 1\).
 - \(a < b - 1\)
 - Assuming that \(c > 0\), there is an off-by-\(1\) fault in \(E_i\) as \(a = b - 1\).

\[\text{e.g. } a = 3, b = 2, c = 1 \]
Goal of predicate testing

- Given a correct predicate p_c, generate a test set T such that
 - there is at least one test case $t \in T$ for which p_c and its faulty version p_i evaluate to different truth values
- Guarantee the detection of any fault of the kind in the fault model under consideration.

Example
- Suppose that $p_c: a < b + c$ and $p_i: a > b + c$.
- Consider a test set $T = \{t_1, t_2\}$ where $t_1: a = 0, b = 0, c = 0$ and $t_2: a = 0, b = 1, c = 1$.
- t_2 can reveal the fault

More for Fault Model

- Missing Boolean variable faults
- Extra Boolean variable faults

Correct predicate: $a \lor b$
- Missing Boolean variable fault: a
- Extra Boolean variable faults: $a \lor b \lor c$

Predicate Constraints: BR Symbols

- BR: Boolean and Relational
 - $BR = \{t, f, <, >, \leq, \geq, +, -\}$
 - A BR symbol is a constraint on a Boolean variable or a relational expression.
 - For a predicate $E: a < b$ and the constraint associated is "$<$", a test case that satisfies this constraint for E must cause E to evaluate to false.
 - $+$ on E: $e_1 \text{ rop } e_2$, A test for E ensure that $0 < e_1 - e_2 \leq \varepsilon$
 - $-$ on E: $e_1 \text{ rop } e_2$, A test for E ensures that $-\varepsilon \leq e_1 - e_2 < 0$
 - A constraint C could be infeasible for a predicate p_r.
 - e.g., constraint is infeasible for $a > b \land b > d$, if $d > a$ is given.

Constraint and test case
- Consider an expr $E: a < c+d$, and a constraint "$C: (=)" on E.
- A test case satisfying C on E is: $<a=1, c=0, d=1>$

Predicate Constraints

- Let p_r denote a predicate with $n \land$ and \lor operators ($n>0$).
 - A predicate constraint (or simply, constraint) C for p_r is:
 - A sequence of $(n+1)$ BR symbols
 - One BR symbol for each Boolean variable or relational expr in p_r.
 - Test case t satisfies C for predicate p_r, if each component of p_r satisfies the corresponding constraint in C when evaluated against t.
 - That is, constraint C for predicate p_r guides the development of a test for p_r.

True and False Constraints

- $p_r(C)$ denotes the value of predicate p_r evaluated using a test case that satisfies C.
- C is a true constraint when $p_r(C)$ is true and a false constraint otherwise.

- A set of constraints S is partitioned into subsets S^t and S^f, respectively, such that
 - $S = S^t \cup S^f$
 - For each C in S^t, $p_r(C) = true$
 - For any C in S^f, $p_r(C) = false$

Predicate Testing Criteria

- Given a predicate p_r, we want to generate a test set T such that
 - T is minimal and
 - T guarantees the detection of any fault in the coding of p_r

- Common criteria
 - BOR
 - BRO
 - BRE

Predicate Testing: BOR Testing Criterion

- A test set T that satisfies the BOR testing criterion for a compound predicate p_r guarantees the detection of single or multiple Boolean operator faults in the implementation of p_r.

- T is referred to as a BOR-adequate test set and sometimes written as T_{BOR}.

Predicate Testing: BRO Testing Criterion

- A test set T that satisfies the BRO testing criterion for a compound predicate p_r guarantees the detection of single or multiple Boolean operator and relational operator faults in the implementation of p_r.

- T is referred to as a BRO-adequate test set and sometimes written as T_{BRO}.
Predicate Testing: BRE Testing Criterion

- A test set \(T \) that satisfies the BRE testing criterion for a compound predicate \(p_r \), guarantees the detection of single or multiple Boolean operator, relational expression, and arithmetic expression faults in the implementation of \(p_r \).

- \(T \) is referred to as a BRE-adequate test set and sometimes written as \(T_{\text{BRE}} \).

Guaranteeing Fault Detection: Meaning?

- Let \(T_x \), \(x \in \{ \text{BOR}, \text{BRO}, \text{BRE} \} \), be a test set derived from predicate \(p_r \).

- Let \(p_f \) be another predicate obtained from \(p_r \) by injecting single or multiple faults of one of three kinds:
 - Boolean operator fault, relational operator fault, and arithmetic expression fault.

- \(T_x \) is said to guarantee the detection of faults in \(p_f \) if for some \(t \in T_x \), \(p_r(t) \neq p_f(t) \).

Guaranteeing Fault Detection: Example

- **BOR-adequate test set**

 Let \(p_r = a < b \land c > d \)

 Constraint set \(S = \{ (t, t), (t, f), (f, t) \} \)

 Compute \(T_{\text{BOR}} = \{ t_1, t_2, t_3 \} \) is a BOR adequate test set that satisfies \(S \).

 - \(t_1: \langle a=1, b=2, c=1, d=0 \rangle \); Satisfies \((t, t)\), i.e. \(a < b \) is true and \(c > d \) is also true.

 - \(t_2: \langle a=1, b=2, c=1, d=2 \rangle \); Satisfies \((t, f)\)

 - \(t_3: \langle a=1, b=0, c=1, d=0 \rangle \); Satisfies \((f, t)\)

How to evaluate the effectiveness?

- Generate all variants by injecting Boolean operator faults, and evaluate against \(T \)

Predicate

<table>
<thead>
<tr>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a < b \land c > d)</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

Single Boolean operator fault

1	\(a < b \land c > d \)	true	true	true
2	\(a < b \land c < d \)	false	true	false
3	\(a < b \land c < d \)	false	false	true

Multiple Boolean operator faults

\(\neg a < b \land c < d \)	true	true	false
\(\neg a < b \land c < d \)	false	false	true
\(\neg a < b \land c < d \)	false	false	false
Generating BOR, BRO, BRE Adequate Tests

- We want to generate minimal test set.

- Review of Cartesian product of two sets A and B
 \[A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \} \]

- To generate minimal set, define another set product called onto product
 \[A \bigodot B = \{ (u, v) \mid u \in A, v \in B \} \]
 where each element of A appears at least once and each element of B appears once as v.
 - Note that \(A \bigodot B \) is a minimal set.

Cartesian vs. Onto Product

- Let \(A = \{t, =, >\} \) and \(B = \{f, <\} \)

- \(A \times B = \{ (t, f), (t, <), (=, f), (=, <), (>, f), (>, <) \} \)

- \(A \bigodot B = \{ (t, f), (=, <), (>, <) \} \)

- Any other possibilities for \(A \bigodot B ? \)

Generation of BOR Constraint Set

- Use AST(\(P_r \))
 - Leaf nodes: Boolean variable or relation expression
 - Internal nodes: Boolean operators

- Procedure BOR_CSET
 - Label each leaf node with the initial constraint set
 - Compute BOR-constraint set for internal nodes
 - Visit in a bottom-up order
 - Rules are different depending on internal node type
 - The constraint set for the root is the BOR-adequate test set
Generation of BOR Constraint Set

- **Compute BOR-constraint set for internal nodes**

 \(N \) is an OR-node:
 \[
 S_1' = S_{N_1}' \otimes S_{N_2}' \\
 S_2' = (S_{N_1}' \times \{ t \}) \cup (\xi \times S_{N_2}') \\
 \text{where } \xi \in S_{N_1}' \text{ and } \xi \in S_{N_2}'
 \]

 \(N \) is an AND-node:
 \[
 S_1' = S_{N_1}' \otimes S_{N_2}' \\
 S_2' = (S_{N_1}' \times \{ t \}) \cup (\xi \times S_{N_2}') \\
 \text{where } \xi \in S_{N_1}' \text{ and } \xi \in S_{N_2}'
 \]

 \(N \) is NOT-node:
 \[
 S_1'' = S_{N_1}' \\
 S_2'' = S_{N_2}'
 \]

Generation of BOR Adequate Test Set

- **A test set \(T \) that satisfies the BOR testing criterion for a compound predicate \(p_r \), guarantees the detection of single or multiple Boolean operator faults in the implementation of \(p_r \).**

- The BOR constraint set \(S \) for relational expression \(e_1 \) relope \(e_2 \):
 \[
 S = \{ (>, (=), (<) \}
 \]

- Separation of \(S \) into its true \((S^t) \) and false \((S^f) \) components:
 - relop: \(> \)
 \[
 S^t = \{ (>), (=), (<) \} \\
 S^f = \{ (>, (=), (<) \}
 \]
 - relop: \(\geq \)
 \[
 S^t = \{ (>, (=), (<) \} \\
 S^f = \{ (>, (=), (<) \}
 \]
 - relop: \(= \)
 \[
 S^t = \{ (=) \} \\
 S^f = \{ (=), (>), (<) \}
 \]
 - relop: \(< \)
 \[
 S^t = \{ (<) \} \\
 S^f = \{ (=), (>), (<) \}
 \]
 - relop: \(\leq \)
 \[
 S^t = \{ (<) \} \\
 S^f = \{ (>), (=), (<) \}
 \]
Generation of BRO Constraint Set

- Procedure BRO_CSET
 - Label each leaf node with the initial constraint set
 - For Boolean variable node, \{t, f\}
 - For relational expression node, \{<, =, >\}
 - Compute BOR-constraint set for internal nodes
 - Visit in a bottom-up order
 - Use BOR_CSET procedure
 - The constraint set for the root is the BRO-adequate test set

BRO Constraint Set: Example (cont.)

- Traverse AST in a bottom up order and compute constraint set for internal nodes

\[S'_{N0} = S_{N2} \cap \{t\} \]
\[S'_{N3} = S_{N4} \cap \{t\} \]
\[S'_{N4} = (S_{N0} \times \{<\}) \cup (\{<\} \times S_{N3}) \]
\[= \{(>, f, >, f, <, f, <\}\} \]
\[S'_{N5} = \{(>, f, >, f, <, f, <\}\} \]
\[S'_{N6} = (S'_{N4} \times \{<\}) \cup (\{<\} \times S'_{N5}) \]
\[= \{(>, f, >, f, <, f, <\}\} \]

Generation of BRO Constraint Set: Example

- Compute BRO-adequate test set for \(p_{2'}: (a+b<c) \land \lnot p \lor (r>s)\)
 - Label each leaf node with its constraint set \(S\)

\[S_{N0} = \{<\} \]
\[S_{N1} = \{(>, f, >, f, <, f, <\}\} \]
\[S_{N2} = \{(>, f, >, f, <, f, <\}\} \]
\[N_{0} \]
\[\lnot p \]
\[S_{N3} = \{<\} \]
\[p \]
\[N_{2} \]
\[\{(>, f, >, f, <, f, <\}\} \]

BRO Constraint Set: Example (cont.)

- Next, compute the constraint set for the root node.
 \[N_{6} \]
 \[N_{5} \]
 \[N_{4} \]
 \[N_{3} \]

\[N_{0} \]

\[\{(>, f, >, f, <, f, <\}\} \]
\[\{(>, f, >, f, <, f, <\}\} \]
\[\{(>, f, >, f, <, f, <\}\} \]
\[\{(>, f, >, f, <, f, <\}\} \]
Generation of BRE Constraint Set

- A test set T that satisfies the BRE testing criterion for a compound predicate p, guarantees the detection of single or multiple Boolean operator, relational expression, and arithmetic expression faults in the implementation of p.

- BRE-constraint set for a relational expression is
 $\{(+\varepsilon), (=), (-\varepsilon)\}$, $\varepsilon > 0$
 - For expression e_1 rop e_2

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Satisfying condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$</td>
<td>$0 < e_1 - e_2 \leq +\varepsilon$</td>
</tr>
<tr>
<td>$=$</td>
<td>$e_1 = e_2$</td>
</tr>
<tr>
<td>$-$</td>
<td>$-\varepsilon \leq e_1 - e_2 < 0$</td>
</tr>
</tbody>
</table>

Generation of BRE Constraint Set

- Procedure BRE_CSET
 - Label each leaf node with the initial constraint set
 - For Boolean variable node, $\{t,f\}$
 - For relational expression node, $\{+\varepsilon, =, -\varepsilon\}$
 - Compute BOR-constraint set for internal nodes
 - Visit it in a bottom-up order
 - Use BOR_CSET procedure
 - The constraint set for the root is the BRE-adequate test set