Fourth Normal Form

- Relation has redundant data
- In BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs
Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency
 - **Definition**: If every instance of schema R can be (losslessly) decomposed using attribute sets (X, Y) such that:
 $$ r = \pi_X(r) \bowtie \pi_Y(r) $$
 - then a multi-valued dependency
 $$ R = \pi_X(R) \bowtie \pi_Y(R) $$ holds in r
 - Ex: $\text{Person} = \pi_{\text{SSN},\text{PhoneN}}(\text{Person}) \bowtie \pi_{\text{SSN},\text{ChildSSN}}(\text{Person})$

Fourth Normal Form (4NF)

- A schema is in **fourth normal form** (4NF), if for every MVD $R = X \bowtie Y$ in that schema is either:
 - $X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
 - $X \cap Y$ is a superkey of R (i.e., $X \cap Y \rightarrow R$)
Fourth Normal Form (Cont’d)

- **Intuition**: if \(X \cap Y \rightarrow R \), there is a unique row in relation \(r \) for each value of \(X \cap Y \) (hence no redundancy)
 - Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.

- **Solution**: Decompose \(R \) into \(X \) and \(Y \)
 - Decomposition is lossless – but not necessarily dependency preserving (since 4NF implies BCNF – next)

4NF Implies BCNF

- Suppose \(R \) is in 4NF and \(X \rightarrow Y \) is a FD.
 - Assume \(X \) and \(Y \) are disjoint
 - \(R_1 = XY \), \(R_2 = R - Y \) is a lossless decomposition of \(R \)
 - Thus \(R \) has the MVD: \(R = R_1 \Join R_2 \)

- Since \(R \) is in 4NF, one of the following must hold:
 - \(XY \subseteq R - Y \)
 - (an impossibility)
 - \(R - Y \subseteq XY \)
 - (i.e., \(R = XY \) and \(X \) is a superkey)
 - \(XY \cap R - Y = X \) is a superkey
 - Hence, \(X \rightarrow Y \) satisfies BCNF condition
4NF Decomposition Algorithm

For simplicity, assume A and B are disjoint for FDs $A \rightarrow B$ in R

Input: $R = (\bar{R}; \bar{D})$ /* \bar{D} is a set of FDs and MVDs; FDs are treated as MVDs */
Output: A lossless decomposition of R where each schema is in 4NF.

Decomposition := [R] /* Initially decomposition consists of only one schema */
while there is a schema $S = (\bar{S}; \bar{D}')$ in Decomposition that is not in 4NF do
/* Let $\bar{X} \rightarrow \bar{Y}$ be an MVD in \bar{D} * such that $\bar{X} \bar{Y} \subseteq \bar{S}$ and */
it violates 4NF in S. Decompose using this MVD */
Replace S in Decomposition with schemas $S_1 = (\bar{X} \bar{Y}; \bar{D}_1')$ and
$S_2 = ((\bar{S} - \bar{Y}) \cup \bar{X}; \bar{D}_2')$, where $\bar{D}_1' = \pi_{\bar{X}\bar{Y}}(\bar{D}')$ and $\bar{D}_2' = \pi_{\bar{S} - \bar{Y}}(\bar{D}')$
end
return Decomposition

The algorithm is not correct. S_1 and S_2 should be
$S_1 = (X; D_1')$
$S_2 = (Y; D_2)$;

Otherwise, X join Y should be replaced to $X\rightarrow\!\!\!\!\!> Y$. (See slide 88)
If $X\rightarrow\!\!\!\!\!> Y$, $R = XY$ join $X(R-Y)$

Projection of MVD on a Set of Attributes

- Projection of MVD $R = V \bowtie W$ on a set of attributes X
 - $X = (X \cap V) \bowtie (X \cap W)$, if $V \cap W \subseteq X$
 - Undefined, otherwise.

- Example
 - Projection of MVD: $ABCD = AB \bowtie BCD$ on ABC
 - $AB \cap BCD = B \subseteq ABC$. So, the projection is $AB \bowtie BC$

 - Projection of MVD: $ABCD = ACD \bowtie BD$ on ABC
 - $ACD \cap BD = D \subseteq ABC$. So, the projection is undefined.
4NF Decomposition Example

- Example
 - Attributes = \(\{ABCD\} \)
 - MVDs
 - MVD1. \(ABCD = AB \bowtie BCD \)
 - MVD2. \(ABCD = ACD \bowtie BD \)
 - MVD3. \(ABCD = ABC \bowtie BCD \)
 - From MVD1, decomposed to \(AB, BCD \)
 - Projection of remaining MVDs on \(AB \) is not defined
 - Projection of remaining MVDs on \(BCD \) is:
 - For MVD2, \(BCD = CD \bowtie BD \)
 - For MVD3, \(BCD = BC \bowtie BCD \) (trivial)
 - Finally, \(AB, BD, CD \)

3NF Synthesis, BNCF, and 4NF Decomposition

- Example
 - Attributes = \(\{ABCDEFG\} \)
 - FDs = \(\{AB \rightarrow C, C \rightarrow B, BC \rightarrow DE, E \rightarrow FG\} \)
 - MVDs: \(R = BC \bowtie ABDEFG, R = EF \bowtie FGABCD \)
 - 3NF Synthesis result
 - \(R_1 = (ABC; (AB \rightarrow C, C \rightarrow B)) \)
 - \(R_2 = (CBDE; (C \rightarrow BDE)) \)
 - \(R_3 = (EF; (E \rightarrow FG)) \)
 - \(R_1 \) is not in BCNF due to \(C \rightarrow B \)
 - \(R_{11} = (BC; (C \rightarrow B)), R_{12} = (AC; \{\}) \)
3NF Synthesis & 4NF Decomposition (cont’)

Example

- BCNF Synthesis result
 - \(R_{11} = (AC; \{\}) \), \(R_{12} = (BC; \{ C \rightarrow B \}) \)
 - \(R_2 = (CBDE; \{ C \rightarrow BDE \}) \), \(R_3 = (EFG; \{ E \rightarrow FG \}) \)

- MVDs: \(R = BC \bowtie ABDEFG \), \(R = EF \bowtie FGABCD \)
 - The first MVD can be projected to \(R_2 \) (here, \(B = V \cap W \subseteq CBDE \))
 - then, “projected \(R_2'' = BC \bowtie BDE \). Is \(R_2 \) in 4NF?
 - No! because \(BC \cap BDE = B \) and \(B \) is not the key
 - \(R_{21} = (BC; \{ C \rightarrow B \}) \), \(R_{22} = (BDE; \{\}) \)
 - Similarly, the second MVD can be projected to \(R_3 \)
 - here, \(F = V \cap W \subseteq EFG \)
 - then, “projected \(R_3'' = EF \bowtie FG \). Is \(R_3 \) in 4NF?
 - No! because \(EF \cap FG = F \) and \(F \) is not the key
 - \(R_{31} = (EF; \{ E \rightarrow F \}) \), \(R_{32} = (GF; \{\}) \)

Customary Representation of MVDs

- Customary representation of MVDs
 - \(MVD \ R = \ V \bowtie W \) over \(R = (R; D) \), where
 - \(X = V \cap W \)
 - \(X \cup Y = V \) or \(X \cup Y = W \)
 - are represented as \(X \rightarrow Y \)
 - i.e., \(R = XY \bowtie X(R-Y) \)

- Another way of defining MVD in a relation
 - \(X \rightarrow Y \) then,
 - \(\forall \) tuple \(t, u \in R: t[X] = u[X] \). then \(\exists \) tuple \(v \in R \) where
 - \(v[X] = t[X] \) and
 - \(v[Y] = t[Y] \) and
 - \(v[rest] = u[rest] \)
Examples

- Apply (SSN, college, hobby)
 - SSN → college

- Apply (SSN, college, date, major)
 - Requirements
 - Apply once to each college
 - May apply to multiple majors
 - We can derive...
 - SSN, college → date, major / date → college
 - SSN → college, date
 - What is the real world constraint encoded by the MVD above?
 - A student must apply to the same set of majors at all colleges.

4NF Decomposition Algorithm (Rewritten)

Input: relation R + FDs for R + MVDs for R

Output: decomposition of R into 4NF relations with “lossless join”

Compute keys for R

Repeat until all relations are in 4NF:
- Pick any R’ with nontrivial A → B that violates 4NF
- Decompose R’ into R₁(A, B) and R₂(A, rest)
- Compute FDs and MVDs for R₁ and R₂
- Compute keys for R₁ and R₂