Third Normal Form

- A relational schema R is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - X is a superkey of R; or
 - Every $A \in Y$ is part of some key of R

- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)
 - Compromise – Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)

- 3NF decomposition is based on a minimal cover
Minimal Cover

- A minimal cover of a set of dependencies, F, is a set of dependencies, U, such that:
 - U is equivalent to F ($F^* = U^*$)
 - All FDs in U have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)

- FDs and attributes that can be deleted in this way are called redundant FD
- Redundant attributes can be defined similarly.

Computing Minimal Cover

- **Example:** $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E,$
 $BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$

- **Step 1:** Make RHS of each FD into a single attribute
 - **Algorithm:** Use the decomposition inference rule for FDs
 - Example: $L \rightarrow AD$ replaced by $L \rightarrow A, L \rightarrow D$; $ABH \rightarrow CK$ by $ABH \rightarrow C$, $ABH \rightarrow K$

- **Step 2:** Eliminate redundant attributes from LHS.
 - **Algorithm:** If FD $XB \rightarrow A \in F$ (where B is a single attribute) and $X \rightarrow A$ is entailed by F, then B was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB^+_F, AH^+_F, BH^+_F.
 - Since $C \in (BH)^+_F$, $BH \rightarrow C$ is entailed by F and A is redundant in $ABH \rightarrow C$.
Computing Minimal Cover (con’t)

- **Example (con’d):**
 - \(F = \{ BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E \} \)

- **Step 3:** Delete redundant FDs from \(F \)
 - **Algorithm:** If \(F - \{ f \} \) entails \(f \), then \(f \) is redundant
 - If \(f \) is \(X \rightarrow A \) then check if \(A \in X^+_{F - \{ f \}} \)
 - **Example:** \(BGH \rightarrow L \) is entailed by \(BH \rightarrow E \) and \(E \rightarrow L \), so it is redundant

- **Note:** The order of steps 2 and 3 cannot be interchanged!!

Synthesizing a 3NF Schema

- **Starting with a schema** \(R = (R, F) \)

- **Step 1:** Compute a minimal cover, \(U \), of \(F \).
 - The decomposition is based on \(U \), but since \(U' = F^* \) the same functional dependencies will hold
 - A minimal cover for
 - \(F = \{ ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E \} \)
 - is
 - \(U = \{ BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L \} \)
Synthesizing a 3NF schema (con’t)

- **Step 2**: Partition U into sets U_1, U_2, \ldots, U_n such that the LHS of all elements of U_i are the same
 - $U_1 = \{BH \rightarrow C, BH \rightarrow K\}$, $U_2 = \{A \rightarrow D\}$, $U_3 = \{C \rightarrow E\}$, $U_4 = \{L \rightarrow A\}$, $U_5 = \{E \rightarrow L\}$

- **Step 3**: For each U_i, form schema $R_i = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i
 - Each FD of U will be in some R_i. Hence the decomposition is dependency preserving
 - $R_1 = (BHCK; BH\rightarrow C, BH\rightarrow K)$, $R_2 = (AD; A\rightarrow D)$, $R_3 = (CE; C\rightarrow E)$, $R_4 = (AL; L\rightarrow A)$, $R_5 = (EL; E\rightarrow L)$

- **Step 4**: If no R_i is a superkey of R, add schema $R_0 = (R_0, \{\})$ where R_0 is a key of R.
 - $R_0 = (BGH, \{\})$
 - R_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$
 - a missing attribute, A, must be part of all keys (since it’s not in any FD of U, deriving a key constraint from U involves the augmentation axiom)
 - R_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$
 - Example: $\{ABCD; (A \rightarrow B, C \rightarrow D)\}$.
 - Step 3 decomposition: $R_1 = \{AB; (A \rightarrow B)\}$, $R_2 = \{CD; (C \rightarrow D)\}$. Lossy! Need to add $\{AC; \{\}\}$, for losslessness

- **Step 4 guarantees lossless decomposition.**
BCNF Design Strategy

- The resulting decomposition, \(R_0, R_1, \ldots, R_n \), is
 - Dependency preserving (since every FD in \(U \) is a FD of some schema)
 - Lossless (although this is not obvious)
 - In 3NF (although this is not obvious)

- **Strategy for decomposing a relation**
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a non-dependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several

- **Example**: A join is required to get the names and grades of all students taking CS305 in S2002.

  ```sql
  SELECT S.Name, T.Grade
  FROM Student S, Transcript T
  WHERE S.Id = T.StudId AND
  T.CrsCode = 'CS305' AND T.Semester = 'S2002'
  ```
Denormalization

- **Tradeoff**: Judiciously introduce redundancy to improve performance of certain queries
- **Example**: Add attribute Name to Transcript

```
SELECT T.Name, T.Grade
FROM Transcript T
WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript is no longer in BCNF since key is (StudId, CrsCode, Semester) and StudId → Name

Additional note on BCNF and 3NF Synthesis

- **Pitfalls**: Relations R_i with FDs G_i from 3NF synthesis are also in BCNF
 - Tempted because FDs used for creating each relation are based on super keys
 - However, R_i can only guarantee the FDs in G_i, and cannot entail all FDs in G^+
- **Example**
 - $R = \{\text{AcctNum, ClientId, Officeld, DateOpened}\}$
 - $F = \{\text{ClientId, Officeld} \rightarrow \text{AcctNum}, \text{AcctNum} \rightarrow \text{Officeld, DateOpened}\}$
 - Through 3NF synthesis, we get
 - $R_1 = \{(\text{ClientId, Officeld, AcctNum}), (\text{ClientId, Officeld} \rightarrow \text{AcctNum})\}$ (Not in BCNF)
 - $R_2 = \{(\text{AcctNum, Officeld, DateOpened}), (\text{AcctNum} \rightarrow \text{Officeld, DateOpened})\}$
 - Need to compute $\pi_{R_i}(G)$ and look for the violators there!!!
BCNF Decomposition from 3NF Synthesis

• Attributes
 • St (student), C (course), Sem (semester), P (professor), T (time), R (room)

• FDs
 • $St \ C \ Sem \rightarrow P$
 • $P \ Sem \rightarrow C$
 • $C \ Sem \ T \rightarrow P$
 • $P \ Sem \ T \rightarrow C \ R$
 • $P \ Sem \ C \ T \rightarrow R$
 • $P \ Sem \ T \rightarrow C$

BCNF Decomposition from 3NF Synthesis

• Minimal Cover Step 1.
 • $St \ C \ Sem \rightarrow P$
 • $P \ Sem \rightarrow C$
 • $C \ Sem \ T \rightarrow P$
 • $P \ Sem \ T \rightarrow C \ R$
 • $P \ Sem \ T \rightarrow C$ (decomposition)
 • $P \ Sem \ T \rightarrow R$ (decomposition)
 • $P \ Sem \ C \ T \rightarrow R$
 • $P \ Sem \ T \rightarrow C$ (duplicate)

• Let F denote this set.
BCNF Decomposition from 3NF Synthesis

Minimal Cover Step 2.
- FD1. St C Sem → P
- FD2. P Sem → C
- FD3. C Sem T → P
 - P Sem T → C R
 - FD4. P Sem T → C (decomposition)
 - FD5. P Sem T → R (decomposition)
 - P Sem C T → R
 - P Sem T → R (reduced and this is duplicate. So, discard)
 - P Sem T → C (duplicate)
- e.g., check for the first FD, (St C)*, (St Sem)*, (C Sem)*
 - no redundant attribute in the first FD
 - (P Sem T)* = P Sem C T R

BCNF Decomposition from 3NF Synthesis

Minimal Cover Step 3.
- FD1. St C Sem → P
- FD2. P Sem → C
- FD3. C Sem T → P
 - FD4. P Sem T → C (decomposition)
 - FD5. P Sem T → R (decomposition)
- **Search for Removable redundant FDs**
 - (St C Sem)*_{(F_{–}FD1)} = (St C Sem)
 - So, FD1 cannot be removed.
 - Nor for FD 2,3,5
 - FD4 is redundant (because of FD2)
BCNF Decomposition from 3NF Synthesis

- 3NF decomposition from the minimal Cover
 - \((St \ C \ Sem \ P; \ St \ C \ Sem \ \rightarrow \ P)\) ; include \(P \ Sem \ C\)
 - \((P \ Sem \ C; \ P \ Sem \ \rightarrow \ C)\)
 - \((C \ Sem \ T \ P; \ C \ Sem \ T \ \rightarrow \ P)\) ; include \(P \ Sem \ C\)
 - \((P \ Sem \ T \ R; \ P \ Sem \ T \ \rightarrow \ R)\)

- Super key in any of above? No
 - Add \(R_0 = (St \ T \ Sem \ P; \{\})\) ← this is one possibility

- Are these all in BCNF?
 - First and third are not because of the FD “\(P \ Sem \ \rightarrow \ C\)” in the second.
 - Remember that we have to check all the dependencies over the attributes of \(R_i\) that are implied by the original set of dependencies \(G\). i.e., \(\pi_{R_i}(G)\)
 - First is decomposed into: \((P \ Sem \ C; \ P \ Sem \ \rightarrow \ C)\), \((P \ Sem \ St; \{\})\) : \(St \ C \ Sem \ \rightarrow \ P\) is not preserved
 - Third is decomposed into: \((P \ Sem \ C; \ P \ Sem \ \rightarrow \ C)\), \((P \ Sem \ T; \{\})\) : \(C \ Sem \ T \ \rightarrow \ P\) is not preserved.