Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF) – no partial dependency
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)
- Normalization is a database design technique for producing a set of suitable relations that support the data requirements of an enterprise.
How Normalization Supports Database Design

Relationship Between Normal Forms
Process of Normalization

Un-Normalized Form (UNF)

- A table that contains one or more repeating groups.
- To create an unnormalized table:
 - Transform data from information source (e.g. form) into table format with columns and rows.

<table>
<thead>
<tr>
<th>propertyNo</th>
<th>pAddress</th>
<th>iDate</th>
<th>iTTime</th>
<th>comments</th>
<th>staffNo</th>
<th>sName</th>
<th>carReg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG4</td>
<td>6 Lawrence St, Glasgow</td>
<td>18-Oct-00</td>
<td>10.00</td>
<td>Need to replace crockery</td>
<td>SG37</td>
<td>Ann Beech</td>
<td>M231 JGR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-Apr-01</td>
<td>09.00</td>
<td>In good order</td>
<td>SG14</td>
<td>David Ford</td>
<td>M533 HDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-Oct-01</td>
<td>12.00</td>
<td>Damp rot in bathroom</td>
<td>SG14</td>
<td>David Ford</td>
<td>N721 HFR</td>
</tr>
<tr>
<td>PG16</td>
<td>5 Novar Dr, Glasgow</td>
<td>22-Apr-01</td>
<td>13.00</td>
<td>Replace living room carpet</td>
<td>SG14</td>
<td>David Ford</td>
<td>M533 HDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-Oct-01</td>
<td>14.00</td>
<td>Good condition</td>
<td>SG37</td>
<td>Ann Beech</td>
<td>N721 HFR</td>
</tr>
</tbody>
</table>
First Normal Form (1NF)

- A relation in which intersection of each row and column contains one and only one (atomic) value.

<table>
<thead>
<tr>
<th>propertyNo</th>
<th>lDate</th>
<th>lTime</th>
<th>pAddress</th>
<th>comments</th>
<th>staffNo</th>
<th>sName</th>
<th>carReg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG4</td>
<td>1-Oct-00</td>
<td>10:00</td>
<td>6 Lawrence St,</td>
<td>Need to replace crockery</td>
<td>SG37</td>
<td>Ann Beech</td>
<td>M231 JGR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glasgow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG4</td>
<td>22-Apr-01</td>
<td>09:00</td>
<td>6 Lawrence St,</td>
<td>In good order</td>
<td>SG14</td>
<td>David Ford</td>
<td>M333 HDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glasgow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG4</td>
<td>1-Oct-01</td>
<td>12:00</td>
<td>6 Lawrence St,</td>
<td>Dump not in bathroom</td>
<td>SG14</td>
<td>David Ford</td>
<td>N721 HFR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glasgow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG6</td>
<td>22-Apr-01</td>
<td>13:00</td>
<td>5 Novar Dr,</td>
<td>Replace living room</td>
<td>SG14</td>
<td>David Ford</td>
<td>M333 HDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glasgow</td>
<td>carpet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG6</td>
<td>24-Oct-01</td>
<td>14:00</td>
<td>5 Novar Dr,</td>
<td>Good condition</td>
<td>SG37</td>
<td>Ann Beech</td>
<td>N721 HFR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glasgow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Normal Form (2NF)

- Based on concept of full functional dependency:
 - A, X and B are attributes of a relation,
 - B is fully dependent on (A, X) if B is functionally dependent on (A,X) but not on any proper subset of (A,X) such as (A) or (X).
 - A, X → B and there is NO A → B or X → B

- 2nd Normal Form
 - A relation that does not have a FD, X → Y, where X is a strict subset of that schema’s key and Y has attributes that do not occur in any of the schema’s keys.
1NF to 2NF (Functional Dependencies)

- Fd1: PropertyNo, iDate → iTime, staffNo, comments, sName, carReg
- Fd2: PropertyNo → pAddress
- Fd3: staffNo → sName
- Fd4: iDate, staffNo → carReg
- Fd5: iDate, iTime, carReg → all other attributes
- Fd6: iDate, iTime, staffNo → all other attributes

Transformed into following two tables.

- Property (propertyNo, pAddress)
- PropertyInspection (propertyNo, iDate, iTime, comments, staffNo, sName, carReg)
BCNF

- **Definition:** A relation schema R is in BCNF if for every FD $X \rightarrow Y$ associated with R either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a superkey of R

- **Example:** Person1 (SSN, $Name$, $Address$)
 - The only FD is $SSN \rightarrow Name$, $Address$
 - Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- **Person (SSN, $Name$, $Address$, $Hobby$)**
 - The FD $SSN \rightarrow Name$, $Address$ does not satisfy requirements of BCNF
 - Since the key is (SSN, $Hobby$)

- **HasAccount ($AcctNum$, $ClientId$, $Officeld$)**
 - The FD $AcctNum \rightarrow Officeld$ does not satisfy BCNF requirements
 - Since keys are ($ClientId$, $Officeld$) and ($AcctNum$, $ClientId$); not $AcctNum$.
Redundancy

- Suppose R has a FD $A \rightarrow B$, and A is not a superkey. If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, if the A-value repeats twice)

- If A is a superkey, there cannot be two rows with same value of A
 - Hence, BCNF eliminates redundancy

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>stamps</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>coins</td>
</tr>
</tbody>
</table>

Third Normal Form

- A relational schema R is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
 - Every $A \in Y$ is part of some key of R
 - 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)
3NF Example

- HasAccount (AcctNum, ClientId, OfficeId)
 - ClientId, OfficeId → AcctNum
 - OK since LHS contains a key
 - AcctNum → OfficeId
 - OK since RHS is part of a key

- HasAccount is in 3NF but it might still contain redundant information due to AcctNum → OfficeId (which is not allowed by BCNF)

3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
 - (SSN, Hobby) is the only key.
 - SSN → Name violates 3NF conditions since Name is not part of a key and SSN is not a superkey
Decompositions

- **Goal**: Eliminate redundancy by decomposing a relation into several relations in a higher normal form

- Decomposition must be *lossless*: it must be possible to reconstruct the original relation from the relations in the decomposition

Decomposition

- **Schema** \(R = (R, F) \)
 - \(R \) is a set of attributes
 - \(F \) is a set of functional dependencies over \(R \)
 - Each key is described by a FD

- The *decomposition of schema* \(R \) is a collection of schemas \(R_i = (R_i, F_i) \) where
 - \(R = \bigcup_i R_i \) for all \(i \) *(no new attributes)*
 - \(F_i \) is a set of functional dependences involving only attributes of \(R_i \)
 - \(F \) entails \(F_i \) for all \(i \) *(no new FDs)*

- The *decomposition of an instance*, \(r \), of \(R \) is a set of relations \(r_i = \pi_{R_i}(r) \) for all \(i \)
Example Decomposition

Schema \((R, F)\) where
\[R = \{\text{SSN, Name, Address, Hobby}\} \]
\[F = \{\text{SSN} \rightarrow \text{Name, Address}\} \]
can be decomposed into:
\[R_1 = \{\text{SSN, Name, Address}\} \]
\[F_1 = \{\text{SSN} \rightarrow \text{Name, Address}\} \]
and
\[R_2 = \{\text{SSN, Hobby}\} \]
\[F_2 = \{\} \]

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition \((R_1, \ldots, R_n)\) of a schema, \(R\), is lossless if every valid instance, \(r\), of \(R\) can be reconstructed from its components:
\[r = r_1 \Join r_2 \Join \ldots \Join r_n \]
where each \(r_i = \pi_{R_i}(r)\)
Lossy Decomposition

- The following is always the case (Think why?):
 \[r \subseteq r_1 \quad \cap \quad r_2 \quad \cap \quad \ldots \quad \cap \quad r_n \]

- But the following is not always true:
 \[r \supseteq r_1 \quad \cap \quad r_2 \quad \cap \quad \ldots \quad \cap \quad r_n \]

- Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>1 Pine</td>
</tr>
<tr>
<td>2222</td>
<td>Alice</td>
<td>2 Oak</td>
</tr>
<tr>
<td>3333</td>
<td>Alice</td>
<td>3 Pine</td>
</tr>
</tbody>
</table>

The tuples \((2222, Alice, 3 Pine)\) and \((3333, Alice, 2 Oak)\) are in the join, but not in the original.

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples \((2222, Alice, 3 Pine)\) and \((3333, Alice, 2 Oak)\) were gained, not lost!
 - Why do we say that the decomposition was lossy?

- What was lost is information:
 - That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine
Testing for Losslessness

A (binary) decomposition of $R = (R, F)$ into $R_1 = (R_1, F_1)$ and $R_2 = (R_2, F_2)$ is lossless if and only if:

- either the FD $(R_1 \cap R_2) \rightarrow R_1$ is in F^+
- or the FD $(R_1 \cap R_2) \rightarrow R_2$ is in F^+

Example

Schema (R, F) where

$R = \{\text{SSN, Name, Address, Hobby}\}$

$F = \{\text{SSN} \rightarrow \text{Name, Address}\}$

can be decomposed into:

$R_1 = \{\text{SSN, Name, Address}\}$

$F_1 = \{\text{SSN} \rightarrow \text{Name, Address}\}$

and

$R_2 = \{\text{SSN, Hobby}\}$

$F_2 = \{\}$

Since $R_1 \cap R_2 = \text{SSN}$ and $\text{SSN} \rightarrow R_1$ the decomposition is lossless
Intuition Behind the Test for Losslessness

- Suppose $R_1 \cap R_2 \rightarrow R_2$. Then a row of r_1 can combine with exactly one row of r_2 in the natural join (since in r_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row).

Tuple Structure in a Lossless Binary Decomposition
Proof of Lossless Condition

- \(r \subseteq r_1 \bowtie r_2 \) — this is true for any decomposition
- \(r \supseteq r_1 \bowtie r_2 \)

If \(R_1 \cap R_2 \rightarrow R_2 \) then
\[
\text{card} (r_1 \bowtie r_2) = \text{card} (r_1)
\]
(since each row of \(r_1 \) joins with exactly one row of \(r_2 \))

But \(\text{card} (r) \geq \text{card} (r_1) \) (since \(r_1 \) is a projection of \(r \))
and therefore \(\text{card} (r) \geq \text{card} (r_1 \bowtie r_2) \)

Hence \(r = r_1 \bowtie r_2 \)

Dependency Preservation

- Consider a decomposition of \(R = (R, F) \) into \(R_1 = (R_1', F_1) \) and \(R_2 = (R_2', F_2) \)
 - An FD \(X \rightarrow Y \) of \(F^* \) is in \(F_1 \) iff \(X \cup Y \subseteq R_i \)
 - An FD, \(f \in F^* \) may be in neither \(F_1 \), nor \(F_2 \), nor even \((F_1 \cup F_2)^+ \)
 - Checking that \(f \) is true in \(r_1 \) or \(r_2 \) is (relatively) easy
 - Checking \(f \) in \(r_1 \cup r_2 \) is harder — requires a join
 - Ideally: want to check FDs locally, in \(r_1 \) and \(r_2 \), and have a guarantee that
 every \(f \in F \) holds in \(r_1 \bowtie r_2 \)
- The decomposition is dependency preserving iff the sets \(F \) and \(F_1 \cup F_2 \) are equivalent: \(F^* = (F_1 \cup F_2)^+ \)
 - Then checking all FDs in \(F \) as \(r_1 \) and \(r_2 \) are updated, can be done by checking \(F_1 \) in \(r_1 \) and \(F_2 \) in \(r_2 \)
Dependency Preservation

- If \(f \) is an FD in \(F \), but \(f \) is not in \(F_1 \cup F_2 \), there are two possibilities:
 - \(f \in (F_1 \cup F_2)^+ \)
 - If the constraints in \(F_1 \) and \(F_2 \) are maintained, \(f \) will be maintained automatically.
 - \(f \notin (F_1 \cup F_2)^+ \)
 - \(f \) can be checked only by first taking the join of \(r_1 \) and \(r_2 \). This is costly.
 - Incur additional runtime overhead of constraint maintenance.

Example

Schema \((R, F)\) where
\[
\begin{align*}
R &= \{ \text{SSN, Name, Address, Hobby} \} \\
F &= \{ \text{SSN} \rightarrow \text{Name, Address} \}
\end{align*}
\]
can be decomposed into:
\[
\begin{align*}
R_1 &= \{ \text{SSN, Name, Address} \} \\
F_1 &= \{ \text{SSN} \rightarrow \text{Name, Address} \}
\end{align*}
\]
and
\[
\begin{align*}
R_2 &= \{ \text{SSN, Hobby} \} \\
F_2 &= \{ \}
\end{align*}
\]
Since \(F = F_1 \cup F_2 \) the decomposition is dependency preserving.
Example

- Schema: \((ABC; F), F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)

- Decomposition:
 - \((AC, F_1), F_1 = \{A \rightarrow C\}\)
 - Note: \(A \rightarrow C \notin F\), but in \(F^+\)
 - \((BC, F_2), F_2 = \{B \rightarrow C, C \rightarrow B\}\)

- \(A \rightarrow B \notin (F_1 \cup F_2), \text{ but } A \rightarrow B \in (F_1 \cup F_2)^+\).
 - So \(F^+ = (F_1 \cup F_2)^+\) and thus the decompositions is still dependency preserving

Example

- HasAccount \((AcctNum, ClientId, OfficeId)\)
 - \(f_1: AcctNum \rightarrow OfficeId\)
 - \(f_2: ClientId, OfficeId \rightarrow AcctNum\)

- Decomposition:
 - \(R_1 = (AcctNum, OfficeId); \{AcctNum \rightarrow OfficeId\}\)
 - \(R_2 = (AcctNum, ClientId; \{}\)\)

- Decomposition is lossless:
 - \(R_1 \cap R_2 = \{AcctNum\}\) and \(AcctNum \rightarrow OfficeId\)

- In BCNF

- Not dependency preserving: \(f_2 \notin (F_1 \cup F_2)^+\)

- HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (check by enumeration)

- Hence: “BCNF + lossless + dependency preserving” decompositions are not always achievable!
BCNF Decomposition Algorithm

Input: \(R = (R; F) \)

\(\text{Decomp} := R \)

while there is \(S = (S; F') \in \text{Decomp} \) and \(S \) not in BCNF **do**

Find \(X \to Y \in F' \) that violates BCNF \// i.e., \(X \) isn’t a superkey in \(S \)

Replace \(S \) in \(\text{Decomp} \) with \(S_1 = (XY; F_1), \ S_2 = (S - (Y - X); F_2) \)

\// \(F_1 = \) all FDs of \(F' \) involving only attributes of \(XY \)

\// \(F_2 = \) all FDs of \(F' \) involving only attributes of \(S - (Y - X) \)

end

return \(\text{Decomp} \)

Simple Example

- **HasAccount:**

 \((\text{ClientId}, \text{Officeld, AcctNum})\)
 \(\text{ClientId,Officeld} \rightarrow \text{AcctNum}\)
 \(\text{AcctNum} \rightarrow \text{Officeld}\)

- **Decompose using **\(\text{AcctNum} \rightarrow \text{Officeld} :\)**

 \((\text{Officeld, AcctNum})\)
 \(\text{BCNF: AcctNum is key}\)
 \(\text{FD: AcctNum} \rightarrow \text{Officeld}\)
 \(\text{BCNF (only trivial FDs)}\)
A Larger Example

Given: \(R = (R; F) \) where \(R = ABCDEGHK \) and
\[
F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}
\]

Step 1: Find a FD that violates BCNF
- Not \(ABH \rightarrow C \) since \((ABH)^+ \) includes all attributes
 - (BH is a key)
- \(A \rightarrow DE \) violates BCNF since \(A \) is not a superkey \((A^+ = ADE) \)

Step 2: Split \(R \) into:
- \(R_1 = (ADE, F_1 = \{A \rightarrow DE\}) \)
- \(R_2 = (ABCGHK; F_2 = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\}) \)
 - Note 1: \(R_1 \) is in BCNF
 - Note 2: Decomposition is lossless since \(A \) is a key of \(R_1 \)
 - Note 3: FDs \(K \rightarrow D \) and \(BH \rightarrow E \) are not in \(F_1 \) or \(F_2 \). But both can be derived from \(F_1 \cup F_2 \)
 - (E.g., \(K \rightarrow A \) and \(A \rightarrow D \) implies \(K \rightarrow D \))
 - Hence, decomposition is dependency preserving.

Example (con’t)

Given: \(R_2 = (ABCGHK; \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\}) \)

step 1: Find a FD that violates BCNF.
- Not \(ABH \rightarrow C \) or \(BGH \rightarrow K \), since \(BH \) is a key of \(R_2 \)
- \(K \rightarrow AH \) violates BCNF since \(K \) is not a superkey \((K^+ = AHK) \)

step 2: Split \(R_2 \) into:
- \(R_{21} = (KAH, F_{21} = \{K \rightarrow AH\}) \)
- \(R_{22} = (BCGK; F_{22} = \{\}) \)

 - Note 1: Both \(R_{21} \) and \(R_{22} \) are in BCNF.
 - Note 2: The decomposition is lossless (since \(K \) is a key of \(R_{21} \))
 - Note 3: FDs \(ABH \rightarrow C, BGH \rightarrow K, BH \rightarrow G \) are not in \(F_{21} \) or \(F_{22} \), and they can’t be derived from \(F_1 \cup F_{21} \cup F_{22} \).
 - Hence the decomposition is not dependency-preserving.
Properties of BCNF Decomposition Algorithm

Let $X \rightarrow Y$ violate BCNF in $R = (R,F)$ and $R_1 = (R_1,F_1)$,
$R_2 = (R_2,F_2)$ is the resulting decomposition. Then:

- There are fewer violations of BCNF in R_1 and R_2 than there were in R
 - $X \rightarrow Y$ implies X is a key of R_1
 - Hence $X \rightarrow Y \in F_1$ does not violate BCNF in R_1 and, since $X \rightarrow Y \notin F_2$, does not violate BCNF in R_2 either
 - Suppose $f : X' \rightarrow Y' \in F$ doesn’t violate BCNF in R. If $f \notin F_1$ or F_2 it does not violate BCNF in R_1 or R_2 either since X' is a superkey of R and hence also of R_1 and R_2.

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is not necessarily dependency preserving
- But always lossless:
 - since $R_1 \cap R_2 = X$, $X \rightarrow Y$, and $R_2 = XY$
- BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)