Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design
Redundancy

- Dependencies between attributes cause redundancy
 - e.g., all addresses in the same town have the same zip code

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Town</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Joe</td>
<td></td>
<td>11790</td>
</tr>
<tr>
<td>4321</td>
<td>Mary</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>5454</td>
<td>Tom</td>
<td></td>
<td>11790</td>
</tr>
</tbody>
</table>

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, $Name$, $Address$, $Hobbies$)
 - A person entity with multiple hobbies yields multiple rows in table Person
 - Hence, the association between Name and Address for the same person is stored redundantly
 - SSN is key of entity set, but (SSN, $Hobby$) is key of corresponding relation
 - The relation Person can’t describe people without hobbies
Example

ER Model

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>{biking, hiking}</td>
</tr>
</tbody>
</table>

Relational Model

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Redundancy</td>
</tr>
</tbody>
</table>

Anomalies

- Redundancy leads to anomalies:
 - **Update anomaly**: A change in *Address* must be made in several places
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set *Hobby* attribute to null? **No**, since *Hobby* is part of key
 - Delete the entire row? **No**, since we lose other information in the row
 - **Insertion anomaly**: *Hobby* value must be supplied for any inserted row since *Hobby* is part of key
Decomposition

- **Solution**: use two relations to store Person information
 - Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with/without hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as *normalization theory* and is based on *functional dependencies* (and other kinds, like *multivalued dependencies*)
Functional Dependencies

- Definition: A **functional dependency** (FD) on a relation schema R is a constraint $X \rightarrow Y$, where X and Y are subsets of attributes of R.

- Definition: An FD $X \rightarrow Y$ is satisfied in an instance r of R, if for every pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
 - Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - SSN \rightarrow SSN, Name, Address

Functional Dependencies

- **Address \rightarrow ZipCode**
 - Stony Brook’s ZIP is 11733

- **ArtistName \rightarrow BirthYear**
 - Picasso was born in 1881

- **Autobrand \rightarrow Manufacturer, Engine type**
 - Pontiac is built by General Motors with gasoline engine

- **Author, Title \rightarrow PublDate**
 - Shakespeare’s Hamlet published in 1600
Functional Dependency - Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
- HasAccount (AcctNum, ClientId, OfficeId)
 - FDs:
 \[\text{ClientId}, \text{OfficeId} \rightarrow \text{AcctNum} \]
 \[\text{AcctNum} \rightarrow \text{OfficeId} \]
 - keys:
 \((\text{ClientId}, \text{OfficeId}) \)
 \((\text{AcctNum}, \text{ClientId}) \)
 - Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- **Definition**: If \(F \) is a set of FDs on schema \(R \) and \(f \) is another FD on \(R \), then \(F \) entails \(f \) if every instance \(r \) of \(R \) that satisfies every FD in \(F \) also satisfies \(f \)
 - Ex: \(F = \{ A \rightarrow B, B \rightarrow C \} \) and \(f \) is \(A \rightarrow C \)
 - If Town \(\rightarrow \) Zip and Zip \(\rightarrow \) AreaCode then Town \(\rightarrow \) AreaCode

- **Definition**: The closure of \(F \), denoted \(F^+ \), is the set of all FDs entailed by \(F \)

- **Definition**: \(F \) and \(G \) are equivalent if \(F \) entails \(G \) and \(G \) entails \(F \)
Entailment (cont’d)

- Satisfaction, entailment, and equivalence are **semantic** concepts – defined in terms of the actual relations in the “real world.”
 - They define *what these notions are*, not how to compute them.

- How to check if \(F \) entails \(f \) or if \(F \) and \(G \) are equivalent?
 - Apply the respective definitions for all possible relations?
 - *Bad idea*: might be infinite number for infinite domains
 - Even for finite domains, we have to look at relations of all arities
 - **Solution**: find algorithmic, **syntactic** ways to compute these notions
 - *Important*: The syntactic solution must be “correct” with respect to the semantic definitions
 - Correctness has two aspects: **soundness** and **completeness** – see later.

Armstrong’s Axioms for FDs

- This is the **syntactic** way of computing/testing the various properties of FDs

- **Reflexivity**: If \(Y \subseteq X \) then \(X \to Y \) (trivial FD)
 - *Name, Address* \(\to *Name*

- **Augmentation**: If \(X \to Y \) then \(XZ \to YZ \)
 - If *Town* \(\to *Zip* then *Town, Name* \(\to *Zip, Name*

- **Transitivity**: If \(X \to Y \) and \(Y \to Z \) then \(X \to Z \)

Soundness

- Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

\[
\begin{align*}
X \rightarrow XY & \quad \text{Augmentation by } X \\
YX \rightarrow YZ & \quad \text{Augmentation by } Y \\
X \rightarrow YZ & \quad \text{Transitivity}
\end{align*}
\]

- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
- Therefore, we have derived the union rule for FDs: we can take the union of the RHSs of FDs that have the same LHS

Completeness

- Axioms are complete: If F entails f, then f can be derived from F using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if F entails f:

 - Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD’s is finite so this can be done) and see if f is in F^+
Correctness

- The notions of soundness and completeness link the syntax (Armstrong’s axioms) with semantics (the definitions in terms of relational instances).

- This is a precise way of saying that the algorithm for entailment based on the axioms is “correct” with respect to the definitions.

Generating F^*

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow CDE$ are all elements of F^*.
Attribute Closure

- Calculating *attribute closure* leads to a more efficient way of checking entailment

- The *attribute closure* of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^+_F) is the set of all attributes, A, such that $X \rightarrow A$
 - X^+_F is not necessarily the same as X^+_F if $F_1 \neq F_2$

- *Attribute closure and entailment*:
 - Algorithm: Given a set of FDs, F, then $X \rightarrow Y$ if and only if $X^+_F \supseteq Y$

Example - Computing Attribute Closure

<table>
<thead>
<tr>
<th>F: $AB \rightarrow C$</th>
<th>X</th>
<th>X^+_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow D$</td>
<td>A</td>
<td>${A, D, E}$</td>
</tr>
<tr>
<td>$D \rightarrow E$</td>
<td>AB</td>
<td>${A, B, C, D, E}$</td>
</tr>
<tr>
<td>$AC \rightarrow B$</td>
<td>B</td>
<td>${B}$</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>${D, E}$</td>
</tr>
</tbody>
</table>

Is $AB \rightarrow E$ entailed by F? Yes
Is $D \rightarrow C$ entailed by F? No

Result: X^+_F allows us to determine FDs of the form $X \rightarrow Y$ entailed by F
Computation of Attribute Closure X^+_F

```
closure := X; // since $X \subseteq X^+_F$
repeat
    old := closure;
    if there is an FD $Z \rightarrow V$ in $F$ such that
        $Z \subseteq closure$ and $V \notin closure$
    then closure := closure $\cup$ V
until old = closure

- If $T \subseteq closure$ then $X \rightarrow T$ is entailed by $F$
```

Example: Computation of Attribute Closure

- **Problem:** Compute the attribute closure of AB with respect to the set of FDs:

 $AB \rightarrow C$ (a)
 $A \rightarrow D$ (b)
 $D \rightarrow E$ (c)
 $AC \rightarrow B$ (d)

- **Solution:**

 Initially $closure = \{AB\}$
 Using (a) $closure = \{ABC\}$
 Using (b) $closure = \{ABCD\}$
 Using (c) $closure = \{ABCDE\}$