Data Model

- **Schema**: description of data at some level
 - e.g., tables, attributes, constraints, domains

- **Model**: tools and language for describing:
 - Conceptual and external *schema*
 - Data definition language (DDL)
 - Integrity *constraints*, domains (DDL)
 - *Operations* on data
 - Data manipulation language (DML)
 - Directives that influence the physical schema (affects performance, not semantics)
 - Storage definition language (SDL)
Relational Model

- A particular way of structuring data (using relations)
- Simple
- Mathematically based
 - Expressions (\(=\) queries) can be analyzed by DBMS
 - Queries are transformed to equivalent expressions automatically (query optimization)
 - Optimizers have limits

Relation Instance

- Relation is a set of tuples
 - Atomic values
 - Tuple ordering is immaterial
 - No duplicates
 - **Cardinality** of relation = number of tuples
- All tuples in a relation have the same structure; constructed from the same set of attributes
 - Attributes are named (ordering is immaterial)
 - Value of an attribute is drawn from the attribute’s **domain**
 - There is also a special value **null** (value unknown or undefined), which belongs to no domain
 - **Arity** (or degree) of relation = number of attributes
Relation Instance (Example)

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111</td>
<td>John</td>
<td>123 Main</td>
<td>freshman</td>
</tr>
<tr>
<td>2345678</td>
<td>Mary</td>
<td>456 Cedar</td>
<td>sophomore</td>
</tr>
<tr>
<td>4433322</td>
<td>Art</td>
<td>77 So. 3rd</td>
<td>senior</td>
</tr>
<tr>
<td>7654321</td>
<td>Pat</td>
<td>88 No. 4th</td>
<td>sophomore</td>
</tr>
</tbody>
</table>

Student

Relation Schema

- Relation name
- Attribute names & domains
- Integrity constraints like
 - The values of a particular attribute in all tuples are unique
 - The values of a particular attribute in all tuples are greater than 0
- Default values
Relational Database

- Finite set of relations
- Each relation consists of a schema and an instance

- **Database schema** = set of relation schemas constraints among relations (inter-relational constraints)
- **Database instance** = set of (corresponding) relation instances

Database Schema (Example)

- Professor (*Id*: INT, *Name*: STRING, *DeptId*: DEPTS)
- Course (*DeptId*: DEPTS, *CrsName*: STRING, *CrsCode*: COURSES)
- Department(*DeptId*: DEPTS, *Name*: STRING)
Integrity Constraints

- Part of schema
- Restriction on state (or of sequence of states) of database
- Enforced by DBMS
- **Intra-relational** - involve only one relation
 - Part of relation schema
 - e.g., all IDs are unique
- **Inter-relational** - involve several relations
 - Part of relation schema or database schema

Constraint Checking

- **Automatically** checked by DBMS
- Protects database from errors
- Enforces enterprise rules
Kinds of Integrity Constraints

- **Static** – restricts legal states of database
 - Syntactic (structural)
 - e.g., all values in a column must be unique (atomic values)
 - Semantic (involve meaning of attributes)
 - e.g., cannot register for more than 18 credits
- **Dynamic** – limitation on sequences of database states
 - e.g., cannot raise salary by more than 5%

Key Constraint

- **A key constraint** is a sequence of attributes A_1,\ldots,A_n of a relation schema, S, with the following property:
 - A relation instance s of S satisfies the key constraint iff at most one row in s can contain a particular (or unique) set of values, a_1,\ldots,a_n, for the attributes A_1,\ldots,A_n
 - **Minimality**: no subset of A_1,\ldots,A_n satisfies the key constraint

- **Key**
 - Set of attributes mentioned in a key constraint
 - e.g., Id in Student,
 - e.g., (StudId, CrsCode, Semester) in Transcript
 - It is minimal: no subset of a key is a key
 - (Id, Name) is not a key of Student
Key Constraint (cont’d)

- **Superkey** - set of attributes containing key
 - (Id, Name) is a superkey of Student

- Every relation has a key

- Relation can have several keys:
 - **Primary key**: Id in Student *(can’t be null)*
 - **Candidate key**: (Name, Address) in Student

Foreign Key Constraint

- **Referential integrity**: Item named in one relation must refer to tuples that describe that item in another
 - Transcript (CrsCode) references Course (CrsCode)
 - Professor(DeptId) references Department (DeptId)

- Attribute A₁ is a **foreign key** of R₁ referring to attribute A₂ in R₂, if whenever there is a value v of A₁, there is a tuple of R₂ in which A₂ has value v, and A₂ is a key of R₂
 - This is a special case of referential integrity: *A₂ must be a candidate key of R₂* *(e.g., CrsCode is a key of Course in the above)*
 - If no row exists in R₂ => violation of referential integrity
 - Not all rows of R₂ need to be referenced: relationship is not symmetric *(e.g., some course might not be taught)*
 - Value of a foreign key might not be specified *(DeptId column of some professor might be null)*
Foreign Key Constraint (Example)

Foreign Key (cont’d)

- Names of the attributes A_1 and A_2 can be different.
 - With tables:
 Teaching($CrsCode$: COURSES, Sem: SEMESTERS, $ProfId$: INT)
 Professor(Id: INT, $Name$: STRING, $DeptId$: DEPTS)
 - $ProfId$ attribute of Teaching references Id attribute of Professor

- $R1$ and $R2$ need not be distinct.
 - Employee(Id:INT, $MgrId$:INT,)
 - Employee($MgrId$) references Employee(Id)
 - Every manager is also an employee and hence has a unique row in Employee
Foreign Key (cont’d)

- Foreign key might consist of several columns
 \((\text{CrsCode, Semester})\) of Transcript references
 \((\text{CrsCode, Semester})\) of Teaching

- \(R1(A_1, ..., A_n)\) references \(R2(B_1, ..., B_n)\)
 - \(A_i\) and \(B_i\) must have same domains (although not necessarily
 the same names)
 - \(B_1, ..., B_n\) must be a candidate key of \(R2\)

Inclusion Dependency

- Referential integrity constraint that is not a foreign key
 constraint
 \((\text{CrsCode, Semester})\) of Teaching references
 \((\text{CrsCode, Semester})\) of Transcript

- Target attributes is not a CK in Transcript

- No simple enforcement mechanism for inclusion dependencies in SQL (requires assertions)