The Logic of Quantified Statements

Lecture 06 / Spring 2015
State University of New York, Korea
Instructor: Dr. Ilchul Yoon

Adapted from slides by Paul Fodor

Administrivia

- Recitation class in B203!
- Homework #1 Due: 3/26
 - Submit by 12:40PM.
 - Expect penalty for late submissions.
- Quiz #1 on 3/26 (Thursday) in class.
- Mid-Term #1 on 4/2 (Thursday) in class.

- No class on 3/31 (Tuesday).
 - Makeup class: 4/3 (Friday) 11:00AM ~ 11:50AM.
 - Expect another half-hour make class.
Universal Conditional Statements

- Universal conditional statement:
 \[\forall x, \text{if } P(x) \text{ then } Q(x) \]

- Example:
 If a real number is greater than 2 then its square is greater than 4.
 \[\forall x \in \mathbb{R}, \text{if } x > 2 \text{ then } x^2 > 4 \]

Equivalent Forms of Universal and Existential Statements

- \[\forall x \in U, \text{if } P(x) \text{ then } Q(x) \] can be rewritten in the form
 \[\forall x \in D, Q(x) \] by narrowing \(U \) to be the domain \(D \) consisting of all values of the variable \(x \) that make \(P(x) \) true.
- Example: \(\forall x, \text{if } x \text{ is a square then } x \text{ is a rectangle} \)
 \[\forall \text{ squares } x, x \text{ is a rectangle}. \]

- \[\exists x \text{ such that } P(x) \text{ and } Q(x) \] can be rewritten in the form
 \[\exists x \in D \text{ such that } Q(x) \text{ where } D \text{ consists of all values of the variable } x \text{ that make } P(x) \text{ true} \]
Implicit Quantification

- $P(x) \Rightarrow Q(x)$ means that every element in the truth set of $P(x)$ is in the truth set of $Q(x)$, or, equivalently, $\forall x, P(x) \rightarrow Q(x)$
 - Example: If a number is an integer, then it is a rational number.

- $P(x) \iff Q(x)$ means that $P(x)$ and $Q(x)$ have identical truth sets, or, equivalently, $\forall x, P(x) \leftrightarrow Q(x)$
 - Example: The number 24 can be written as a sum of two even integers.

Negations of Quantified Statements

- Negation of a Universal Statement:
 - The negation of a statement of the form $\forall x \in D, Q(x)$ is logically equivalent to a statement of the form
 \[
 \exists x \in D, \sim Q(x):
 \sim (\forall x \in D, Q(x)) \equiv \exists x \in D, \sim Q(x)
 \]
 - Example:
 - “All mathematicians wear glasses”
 - Its negation is: “There is at least one mathematician who does not wear glasses”
 - Its negation is NOT “No mathematicians wear glasses”
Negations of Quantified Statements

- Negation of an Existential Statement
 - The negation of a statement of the form \(\exists x \in D, Q(x) \) is logically equivalent to a statement of the form \(\forall x \in D, \sim Q(x) \):

 \[
 \sim (\exists x \in D, Q(x)) \equiv \forall x \in D, \sim Q(x)
 \]

- Example:
 - “Some snowflakes are the same.”
 - Its negation is: “No snowflakes are the same” \(\equiv \) “All snowflakes are different.”

Negations of Quantified Statements

- More Examples:
 - \(\sim (\forall \text{primes } p, p \text{ is odd}) \equiv \exists \text{a prime } p \text{ such that } p \text{ is not odd} \)
 - \(\sim (\exists \text{a triangle } T \text{ such that the sum of the angles of } T \text{ equals } 200^\circ) \equiv \forall \text{triangle } T, \text{ the sum of the angles of } T \text{ does not equal } 200^\circ \)
 - \(\sim (\forall \text{politicians } x, x \text{ is not honest}) \equiv \exists \text{a politician } x \text{ such that } x \text{ is honest (by double negation)} \)
 - \(\sim (\forall \text{computer programs } p, p \text{ is finite}) \equiv \exists \text{a computer program } p \text{ that is not finite} \)
Negations of Quantified Statements

- More Examples:
 - \(\neg (\exists \text{ a computer hacker } c, c \text{ is over } 40) \equiv \forall \text{ computer hacker } c, c \text{ is } 40 \text{ or under} \)
 - \(\neg (\exists \text{ an integer } n \text{ between } 1 \text{ and } 37 \text{ such that } 1,357 \text{ is divisible by } n) \equiv \forall \text{ integers } n \text{ between } 1 \text{ and } 37, 1,357 \text{ is not divisible by } n \)

Negations of Universal Conditional Statements

- \(\neg (\forall x, P(x) \rightarrow Q(x)) \equiv \exists x \text{ such that } P(x) \land \neg Q(x) \)
- Proof:
 - \(\neg (\forall x, P(x) \rightarrow Q(x)) \equiv \exists x \text{ such that } \neg (P(x) \rightarrow Q(x)) \)
 - \((P(x) \rightarrow Q(x)) \equiv (\neg P(x) \lor Q(x)) \equiv \exists x \text{ such that } P(x) \land \neg Q(x) \)
- Examples:
 - \(\neg (\forall \text{ people } p, \text{ if } p \text{ is blond then } p \text{ has blue eyes}) \equiv \exists \text{ a person } p \text{ such that } p \text{ is blond and } p \text{ does not have blue eyes} \)
 - \(\neg (\text{If a computer program has more than } 100,000 \text{ lines, then it contains a bug}) \equiv \exists \text{ a computer program that has more than } 100,000 \text{ lines and does not contain a bug} \)
The Relation among \forall, \exists, \land, and \lor

- $D = \{x_1, x_2, \ldots, x_n\}$ and $\forall x \in D$, $Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$

- $D = \{x_1, x_2, \ldots, x_n\}$ and $\exists x \in D$ such that $Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

Vacuous Truth of Universal Statements

All the balls in the bowl are blue

$\forall x$ in D, if $P(x)$ then $Q(x)$ is vacuously true or true by default if, and only if, $P(x)$ is false for every x in D
Variants of Universal Conditional Statements

- Universal conditional statement: $\forall x \in D$, if $P(x)$ then $Q(x)$
- **Contrapositive**: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$
 - $\forall x \in D$, if $P(x)$ then $Q(x) \equiv \forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$
 - Proof: for any x in D by the logical equivalence between statement and its contrapositive
- **Converse**: $\forall x \in D$, if $Q(x)$ then $P(x)$.
- **Inverse**: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.
- Example:
 - $\forall x \in \mathbb{R}$, if $x > 2$ then $x^2 > 4$
 - Contrapositive: $\forall x \in \mathbb{R}$, if $x^2 \leq 4$ then $x \leq 2$
 - Converse: $\forall x \in \mathbb{R}$, if $x^2 > 4$ then $x > 2$
 - Inverse: $\forall x \in \mathbb{R}$, if $x \leq 2$ then $x^2 \leq 4$

Necessary and Sufficient Conditions

- Necessary condition:
 - “$\forall x$, r (x) is a necessary condition for s(x)” means
 - “$\forall x$, if $\sim r (x)$ then $\sim s(x)$” \equiv “$\forall x$, if s(x) then r(x)” $^{(*)}$
 - $^{(*)}$ (by contrapositive and double negation)

- Sufficient condition:
 - “$\forall x$, r (x) is a sufficient condition for s(x)” means
 - “$\forall x$, if r (x) then s(x)”
Necessary and Sufficient Conditions

- Examples:
 - Squareness is a **sufficient condition** for rectangularity;
 Formal statement: ∀x, if x is a square, then x is a rectangle
 - Being at least 35 years old is a **necessary condition** for being
 President of the United States
 ∀ people x, if x is younger than 35, then x cannot be President of
 the United States
 ≡
 ∀ people x, if x is President of the United States then x is at least
 35 years old (by contrapositive)

Only If

- Only If:
 “∀x, r(x) only if s(x)” means
 “∀x, if ∼s(x) then ∼r (x)” ≡ “∀x, if r(x) then s(x).”

- Example:
 - A product of two numbers is 0 only if one of the numbers is 0.
 If neither of two numbers is 0, then the product of the numbers
 is not 0 ≡
 If a product of two numbers is 0, then one of the numbers is 0
 (by contrapositive)
Statements with Multiple Quantifiers

- Example:
 - “There is a person supervising every detail of the production process”
 - What is the meaning?
 - “There is one single person who supervises all the details of the production process”?
 - OR
 - “For any particular production detail, there is a person who supervises that detail, but there might be different supervisors for different details”?

NATURAL LANGUAGE IS AMBIGUOUS
LOGIC IS CLEAR

Statements with Multiple Quantifiers

- Quantifiers are performed in the order in which the quantifiers occur:
- Example:
 - $\forall x \text{ in set } D, \exists y \text{ in set } E \text{ such that } x \text{ and } y \text{ satisfy property } P(x, y)$

- Informal language examples
 - There is a smallest positive integer.
 - There is no smallest positive real number.
- Example in calculus
 - The definition of limit of a sequence
Tarski’s World

- Blocks of various sizes, shapes, and colors located on a grid

- \(\forall t, \text{Triangle}(t) \rightarrow \text{Blue}(t)\)
 - TRUE

- \(\forall x, \text{Blue}(x) \rightarrow \text{Triangle}(x)\).
 - FALSE

- \(\exists y \text{ such that Square}(y) \land \text{RightOf}(d, y)\).
 - TRUE

- \(\exists z \text{ such that Square}(z) \land \text{Gray}(z)\).
 - FALSE

Statements with Multiple Quantifiers in Tarski’s World

\(\forall \exists\)

- For all triangles \(x\), there is a square \(y\) such that \(x\) and \(y\) have the same color

 TRUE

<table>
<thead>
<tr>
<th>Given (x)</th>
<th>choose (y)</th>
<th>and check that (y) is the same color as (x).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(e)</td>
<td>yes ✓</td>
</tr>
<tr>
<td>(f) or (i)</td>
<td>(h) or (g)</td>
<td>yes ✓</td>
</tr>
</tbody>
</table>
Statements with Multiple Quantifiers in Tarski’s World

- There is a triangle x such that for all circles y, x is to the right of y
 TRUE

<table>
<thead>
<tr>
<th>Choose $x =$</th>
<th>Then, given $y =$</th>
<th>check that x is to the right of y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d or i</td>
<td>a</td>
<td>yes \checkmark</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>yes \checkmark</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>yes \checkmark</td>
</tr>
</tbody>
</table>

Interpreting Statements with Two Different Quantifiers

- Quantifiers are performed in the order in which the quantifiers occur:
 - $\forall x$ in D, $\exists y$ in E such that $P(x, y)$
 - for whatever element x in D you must find an element y in E that “works” for that particular x
 - $\exists x$ in D such that $\forall y$ in E, $P(x, y)$
 - find one particular x in D that will “work” no matter what y in E anyone might choose
Interpreting Statements with Two Different Quantifiers

- \exists an item I such that \forall students S, S chose I.
 TRUE

- \exists a student S such that \forall stations Z, \exists an item I in Z such that S chose I
 TRUE

- \forall students S and \forall stations Z, \exists an item I in Z such that S chose I
 FALSE

Negations of Multiply-Quantified Statements

- Apply negation to quantified statements from left to right:

 $\sim(\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } P(x, y))$
 $\equiv \exists x \text{ in } D \text{ such that } \sim(\exists y \text{ in } E \text{ such that } P(x, y))$
 $\equiv \exists x \text{ in } D \text{ such that } \forall y \text{ in } E, \sim P(x, y)$.

 $\sim(\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x, y))$
 $\equiv \forall x \text{ in } D, \sim(\forall y \text{ in } E, P(x, y))$
 $\equiv \forall x \text{ in } D, \exists y \text{ in } E \text{ such that } \sim P(x, y)$.
Negating Statements in Tarski’s World

- For all squares \(x \), there is a circle \(y \) such that \(x \) and \(y \) have the same color

- **Negation**
 \[
 \exists \text{ a square } x \text{ such that } \neg (\exists \text{ a circle } y \text{ such that } x \text{ and } y \text{ have the same color})
 \]
 \[
 \equiv \exists \text{ a square } x \text{ such that } \forall \text{ circles } y, x \text{ and } y \text{ do not have the same color}
 \]
 TRUE: Square \(e \) is black and no circle is black.

Negating Statements in Tarski’s World

- There is a triangle \(x \) such that for all squares \(y \), \(x \) is to the right of \(y \)

- **Negation**
 \[
 \forall \text{ triangles } x, \neg (\forall \text{ squares } y, x \text{ is to the right of } y)
 \]
 \[
 \equiv \forall \text{ triangles } x, \exists \text{ a square } y \text{ such that } x \text{ is not to the right of } y
 \]
 TRUE: Square \(g \) or \(j \) is at the rightmost side.
Quantifier Order in Tarski’s World

- For every square x there is a triangle y such that x and y have different colors
 TRUE
- There exists a triangle y such that for every square x, x and y have different colors
 FALSE

Formalizing Statements in Tarski’s World

- $\text{Triangle}(x)$ means “x is a triangle”
- $\text{Circle}(x)$ means “x is a circle”
- $\text{Square}(x)$ means “x is a square”
- $\text{Blue}(x)$ means “x is blue”
- $\text{Gray}(x)$ means “x is gray”
- $\text{Black}(x)$ means “x is black”
- $\text{RightOf}(x, y)$ means “x is to the right of y”
- $\text{Above}(x, y)$ means “x is above y”
- $\text{SameColorAs}(x, y)$ means “x has the same color as y”
- $x = y$ denotes the predicate “x is equal to y”
Formalizing Statements in Tarski’s World

• For all circles x, x is above f
 $\forall x (\text{Circle}(x) \rightarrow \text{Above}(x, f))$

• Negation:
 $\sim (\forall x (\text{Circle}(x) \rightarrow \text{Above}(x, f)))$
 $\equiv \exists x \sim (\text{Circle}(x) \rightarrow \text{Above}(x, f))$
 $\equiv \exists x (\text{Circle}(x) \land \sim \text{Above}(x, f))$

Formalizing Statements in Tarski’s World

• There is a square x such that x is black
 $\exists x (\text{Square}(x) \land \text{Black}(x))$

• Negation:
 $\sim (\exists x (\text{Square}(x) \land \text{Black}(x)))$
 $\equiv \forall x \sim (\text{Square}(x) \land \text{Black}(x))$
 $\equiv \forall x (\sim \text{Square}(x) \lor \sim \text{Black}(x))$
Formalizing Statements in Tarski’s World

- There is a square x such that for all triangles y, x is to right of y
 \[\exists x (\text{Square}(x) \land \forall y (\text{Triangle}(y) \rightarrow \text{RightOf}(x, y))) \]

- Negation:
 \[\neg (\exists x (\text{Square}(x) \land \forall y (\text{Triangle}(y) \rightarrow \text{RightOf}(x, y)))) \equiv \forall x (\neg \text{Square}(x) \lor \exists y (\neg (\text{Triangle}(y) \rightarrow \text{RightOf}(x, y)))) \]

Prolog (Programming in logic)

- Prolog statements:

isabove(g, b₁). color(g, gray). color(b₁, blue). isabove(b₁, w₁).
 color(b₂, blue). color(w₁, white). isabove(w₂, b₂).
 color(b₃, blue). color(w₂, white). isabove(b₂, b₃).

 \[\text{isabove}(X, Z) :- \text{isabove}(X, Y), \text{isabove}(Y, Z). \]

 ?- color(b₁, blue).
 \[\text{TRUE} \]

 ?- isabove(X, w₁).
 \[X = b₁; \quad X = g \]
Prolog (Programming in logic)

- Prolog statements:

isabove(g, b₁). color(g, gray). color(b₃, blue). isabove(b₁, w₁).
color(b₁, blue). color(w₁, white). isabove(w₁, b₂).
color(b₂, blue). color(w₂, white). isabove(b₂, b₃).

\[
\text{isabove}(X, Z) :\text{- isabove}(X, Y), \text{isabove}(Y, Z).
\]

?- isabove(b₂, w₁).
No.

?- color(w₁, X).
X = white