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Efficient Deterministic Search with Robust Loss
Functions for Geometric Model Fitting

Aoxiang Fan, Jiayi Ma, Xingyu Jiang, and Haibin Ling

Abstract—Geometric model fitting is a fundamental task in computer vision, which serves as the pre-requisite of many downstream
applications. While the problem has a simple intrinsic structure where the solution can be parameterized within a few degrees of
freedom, the ubiquitously existing outliers are the main challenge. In previous studies, random sampling techniques have been
established as the practical choice, since optimization-based methods are usually too time-demanding. This prospective study is
intended to design efficient algorithms that benefit from a general optimization-based view. In particular, two important types of loss
functions are discussed, i.e. truncated and l1 losses, and efficient solvers have been derived for both upon specific approximations.
Based on this philosophy, a class of algorithms are introduced to perform deterministic search for the inliers or geometric model.
Recommendations are made based on theoretical and experimental analyses. Compared with the existing solutions, the proposed
methods are both simple in computation and robust to outliers. Extensive experiments are conducted on publicly available datasets for
geometric estimation, which demonstrate the superiority of our methods compared with the state-of-the-art ones. Additionally, we apply
our method to the recent benchmark for wide-baseline stereo evaluation, leading to a significant improvement of performance. Our
code is publicly available at https://github.com/AoxiangFan/EifficientDeterministicSearch.

Index Terms—Geometric model fitting, robust loss function, deterministic search, outlier, image matching.
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1 INTRODUCTION

IN computer vision, a vast majority of applications, such as
structure-from-motion [1], simultaneous localization and

mapping [2] and image mosaic [3], rely on feature point
correspondences between 2D images to infer the spatial
transformation or the 3D geometry [4]. As established by
existing research, the solution can be parameterized by
different geometric models, such as affine, homography
or fundamental matrix, with only several degrees of free-
dom [5]. However, due to the imperfections of both local
key point detection and feature description techniques, the
correspondences are invariably contaminated by noise and
a number of outliers. The degenerated data pose a great
challenge for accurate estimation of the geometric models.

To tackle the problem, the most well-known and widely
used method is probably the RANdom SAmple Consensus
(RANSAC) algorithm [6], despite its simplicity and age
of invention. In essence, RANSAC proceeds by repeatedly
sampling a random minimal subset of correspondences to
propose hypotheses, e.g. 4 correspondences for homography
and 7 for fundamental estimation. The process is iterated
until a convergence criterion, which provides a probabilistic
guarantee of hitting an all-inlier subset, is met. The success
of RANSAC is largely attributed to the low degree of free-
dom of geometric models, for which the random sampling
strategy can be applied without excessive computations.
However, some fundamental shortcomings exist with the
randomized hypothesize-and-verify search strategy. One
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of the main limitations lies in the degraded performance
due to dominant outliers. The required time to retrieve an
all-inlier subset grows exponentially with respect to the
outlier rate, and the estimation accuracy also suffers from
high uncertainty. Although a large amount of literature has
been published in the last two decades to improve the
primitive RANSAC algorithm toward better efficiency and
accuracy [7], [8], the performance is still restricted due to
these limitations.

Different from the random sampling techniques, another
line of work has focused on optimization-based frameworks
to perform deterministic search for geometric model fitting.
This perspective is intriguing in that theoretical guarantees
can be derived regarding the optimality of the solution [9],
[10], [11], [12]. However, the fundamental intractability of
the problem means that the globally optimal algorithms
must rely on exhaustive search in nature. Consequently,
they are only suitable for a small number of correspon-
dences. More recently, there has been an increasing atten-
tion given to approximate solutions with locally convergent
algorithms [13], [14]. The practicality of these methods has
been significantly improved compared to the globally opti-
mal ones. However, albeit alleviated, the issue of high com-
putational expense is still unresolved to meet the require-
ments for real-world applications, let alone their sensitivity
to local optima.

The specific objective of this paper is to investigate effi-
cient deterministic search algorithms for geometric model
fitting, which has drawn rather limited attention in the
literature. Here by efficiency we mean that the determin-
istic search stage can be accomplished within tens of mil-
liseconds, allowing the application to real-time tasks. Our
method is based on the investigation of robust loss func-
tions, which are of a great variety [14], [15]. In general, there
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Fig. 1: The family of loss functions: quadratic (`2) loss, absolute
(`1) loss, truncated quadratic (truncated `2) loss and maximum
consensus loss.

are two properties that are critical to the effectiveness of a
robust function, i.e. exactness and convexity. Thus although
there are a considerable number of robust loss functions
proposed in the computer vision literature, we focus on
only two types of them in this paper that exhibit one of
the properties. We note that in the ideal case with noiseless
data, `0 loss characterizes the most effective robust function.
As a generalization of the `0 loss, the first type of interest
is the group of truncated losses which can accommodate
noisy data and result in an exact solution. The property
of convexity is also very important because it has huge
implications for the hardness of searching the optimal so-
lution. In this paper, the second type of interest is the `1
loss, which can be seen as a very tight convex relaxation
of the exact truncated loss. We visualize the representative
loss functions in Fig. 1. We show that for the two types of
robust loss functions efficient solvers can be developed that
run in milliseconds to perform deterministic search. In the
context of geometric model fitting, we accordingly propose
a class of algorithms based on the introduced efficient
solvers. Theoretical and experimental analyses are made for
recommendations of the proposed algorithms. Qualitative
and quantitative experiments are conducted on publicly
available datasets and benchmarks which demonstrate the
superiority of the proposed methods in comparison with the
state-of-the-art competitors.

Briefly speaking, the major novelty and contribution of
this paper are to provide a new perspective for geometric
model fitting guided by robust loss functions (i.e. truncated
loss and `1 loss). In this regard, optimization algorithms are
also proposed which can be seen as efficient realizations of
our robust loss framework. More concretely, the contribu-
tions of this paper can be summarized as follows:

• We provide an analysis for the two important types
of robust loss functions and develop efficient solvers
for both. Specifically, for the case of `1 loss, we relate
it to the field of robust subspace recovery to propose
an efficient projected sub-gradient descent solver. For
the case of truncated losses, we propose an efficient
solver based on deterministic annealing to handle the
non-convexity.

• In the context of geometric model fitting, i.e. homog-
raphy and fundamental matrix estimation, a class

of algorithms are designed leveraging the efficient
solvers induced by the robust loss functions. Recom-
mendations of the best performers are made based
on theoretical and experimental analyses.

• Extensive experiments are conducted on publicly
available datasets and benchmarks for homogra-
phy estimation, fundamental matrix estimation and
the downstream task of wide-baseline stereo, which
demonstrate the superiority of our method against
the state-of-the-art methods.

A preliminary version of this manuscript appears in [16].
This paper is a comprehensive extension of the conference
version. The idea of designing efficient algorithms based on
robust loss function has been generalized, and the study of
truncated losses is newly included in this paper. The study
of an `1 loss-based geometric fitting method is reorganized
and an additional and theoretically more grounded case
for detecting homography-related correspondences is dis-
cussed. Moreover, the experimental results are significantly
extended to further analyze the property of our methods,
and demonstrate their efficacy on more benchmarks.

The remainder of this paper is organized as follows.
Section 2 describes background material and related work.
In Section 3, we propose our method by presenting the
investigation for truncated loss and `1 loss, respectively.
Section 4 compares different formulations of the proposed
method and illustrates the performance of our method in
comparison with other approaches on different datasets and
benchmarks. In Section 5, we summarize the paper with
some concluding remarks.

2 RELATED WORK

There is a large volume of methods in the literature pro-
posed to address the geometric model fitting problem. Since
a comprehensive review that covers all branches is exhaus-
tive and out of the scope of this paper, in this section, we
only summarize the closely related work that puts our paper
into context.

Due to the practical demand of both robustness and
efficiency for geometric model fitting, the random sampling
techniques remain to be the most prevalent paradigm. A
large number of innovations have been proposed in the
past few decades to advance the primitive RANSAC [6],
in terms of both efficiency and accuracy. For acceleration,
many efficient sampling techniques have been proposed,
taking advantage of the prior information available in fea-
ture correspondences. For example, as priors, spatial coher-
ence is utilized in NAPSAC [17] and GroupSAC [18], and
matching scores in EVSAC [19] and PROSAC [8]. Moreover,
improving the model verification stage using randomized
strategies has also been shown to be critical to reduce the
computational cost without sacrificing the robustness, such
as SPRT [20] and Td,d test [21].

There are also some efforts that have proven to be able
to obtain more accurate estimation results. These methods
include MLESAC [22] and MAPSAC [23], in which the
model quality is evaluated with a maximum likelihood
process. A more illuminating idea is proposed in locally
optimized RANSAC (LO-RANSAC) [7], [24], where a local
optimization step is introduced to polish the so-far-the-best
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model. By involving more inliers for estimation, the bias
induced from noises is reduced and a more accurate model
can be expected. For estimation of the epipolar geometry,
degeneracy in solution is a problem that cannot be ignored.
This is addressed by DEGENSAC [25], which introduces
an additional step to test the degeneracy and perform ef-
fective sampling. Notably, by combining the most promis-
ing improvements, USAC [26] is proposed as the state-of-
the-art RANSAC variant. More recently, GC-RANSAC [27]
has been proposed using a graph-cut algorithm in the lo-
cal optimization step, leading to more accurate estimates
of geometric models. Additionally, MAGSAC [28] and
MAGSAC++ [29] are proposed to eliminate the need for a
predefined inlier-outlier threshold which is critical but hard
to tune in practice.

From a different perspective, there also exists a
large group of deterministic search algorithms with an
optimization-based formulation. Usually, the primary ob-
jective is known as consensus maximization, which stems
from the model quality evaluation strategy of RANSAC, i.e.
counting the number of correspondences with the residuals
below a given threshold. In this regard, RANSAC can be
seen as a stochastic solver with no guarantee of the qual-
ity of solution. A variety of methods attempt to develop
algorithms to search the solution with global optimality
guarantee, using techniques such as branch-and-bound [9],
[10], [30], tree search [11], [31], or enumeration [32], [33].
Recent years have witnessed a surge of algorithms that
attempt to optimize the more robust maximum consensus
objective, albeit approximately or asymptotically. In [34],
the objective is relaxed to a smooth surrogate function to
avoid local solutions. In [14], two deterministic approximate
approaches are proposed, and the objective is asymptoti-
cally approached by an exact penalty method and an Alter-
nating Direction Method of Multiplier (ADMM) technique,
respectively. Additionally, in [13], a biconvex programming
technique is introduced to forcibly increase the consensus.
These methods have exhibited promising improvements
over randomized methods, giving consistently higher con-
sensus. However, without exception in these methods, the
optimization procedure is decomposed into sub-problems
such as Linear Program (LP), Second Order Cone Program
(SOCP) or Quadratic Program (QP), where convex solvers
are required. This characteristic incurs great computational
cost and reduces their practicality.

Although the geometric models can characterize the
problem in a simple and explicit way, and thus are crucial
to guide the design of algorithms, there has been a con-
siderable number of methods using different formulations
without leveraging the parametric models. Instead, some
other statistically meaningful priors in image matching are
utilized. This includes the VFC method [35], which prunes
the outliers by recovering a smooth function in a Reproduc-
ing Kernel Hilbert Space (RKHS). Similarly, the CODE algo-
rithm [36] uses non-linear regression techniques to impose
the motion smoothness constraint for discovering consistent
matches. Recent advances have suggested more efficient
algorithms to prune the erroneous matches with a smooth-
ness constraint, such as LPM [37] and GMS [38], reporting
promising results. In addition, deep learning techniques
have also been examined for geometric model fitting. The

method learning to find good correspondences (LFGC) [39]
has been proposed as a first attempt. It trains a multi-
layer perceptron-based deep network to label the correspon-
dences. The method has also encouraged several following-
up works that have been shown to be more effective in
the deep learning framework [40], [41], [42]. However, these
methods address the geometric model fitting problem using
priors that are either only statistically meaningful or learned
as a black-box from data, which restricts their generaliza-
tion.

Notably, the `1 loss-based fitting problem is closely
related to the field of Robust Subspace Recovery, as we will
explain in the next section. There is a rich literature in this
field, including some non-convex heuristic solutions [43],
[44], [45] and theoretically justified convex relaxations [46],
[47]. The interested readers are referred to the comprehen-
sive survey in [48]. In addition, a recent paper [49] has
extended the method of [43] to the geometric fitting problem
in computer vision, yet only applicable to homography
estimation.

3 METHODOLOGY

This paper is designated to study the problem of geometric
model fitting. In particular, suppose we are given a set
of tentative 2D image correspondences S = {(xi,x′i)}Ni=1

with a number of outliers, where xi = (xi, yi, 1)
T and

x′i = (x′i, y
′
i, 1)

T are column vectors denoting the homo-
geneous coordinates of feature points from two images,
our primary aim is to recover the underlying geometric
structure, such as the fundamental matrix F ∈ R3×3 or
homography H ∈ R3×3 that is essential for many 3D vision
applications. The properties of the geometric models F and
H are well-known and their correlations w.r.t. image corre-
spondences are also general knowledge [5]. In the outlier-
free case, the method for estimating the models has been
well-studied.

Theoretically, the distribution of data determines the
optimal algorithm for estimation. In our context, it sug-
gests that the primary objective to optimize should be
expressed as a geometric quantity (i.e. geometric error),
which is the canonical view for geometric model fitting.
However, this generally induces highly complex non-linear
objectives which are computationally very expensive to find
the optimal solution. Fortunately, it has been shown that
the linearized error (i.e. algebraic error) is very effective if
the data are properly normalized, leading to much simpler
algorithms. In this paper, since our aim is to develop a
method that works in practical settings, we concentrate on
the study of algebraic errors.

The efficient solution using linearized error for geometric
estimation in the outlier-free case is known as the Direct
Linear Transformation (DLT) method [5]. Before elaborating
on our method, we provide an overview of the general
structure of the geometric models, as well as the basic DLT
method which has a strong connection to ours. As will be
seen, our method can be seen as an extension of DLT in
several fundamental aspects.

The fundamental matrix F governs the most general
epipolar constraint in two camera views. This constraint can
be expressed as:

x′Ti Fxi = 0, (1)
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in which F is of rank 2 and has 7 degrees of freedom up to
scale. Given sufficient correspondences (at least 8 for DLT),
Eq. (1) can be used to compute the unknown matrix F.
Denote by f the 9-vector made up of the entries of F in
row-major order, Eq. (1) can be expressed as a vector inner
product:

aTi f = 0, (2)

where

ai = (x′ixi, x
′
iyi, x

′
i, y
′
ixi, y

′
iyi, y

′
i, xi, yi, 1)

T , (3)

represents an embedding of the correspondence data. Thus,
given n outlier-free correspondences (n ≥ 8), DLT obtains
the solution by solving the following overdetermined linear
system: Mf = 0, where M = [a1,a2, . . . ,an]

T . Throughout
the paper, we abuse the notation M to represent data matrix
formed from the correspondence data. The solution is given
as the right singular vector corresponding to the smallest
singular value of M.

The homography transformation applies when the fea-
ture points are lying close to a plane or the camera motion
is a pure rotation. The transformation can be expressed in
terms of the vector cross product:

x′Ti ×Hxi = 0, (4)

in which H is non-singular with 8 degrees of freedom. In
this case, each correspondence gives rise to two independent
equations. Denote by h the 9-vector made up of the entries
of H in the row-major order, and we use the notation bi to
represent the embedding, the following equation holds:

bTi h = 0, (5)

where bi is given by

bTi =

[
0T −xTi y′ix

T
i

xTi 0T −x′ixTi

]
. (6)

Given n correspondences (n ≥ 4), Eq. (5) also enables a
linear system Mh = 0 to determine homography with M =
[b1,b2, . . . ,bn]

T . Analogously, the solution is given as the
right singular vector corresponding to the smallest singular
value of M.

In summary, the DLT method for outlier-free geometric
model fitting can be characterized as the following opti-
mization problem:

min
‖z‖=1

‖Mz‖22, (7)

where the data matrix M is composed of the specific
embeddings of correspondences, and z denotes the vector
of parameters. The analytic solution is exactly the right
singular vector corresponding to the smallest singular value
of M.

The importance of Problem (7) is that it can to some
extent explain the limitation of the DLT method and also
encourages a more general view for geometric model fitting.
Intuitively, the reason that DLT can only be applied in
the outlier-free case is that the objective in (7) is an `2-
based error, which is not robust. Thus a straightforward
innovation is to generalize the problem to objectives based
on robust loss functions, which will be studied shortly in
what follows.

3.1 Exact Solution with Truncated Loss

3.1.1 Robust Formulation with Truncated Loss

In (almost) all practical computer vision tasks, the acquired
data are imperfect and contaminated by noise, outliers or
both. Considering both the challenges posed by noise and
outliers, exact estimation can be approached by using trun-
cated losses, since they can diminish the influence of outliers
and tolerate noise in a given level. Notice that there is a
strong link between the principle to maximize the consensus
size and to optimize over truncated losses. Typically, the
principle of consensus maximization can be seen as minimiz-
ing the maximum consensus loss. We can see that from a
statistical view, the maximum consensus loss and different
truncated losses are merely distinct in the assumption of the
noise for inliers. For instance, truncated `2 loss is arguably
the optimal choice given that the noise of inliers is subject
to a Gaussian distribution, as suggested in MLESAC [22].
Similarly, maximum consensus loss assumes that the noise
is subject to a uniform distribution. We note that although
these losses are theoretically distinct, their performances
on real-world data are only marginally different given the
noise level [24]. Thus the main concern here is the numerical
solvers that can address the non-convexity of the problem.
As previously mentioned, the maximum consensus loss
has been considered by consensus maximization methods,
which are generally computationally expensive. In this pa-
per, we propose a novel efficient solver for robust geometric
model fitting with truncated losses, which draws inspiration
from deterministic annealing to optimize the objective in a
maximum entropy principle to cope with the non-convexity.

Although other interpretations are available, in this
paper, we start developing our algorithm by introducing
consensus maximization. In essence, the consensus maxi-
mization problem is to find the model that is consistent with
the most inliers in the data. The inliers are defined up to a
given inlier-outlier threshold over the residual, which is in
turn determined by the model.

Given N correspondences, the consensus maximization
problem for geometric model fitting can be defined as:

max
‖z‖=1

∑
i

I(ri(z) ≤ ε), (8)

where I(·) is the indicator function that returns 1 if its input
condition is true and 0 otherwise, ε is the given inlier-outlier
threshold. As aforementioned, z denotes the vector of model
parameters, ri(z) denotes the non-negative residual of the i-
th correspondence xi w.r.t. model z. The constraint ‖z‖ = 1
is to avoid trivial solutions such as z = 0. This can be
equivalently expressed as optimizing with the maximum
consensus loss:

`c(ri(z)) =

{
0, if ri(z) ≤ ε,
1, otherwise,

= (1− pi),
(9)

where pi ∈ {0, 1} denotes the indicator variable of each
correspondence (xi,x

′
i), i.e. pi = 1 indicates that (xi,x

′
i)

is an inlier satisfying ri(z) ≤ ε, and pi = 0 otherwise. We
consider the minimization form of consensus maximization,
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which is straightforwardly related to the loss function:

min
‖z‖=1,p

∑
i

(1− pi), s.t. piri(z) ≤ ε, pi ∈ {0, 1}, (10)

where p = [p1, p2, . . . , pN ]T . The equivalence between (8)
and (10) can be easily established, since if we have pi = 1,
the necessary condition ri(z) ≤ ε is forcibly satisfied by the
constraint piri(z) ≤ ε.

In this paper, instead of the maximum consensus loss
in (9), we consider the group of truncated losses in the form:

`t(ri(z)) =

{
f(ri(z)), if ri(z) ≤ ε,
1, otherwise,

= pi · f(ri(z)) + (1− pi),
(11)

where f(·) represents a commonly used loss function, e.g.
`1, `2, or hinge loss, etc. We note that the truncated loss `t
should be continuous, thus a basic property for f(·) is that
f(ε) = 1, which can be approached by including a scaling
factor in the loss function. For example, if we take `2 loss,
the exact form of f(·) will be f(x) = 1

ε2x
2, with x being the

variable and 1
ε2 as the scaling factor.

The decomposition (11) leads to a relaxed form of Prob-
lem (10), given as:

min
‖z‖=1,p

∑
i

(
pi · f(ri(z)) + (1− pi)

)
,

s.t. piri(z) ≤ ε, pi ∈ {0, 1}.
(12)

At a first glance, Problem (12) is still very complex and
hard to optimize due to the high-order and discrete con-
straints. However, we can alternatively solve the following
problem to find a stationary point for (12):

min
‖z‖=1,p

∑
i

(
pi · f(ri(z))+ (1− pi)

)
, s.t. pi ∈ [0, 1]. (13)

Note that ε implicitly appears in (13) since we enforce f(ε) =
1. This is supported by the following observation:

Proposition 1: All local minima of Problem (13), if we let pi = 1
in case ri(z) = ε, satisfy the constraints in (12).

The proof of Proposition 1 is simple. First, it is worth
mentioning that to provide a tight approximation to the
maximum consensus loss, we must have f(ε) = 1. We then
can derive that f(t) < 1 indicates t < ε for t ∈ [0, ε]. If z
is fixed, (13) reduces to a simple linear assignment problem.
Obviously, if ri(z) 6= ε, we must have pi = 1 or 0. We
have f(ri(z)) < 1 for pi = 1 and f(ri(z)) > 1 for pi = 0,
which equals to the constraint piri(z) ≤ ε. Practically, (13) is
a continuous optimization problem with linear constraints,
which admits efficient solutions as will be shown.

3.1.2 Efficient Solver for Truncated Loss

Analogously to the maximum consensus loss, truncated
losses are also highly non-convex. This induces a great
difficulty to find a global solution for Problem (13). To this
end, we propose a deterministic annealing method based on
a maximum entropy principle [50].

In brief, deterministic annealing introduces fuzzy as-
signment in the optimization process, which is achieved by

adding an entropy term for regularization. In our case, the
problem is translated into the form:

min
‖z‖=1,p

∑
i

(
pi · f(ri(z)) + (1− pi)

)
+α

∑
i

(
pi log pi + (1− pi) log(1− pi)

)
,

s.t. pi ∈ [0, 1],

(14)

where α is the temperature parameter. The deterministic
method first uses a large α in the initial stage, then decrease
it to 0 in the optimization process. When α approaches
0, (14) degenerates to the original form.

We can leverage an alternating minimization algorithm
to solve (14). Basically, the algorithm alternates between
solving two sub-problems:

Q1: Finding p given z,

min
p

∑
i

(
pi · f(ri(z)) + (1− pi)

)
+α

∑
i

(
pi log pi + (1− pi) log(1− pi)

)
,

s.t. pi ∈ [0, 1],

(15)

Q2: Finding z given p,

min
‖z‖=1

∑
i

pi · f(ri(z)). (16)

The procedure iterates until a local optimum is ap-
proached. The two sub-problems are much easier to address,
resulting in efficient solutions.

It is straightforward to see that without the regulariza-
tion term, Problem (15) will be a simple linear assignment
problem. In fact, the problem has a closed-form solution as:

pi =

{
1, if f(ri(z)) ≤ 1,
0, otherwise. (17)

Clearly, pi will be always discrete taking a value in {0, 1}.
In this case, the search is confined to discrete domain,
and may very likely get trapped in a poor local optimum.
In the deterministic annealing framework, the situation is
quite different as we will see. Taking the derivative of the
objective in (15) yields the following stationary condition:

pi =
exp(− f(ri(z))α )

exp(− f(ri(z))α ) + exp(− 1
α )
. (18)

It can be seen that pi ∈ [0, 1] is naturally satisfied. At
higher temperatures, the entropy term forces pi to be more
fuzzy. The minima obtained at each temperature are used
as initial conditions for the next stage as the temperature
is lowered. Clearly, as the temperature decreases to 0, the
problems reduce to hard assignment as in (17). The update
of pi can also be explained as a softmax operation. From
an optimization point of view, the fuzziness of pi raised by
softmax makes the resulting energy function better behaved
because the objective is able to be improved gradually
and continuously during the optimization without jumping
around in the discrete space.

Remark 1: In our loss decomposition framework (11), the loss
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Algorithm 1: Geometric Model Fitting with Trun-
cated `2 Loss

Input: The correspondence set S, parameters α0, γ, ε
Output: The vector of parameters z

1: Initialize z, α = α0.
2: while objective in Problem (13) not converge do
3: Update p using the Eq. (18).
4: Update z using the closed-form solution of (20)

or (21).
5: Annealing: α = γα.
6: end while
7: Return optimal model z.

function f(·) can take many forms such as `1, `2, hinge loss, etc.
To achieve the best approximation of the maximum consensus loss,
i.e. `c, the ideal case is to adopt hinge loss. By tuning the threshold
h of hinge loss such that h → ε, the robust truncated loss `t is
able to approximate `c by arbitrary accuracy. For Problem (16),
by taking hinge loss with parameter h, it becomes a generalized
hinge loss regression problem given as:

min
‖z‖=1

∑
i

pi · ξi, s.t. ri(z) ≤ h+ ξi, ξi ≥ 0, (19)

where ξi is the slack variable. Nevertheless, this problem funda-
mentally excludes an efficient solution. In this paper, we con-
centrate on truncated `2 loss due to the efficient global solution
permitted.

To solve Problem (16), it requires us to specify the exact
form of ri(z). Essentially, by adopting the algebraic error,
the analytical problem can be readily derived by basic linear
algebra, as we will show in the following.

For the estimation of the homography model, we have
ri(h) = ‖bTi h‖2, Problem (16) can be expressed in a concise
form as:

min
‖h‖=1

∑
i

pi‖bTi h‖22 = hTMT P̂Mh, (20)

where M = [b1,b2, . . . ,bn]
T , P = diag(p) and P̂ =

P⊗ I2×2, with ⊗ denoting the Kronecker product operator.
The closed-form solution of (20) is the eigenvector of matrix
MT P̂M with least eigenvalue, or equivalently the right
singular vector corresponding to the smallest singular value
of P̂

1
2M.

For the estimation of the fundamental matrix, we have
ri(f) = |aTi f |, Problem (16) can be expressed in a concise
form as:

min
‖f‖=1

∑
i

pi|aTi f |2 = fTMTPMf , (21)

where M = [a1,a2, . . . ,an]
T . Analogously, the closed-form

solution of (21) is the eigenvector of matrix MTPM with the
least eigenvalue, or equivalently the right singular vector
corresponding to the smallest singular value of P

1
2M.

This concludes our algorithm for the efficient solution
using robust truncated losses, since Problem (15) and Prob-
lem (16) are solved with closed-form solution. We summa-
rize the algorithm in Alg. 1.

3.2 Relaxed Solution with Convex `1 Loss

As previously mentioned, an exact solution can be ap-
proached by using a truncated loss, which suffers from
the non-convexity of the loss function. In contrast, some
other loss functions such as `1 loss and Huber loss are
convex, which can be seen as the relaxed form of the exact
losses. Note that the convexity of a loss function does not
necessarily indicate that the optimization problem is convex,
but an easier optimization problem can be expected.

In this subsection, we focus on the study of `1 loss for
geometric model fitting. As will be shown, the induced op-
timization problem can be related to robust subspace recovery,
and recent advances have shown that an efficient projected
gradient-descent based solver can suffice the requirements for
geometric model fitting.

Recall from (7), and replace `2 loss with `1 loss, we have
a simple form as follows for geometric model fitting:

min
‖z‖=1

‖Mz‖1. (22)

Mathematically, (22) can be seen as a hyperplane fitting
problem. In fact, the exact form of (22) has been recently in-
vestigated in the literature of robust subspace recovery [43],
[51], where hyperplane fitting is a special case when the
intrinsic dimension of data d = D − 1, with D representing
the ambient dimension of the data. The robust property has
been theoretically demonstrated, which roughly states that
under some assumptions on the distributions of outliers, the
estimation task with (22) can even tolerate O(m2) outliers,
where m denotes the inlier number.

Note that (22) is non-convex (since the feasible region is
a sphere) and non-smooth (due to the `1-based objective),
therefore the solution is non-trivial and needs additional
care. Fortunately, several efforts on the numerical solver
for (22) have been proposed. In [43], (22) is relaxed to a
sequence of linear programs, which guarantees finite con-
vergence to the global optima. However, this approach is
computationally expensive. Alternatively, [43] provides an
iteratively reweighted least squares-based method, which is
more efficient but comes with no theoretical guarantees.
A projected sub-gradient descent-based algorithm is proposed
in [51]. The algorithm is even more efficient involving
only matrix-vector multiplications. Since the demand for
low computational time usually dominates the need of
optimality guarantees for geometric estimation, we adopt
the projected sub-gradient descent-based algorithm. The
theoretical performance of this algorithm under outliers as
well as noise is studied in [52].

In the context of this paper, the task of geometric model
fitting can benefit from (22) in a straightforward way. All
we need to do is finding a proper data matrix M from
the given correspondences (as in the DLT method), and
essentially (22) will be searching the parameters by mini-
mizing the `1-based algebraic error. We outline the proposed
geometric estimation method with (22) in Alg. 2.

We note that since (22) is still non-convex, it also suf-
fers from the issue of weak local optima. We argue that
from a different point of view, this risk can be further
reduced. In subspace learning theory, it is well-known that
the relative dimension, i.e. d/D, the quotient of intrinsic
dimension of data d and the dimension of ambient space
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Algorithm 2: Geometric Model Fitting with `1-
based Hyperplane Fitting

Input: The correspondence set S
Output: The orthogonal vector z of the sought
hyperplane
1: Mapping correspondences into embeddings ai or bi

to form the data matrix M.
2: Initialize z as the right singular vector corresponding

to the smallest singular value of M.
3: while not converge do
4: Compute sub-gradient: g = MT sign(Mz).
5: Update step size µ according to a certain rule [51].
6: Sub-gradient descent: z← z− µg.
7: Sphere projection: z← z/‖z‖2.
8: end while
9: Return z.

D, plays an important role in the difficulty of the learning
task. Generally speaking, the subspace learning problem is
significantly easier when the relative dimension is small.
In geometric model fitting, we show that this fact can be
fruitfully exploited by considering a simpler embedding of
correspondences.

In this view, we will show that the embedding bi in (6)
used by DLT for homography estimation is unfavored and
another formulation is inherently easier. The new formula-
tion is based on the following observation:

Proposition 2: Given n ≥ 4 correspondences with no noise and
outliers and conforming to a projective transformation H, the 9-
dimensional embeddings a1,a2, . . . ,an live in a linear subspace
with dimension no more than 6.

Proof. It can be derived from Eq. (4) using linear algebra that

H′ai = 0 (23)

holds for ∀i = 1, 2, . . . , n, where

H′ =

 0T hT3 −hT2
−hT3 0T hT1
hT2 −hT1 0T

 (24)

for H = [hT1 ;h
T
2 ;h

T
3 ]. It can be seen from (23) and (24) that

ai lives in a linear subspace. Since H′ is clearly of rank 3,
the dimension of the linear subspace is no more than 6.

As we will show later, Proposition 2 leads to a subspace
recovery problem for homography estimation. Following
this idea, the simplest embedding of correspondences with
only first-order terms

di = [xi, yi, x
′
i, y
′
i, 1]

T (25)

is also of great interest. Intuitively, this embedding is related
to the affine model which is a linear transformation. Assume
that the correspondences are related by the affine model:

x′i = Axi, (26)

where

A =

 a11 a12 a13
a21 a22 a23
0 0 1

 (27)

represents the affine matrix. The structure of di is revealed
by the following proposition:

Proposition 3: Given n ≥ 3 correspondences with no noise and
outliers and conforming to an affine transformation A, the 5-
dimensional embeddings d1,d2, . . . ,dn live in a linear subspace
with dimension no more than 3.

Proof. It can be derived from Eq. (26) that

A′di = 0 (28)

holds for ∀i = 1, 2, . . . , n, where

A′ =

[
a11 a12 −1 0 a13
a21 a22 0 −1 a23

]
. (29)

It can be seen from (28) and (29) that di lives in a linear
subspace. Since A′ is clear of rank 2, the dimension of the
linear subspace is no more than 3.

Remark 2: Analogous to the homography estimation case of
DLT, a straightforward solution to leverage this structure is to
transform it into a hyperplane fitting problem, with the following
embedding:

cTi =

[
xTi 0T −x′i
0T xTi −y′i

]
. (30)

The problem can be then readily solved using (22) given n ≥
3 correspondences, with M = [cT1 , c

T
2 , . . . , c

T
n ]
T and z =

[a11, a12, a13, a21, a22, a23, 1]
T encoding the affine parameters.

The benefits of leveraging di will be explained next.
Both Proposition 2 and Proposition 3 suggest solving

the following subspace recovery problem instead of the
hyperplane fitting alternative:

min
v∈RD×k

∑
i‖eTi v‖1 = ‖Mv‖1,1, s.t. vTv = I, (31)

where M = [e1, e2, . . . , en]
T , ei represents the embedding

of data, and v = [v1,v2, . . . ,vk] represents the matrix of
orthogonal unit vectors, I represents the identity matrix, and
‖ · ‖1,1 represents the sum of the `1 norms of the rows of
the input matrix. For homography and affine estimation,
the ambient dimension for (31) is 9 and 5 respectively, and
the dimension of the subspace is 6 (k = 3) and 3 (k =
2), respectively. The relative dimension is then 6/9 and 3/5
for (31), which is much smaller than 8/9 and 6/7 indicated
by the hyperplane fitting case. This renders the problem a
much easier task for learning.

The rationale behind (31) is to find k bases of the or-
thogonal complement of the linear subspace spanned by the
embeddings of inliers. This can be solved by standard robust
subspace recovery methods, e.g. [46], as discussed in the
comprehensive survey [48]. In this paper, we adopt a more
efficient strategy to iteratively search the k bases. In the first
iteration, a hyperplane fitting algorithm is conducted to find
the first basis. In the second to k-th iteration, the procedure
is similar to hyperplane fitting but with an additional pro-
jection step to find the basis. The additional projection step
guarantees that the sought basis is orthogonal to the previ-
ous ones. Specifically, if we have obtained the bases vp ∈
RD×i, the projector of its orthogonal complement should be
I − vpv

T
p , then the sought basis vi+1 should be projected

onto it as vi+1 = (I − vpv
T
p )vi+1 = vi+1 − vpv

T
p vi+1. The

algorithm to solve (31) is outlined in Alg. 3.
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Algorithm 3: Geometric Model Fitting with `1-
based Subspace Recovery

Input: The correspondence set S
Output: The bases of the orthogonal complement v

1: Mapping the correspondences to form the data matrix
M.

2: Initialize v0 = [v1,v2, . . . ,vk] as the right singular
vectors of the two smallest singular values of M.

3: for i = 1 to k do
4: while not converge do
5: Compute sub-gradient: gi = MT sign(Mvi).
6: Update the step size ν according to a certain

rule [51].
7: Sub-gradient descent: vi ← vi − νjgi.
8: if i > 1 then
9: Orthogonal projection: vi ← vi − vpv

T
p vi.

10: end if
11: Sphere projection: vi ← vi/‖vi‖2.
12: end while
13: Store current bases: vp = [v1,v2, . . . ,vi].
14: end for
15: return v = [v1,v2, . . . ,vk].

Algorithm 4: Homography Estimation Based on `1
Loss

Input: The correspondence set S
Output: The estimated model H

1: Apply Alg. 2 or Alg. 3 on S to find the orthogonal
base(s) of the subspace spanned by inliers.

2: Compute the residuals and apply thresholding to
find the potential inlier set I .

3: Post-processing on I to determine final estimation
result H.

4: return H.

Remark 3: Different from the exact truncated losses, a post-
processing stage is necessary for our `1 loss based estimation.
This is because (i) the `1 loss is inexact in nature; (ii) the
subspace recovery problem (31) does not explicitly output the
model parameters. Thus, (22) or (31) functions as detecting the
inliers or rejecting the outliers, which requires a post-processing
stage to obtain the model parameters.

To conclude, for `1-based geometric model fitting, the
hyperplane fitting problem (22) can be used with embed-
ding ai for fundamental matrix estimation, or with bi
for homography estimation. The subspace recovery prob-
lem (31) can be used with ai to identify homography-
related correspondences, or with di to identify affine-related
correspondences. To leverage the strength of (31), we also
consider the possibility to iteratively search two groups
of homography-related or affine-related correspondences
to avoid degeneracy for fundamental matrix estimation.
The algorithms for homography and fundamental matrix
estimation based on `1 loss are summarized in Alg. 4 and
Alg. 5, respectively.

Algorithm 5: Fundamental Matrix Estimation
Based on `1 Loss

Input: The correspondence set S
Output: The estimated model F

1: Apply Alg. 2 or Alg. 3 on S to find the orthogonal
base(s) of the subspace spanned by inliers.

2: Compute the residuals and apply thresholding to find
the potential inlier set I1.

3: Exclude I1 from S to form S ′.
4: Apply Alg. 2 or Alg. 3 on S ′ to the orthogonal base(s)

of the subspace spanned by inliers.
5: Compute the residuals and apply thresholding to find

the potential inlier set I2.
6: Post-processing on I1

⋃
I2 to determine final

estimation result F.
7: return F.

3.3 Implementation Details
To improve numerical stability, the correspondence data are
mapped into embeddings and then normalized to unit norm
before processed by our algorithm.

Post-processing for relaxed solution: The proposed
method using `1 loss does not explicitly give the parameters
of the sought geometric model, or the returned model can
be too coarse due to the strategy of approximation and
relaxation. Thus a post-processing stage is required. Since
the geometric model can be recovered by a small number of
samples of inliers, we adopt a random sampling scheme.
Specifically, we run a fixed number of random samples
(500 in our experiment) to generate hypotheses, and return
the model that accommodates the most correspondences. A
local optimization step is performed when a so-far-the-best
model is sought.

Parameter Settings: For Alg. 1 with truncated `2 loss,
in the annealing process, the initial temperature α0 is set
adaptively to the variance of the residuals in the first it-
eration, and the decay factor γ is set to 0.9. For Alg. 4, the
threshold to determine the potential inliers is empirically set
to 0.15. For Alg. 5, the threshold to determine the potential
inliers is empirically set to 0.25 in the first iteration, and
0.15 in the second iteration. Note that more iterations can
be used to enrich the detected correspondences, however, in
practice we observe that two iterations are enough to avoid
degeneracy and more iterations are not necessary.

4 EXPERIMENTAL ANALYSES AND RESULTS

In this section, we provide experimental investigations of
the proposed method based on synthetic data and real-
world datasets, which involve three following aspects. First,
we conduct linear fitting experiments to study the theoreti-
cal properties of exact solution and relaxed solution. Second,
as we have introduced several different formulations, their
properties are studied and the best practices determined.
Third, to verify the advantage of our method, experimental
results are given in comparison with the state-of-the-art
methods on publicly available datasets and benchmarks.
We name our method with truncated `2 loss as Efficient
Exact Search (EES) and method based on `1 loss as Efficient
Approximate Search (EAS) for geometric model fitting.
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Fig. 2: Evaluation of the performances of EES, EAS, and DPCP-
PSGM based on synthetic data (left) and real 3D point cloud
data (right) w.r.t. noise level.

4.1 Theoretical Properties of Exact Solution and Re-
laxed Solution

We first use linear fitting experiments to investigate the
properties of the exact solution and the relaxed solution
using the proposed methods. Note that different from fun-
damental matrix and homography transformation estima-
tion, linear fitting provides a more ideal environment to
investigate the properties of solutions since we do not have
to linearize the problem.

First, we use synthetic data for evaluation. We follow
the settings of [51] to conduct the experiments. To generate
the synthetic data, we fix the data dimension D = 8
and generate the inliers from a hyperplane (i.e. intrinsic
dimension d = 7). This leads to a hyperplane fitting prob-
lem and can be resolved by accurately estimating the unit
orthogonal vector of the unknown hyperplane. The outliers
are randomly generated, and both inliers and outliers are
normalized to have unit norm. We use 500 inliers and 2000
outliers to create a challenging scenario with the outlier rate
of 80%. We then add Gaussian noise to the data to test the
performance of EES, EAS, and the `1 loss-based method
DPCP-PSGM proposed in [51]. Note that for linear fitting,
the implementation of our EES and EAS is essentially the
same as the case for fundamental matrix estimation, except
that the embedding is the data point itself. The inlier-outlier
threshold is empirically set to max(0.05, 0.8*noise level). We
generate 100 instances of synthetic data and report the
average performance for each method. The performance
is evaluated in terms of angular error (in the range of 0
to 90 degrees) between estimation of the unit orthogonal
vector of the hyperplane and the ground-truth vector. The
results are shown in the left plot of Fig. 2. Clearly, our EES
outperforms EAS because the random sampling process in
EAS is not robust to noise. Both EES and EAS outperform
DPCP-PSGM, this demonstrates that there is a gap between
the solution directly given by a relaxed `1 loss and the exact
solution required.

We also evaluate the performance on real 3D point cloud
road data as in [51]. The task is to determine the 3D points
that lie on the road plane (inliers) and those off the plane,
i.e., fitting a plane with data dimension D = 3. The inlier-
outlier threshold is empirically set to max(0.01, 0.2*noise
level). Following [51], we use the area under the ROC curve
(AUC) to evaluate the performances of each method. We
use the data released by the authors of [51], and the average
performances of each method are shown in the right plot

Ground Truth

EES

EAS

DPCP-PSGM

Fig. 3: Frame 153 of dataset KITTI-CITY-5: an illustrative exam-
ple of 3D point cloud road plane fitting, raw image, projection
of annotated 3D point cloud onto the image, and detected
inliers/outliers using a ground-truth threshold on the distance
to the hyperplane for each method. Blue indicates classified
inlier points and red indicates the opposite. The noise level is
0.12, the outlier ration is 0.67. The AUC value for EES, EAS and
DPCP-PSGM are 0.971, 0.932 and 0.757.

of Fig. 2. A similar conclusion can be drawn to that of the
synthetic data case, the proposed EES method achieves the
best result. We also visualize an example of the road plane
fitting result in Fig. 3.

It is also worth discussing the performance gain ob-
tained by EAS compared to DPCP-PSGM. DPCP-PSGM is
designed for linear fitting. For linear fitting, EAS adopts
the same solver (i.e., projected sub-gradient descent) as in
DPCP-PSGM for optimizing the `1 loss. The difference lies
in that our EAS involves an additional post-processing stage
as given in Section 3.3. This step can clearly improve the
estimation accuracy in low-noise scenarios as shown in the
experimental results of Fig. 2.

4.2 Investigation of Different Formulations Based on `1
Loss

In the study of `1-based geometric model fitting in Sect.
3.2, several different formulations are introduced to give
the relaxed (inexact) solution. This includes four different
embeddings, i.e. ai (3), bi (6), ci (30) and di (25), and two
solvers, i.e. hyperplane fitting with Alg. 2 and subspace
recovery with Alg. 3. We first study the problem of detecting
homography-related correspondences, and leave the discus-
sion for fundamental matrix estimation in the next section.

To detect the homography-related correspondences, pos-
sible formulations include ai with Alg. 3 to recover a 6-
dimensional subspace, and bi with Alg. 2 to recover a
hyperplane. By also considering the affine approximation
for homography, we can leverage ci with Alg. 2 to recover
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Fig. 4: Evaluation of different formulations for the detection of homography-related correspondences. From left to right, the
cumulative distribution of AUC of different formulations on the homogr and the EVD dataset, and the robustness test against
outlier rate with homogr. For the cumulative distribution, the better the method performs, the closer its curve is to the top.

a hyperplane, and di with Alg. 3 to recover a 3-dimensional
subspace. Next, we provide a thorough experimental study
to conclude on the best practice of these variants, as our
recommendation.

Note that the detected homography-related correspon-
dences are determined by thresholding the distance of each
correspondence to the recovered subspace. With different
thresholds, the precision and recall of the detected corre-
spondences w.r.t. the ground-truth inliers will vary accord-
ingly. In this sense, the effectiveness of each formulation for
an image pair can be evaluated by using the Receiver Op-
erating Characteristic (ROC) curve and Area Under Curve
(AUC) statistic.

To conduct the experiments, we adopt the homogr and
EVD datasets that are widely used in the literature for
homography estimation [28]. The homogr dataset comprises
16 image pairs of relatively short baselines, we use the
SIFT [53] algorithm with ratio test at 0.8 to establish the
tentative correspondences. Note that for the CapitalRegion
pair, we fine-tune the threshold to avoid excessive outliers,
and for the LePoint1, LePoint2 and LePoint3 pairs, we use the
provided correspondences in the dataset since SIFT fails on
these cases. We run RANSAC exhaustively to recover the
ground-truth homography transformation, and determine
the inliers as the correspondences whose re-projection error
are below 3 pixels. The EVD dataset is more challenging
and comprises of 15 image pairs undergoing extremely view
changes. We use the provided tentative correspondence set
due to the failure of the SIFT algorithm. The ground-truth
homography transformation is provided in this dataset,
and we determine the inliers in a similar way as for the
homogr dataset. For a thorough investigation, we create
two testing environments with different settings to evaluate
the four formulations. Firstly, the tentative correspondences
established by existing algorithms are used for homogr and
EVD, which characterize the general distribution of data. In
addition, we also extract the inliers and add a number of
outliers by randomly matching two points in the two images
to produce correspondence data of a certain outlier rate for
the homogr dataset. We control the outlier rate in the range
of 50% to 95% for the robustness test. For each scene with a
given outlier rate, we create 20 instances for the stability of
statistics.

We use notations EAS-a, EAS-b, EAS-c and EAS-d to

represent the four formulations based on ai (3), bi (6),
ci (30) and di (25) for detecting homography-related cor-
respondences, respectively. The results on homogr and
EVD are presented in Fig. 4. We can see that for detect-
ing homography-related correspondences, the formulation
with a smaller relative dimension, i.e. EAS-a and EAS-d,
generally have much better performances. Also, the affine
approximation seems to work particularly well and out-
performs the counterpart to directly detecting homography-
related correspondences. Another observation is that EAS-
a and EAS-d are very robust to outlier rate, even in the
presence of 95% outliers. This verifies the theoretical results
that the `1-based formulation can tolerate O(m2) outliers,
where m denotes the inlier number. Some representative
scenes are presented in Fig. 5, where we show the inliers
determined by the threshold of 0.15 for each formulation.
We can see that EAS-d produces the correspondences with
the best quality. To conclude, EAS-d is the best choice
to detect homogarphy-related correspondences, despite its
approximation nature.

4.3 Qualitative Comparison of Exact Solution and Re-
laxed Solution

As we have discussed, in the task of geometric model
fitting in the presence of outliers, an exact solution can be
achieved by using a truncated loss, and relaxed solution
can be achieved by using `1 loss. However, it is now un-
clear how the two approaches perform in practice. We next
provide an experimental comparison. For the representative
image pairs, we adopt four publicly available datasets, i.e.
homogr and EVD for homography estimation, kusvod2 and
AdelaideRMF for fundamental matrix estimation [28]. The
datasets homogr and EVD have been introduced and the
settings here are identical. The dataset kusvod2 consists
of 16 image pairs of both weak and strong perspectives,
and we use the provided tentative correspondences in the
dataset. The AdelaideRMF dataset includes a set of image
pairs of campus buildings equipped with manually labelled
keypoint correspondences, and we use a 19-pair subset with
static scenes. The image pairs are generally of weak perspec-
tive since the camera is distant to the building. All the four
datasets are provided with a number of annotated ground-
truth correspondences, and we use them for evaluation.
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Fig. 5: Representative examples for homography-related correspondences detection. From top to bottom, the correspondences
detected by EAS-a, EAS-b, EAS-c, EAS-d and the ground-truth inliers. From left to right, CapitalRegion and WhiteBoard from
homogr, and dum and vin from EVD.

Specifically, the performance of each algorithm is evaluated
by the average geometric error (Sampson distance in our
experiments) of the recovered geometric model w.r.t. the
annotated ground-truth correspondences.

The proposed method for the exact solution is denoted as
EES as aforementioned. For comparison, we adopt the state-
of-the-art IBCO method [13], which gives an exact solution
in the principle of consensus maximization. As a baseline,
and to demonstrate the proposed EES, we additionally in-
clude a gradient-descent based solver for truncated `2 loss,
i.e. updating the indicator variables using Eq. (17) instead
of Eq. (18), which is denoted as GD in our experiments. For
relaxed solution with `1 loss, two strategies are used. 1) The
first is to use ai (3), which is a straightforward formulation
for both homography and fundamental matrix estimation.
We denote this strategy as EAS-F. 2) The second is based
on the observations in Sect. 4.2 that homography-related
correspondences can be (approximately) detected leverag-
ing EAS-d. For homography estimation, we can simply
use EAS-d with a post-processing stage. For fundamental
matrix estimation, we iteratively detect two groups of affine-
related correspondences to avoid degeneracy with EAS-d.
We denote this strategy as EAS-A.

The experimental results of the five methods, i.e. EES,
IBCO, GD, EAS-F and EAS-A are presented in Fig. 6. For
each image pair, we repeatedly run each method 100 times
for the reported statistics. We can observe that the perfor-

mance of the proposed EES is comparable to the state-of-
the-art IBCO, while being orders of magnitude faster. Both
methods have significantly outperformed the naive GD.
However, it can be seen that the relaxed solution EAS-F
and EAS-A with a post-processing stage are substantially
more robust than the exact solutions EES and IBCO. It
indicates that the exact solution suffers from the issue of
non-convexity in optimization, especially in the case of
fundamental matrix estimation where many degenerated
solutions exist. In conclusion, EES is only suitable for time-
critical scenarios with “easy” data for fundamental matrix
and homography transformation estimation. In a general
scenario, EAS is recommended. As can be seen in Fig. 6,
EAS-A outperforms EAS-F in homography estimation, and
is marginally better than EAS-F for fundamental matrix
estimation. Thus, EAS-A is the most robust one among
the proposed methods for geometric model fitting. Some
representative examples of EAS-A in detecting affine-related
correspondences and the post-processing stage for homog-
raphy and fundamental matrix estimation are presented in
Fig. 7 and Fig. 8, respectively. Also, a quantitative compari-
son including EAS-F and EAS-A will be provided next.

For our EES which involves the deterministic annealing
strategy, we also provide an ablation study regarding the
hyper-parameters in it, i.e. α0 and γ. We use the combination
of all the four datasets, namely homogr, EVD, kusvod2 and
AdelaideRMF for the experiment. We have tested different
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Fig. 6: A qualitative comparison of EAS-F, EAS-A, EES, GD and IBCO on homogr, EVD, kusvod2 and AdelaideRMF. The first row
presents the cumulative distribution of each method w.r.t. the mean geometric error, and the second row presents the cumulative
distribution of each method w.r.t. the runtime. The better the method performs, the closer its curve is to the top.
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Fig. 7: Some representative examples of EAS-A for homography estimation. The first row presents the correspondences detected
by EAS-A, and the second row presents the refined results after the post-processing stage. The adopt image pairs are ExtremeZoom,
WhiteBoard from homogr, and dum and fox from EVD.

settings of the hyper-parameters α0 and γ and the per-
formance of EES, indicated by the cumulative distribution
of the geometric error, are presented in Fig. 9. From the
results, we can see that the deterministic annealing strategy
is quite sensitive to the value of γ, and a large value such
as γ = 0.9 is recommended. This is consistent with the
intuition that “slowing down” the annealing process would
lead to better resistance against non-convexity. Meanwhile,
the strategy is less sensitive to the value of α0, setting
α0 = 100 is recommended and a larger value to slow
down the annealing process would not lead to a gain in
performance. In conclusion, setting α0 = 100 and γ = 0.9 is
appropriate.

4.4 Quantitative Comparison of EAS and the State-of-
The-Art Robust Estimators

To demonstrate the efficacy of our methods, we next provide
a quantitative comparison between the proposed EAS-F
and EAS-A against the state-of-the-art robust estimators.
For homography estimation, we use EAS-A that has been
shown to have best performance in previous sections. For

fundamental matrix estimation, both EAS-F and EAS-A are
included for comparison. As robust estimators, USAC [26],
MAGSAC++ [29] (abbreviated as MAG++) and GMS [38]
are adopted as the state-of-the-art competitors.

4.4.1 Homography Estimation
The quantitative comparison for homography estimation is
conducted on the well-known HPatches benchmark [54]. The
dataset contains 116 scenes with 696 unique pictures, where
the first 57 scenes exhibit illumination changes and the other
59 scenes involve viewpoint changes. Each scene has one
reference image, and five target images of varying degrees
of illumination or viewpoint changes. For each target image,
the ground-truth homography transformation is provided.
By matching the reference images with each of the target
images, 580 pairs are created for evaluation.

To establish the correspondences, we use SIFT [53] to
detect feature points and HardNet [55] to generate descrip-
tors. Then the correspondences are established by nearest-
neighbor matching. As for competitors, for USAC, the con-
fidence value is set to 0.99, the maximum number of itera-
tions is set to 10, 000. Note that the pre-defined inlier-outlier
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Fig. 8: Some representative examples of EAS-A for fundamental matrix estimation. The first and second row present the
correspondences detected by EAS-A in two iterations, and the third row presents the refined results after the post-processing
stage. The adopted image pairs are box, rotunda and castle from kusvod2, and elderhalla from AdelaideRMF.
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Fig. 9: The ablation experiment for the hyper-parameters in-
troduced in the deterministic annealing strategy, i.e. α0 and γ.
The performance is indicated by the cumulative distribution
of the geometric error in the combination of the four datasets
homogr, EVD, kusvod2 and AdelaideRMF. The better the
method performs, the closer its curve is to the top.

threshold is critical for the performance of USAC, we fine-
tune the parameter and set it to 2 pixels. The same inlier-
outlier threshold setting also applies to our post-processing
algorithm. For MAG++, the inlier-outlier threshold is not
required. We follow the default settings in the original paper
and set a 1-second time budget to avoid excessive time
cost. For GMS, since it cannot directly give the estimates
of geometric models, we use it in conjunction with MAG++
(with a 1-second time budget), abbreviated as GMS-M.

We evaluate the performance of each method by com-
paring the estimated homography with the ground-truth
homography. It is not straightforward to directly compare
the 3 × 3 matrices, since different entries in the matrix
have different scales. To define a geometrically meaningful
metric, we follow SuperPoint [56] to define the homogra-
phy error. In particular, we define the four corners of the
reference image as cn1, cn2, cn3, cn4, and transform them
using estimated and ground-truth homography, resulting in
cn′1, cn

′
2, cn

′
3, cn

′
4 and ĉn′1, ĉn

′
2, ĉn

′
3, ĉn

′
4, respectively. The

homography error is then defined as the mean value of the
distances between cn′i and ĉn′i.

The quantitative comparison results are presented in
Fig. 10, and some qualitative examples from the HPatches
dataset are presented in Fig. 11. From Fig. 10, we can observe
that our EAS-A achieves the best accuracy in homography
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Fig. 10: The cumulative distribution functions of Homography
error (horizontal axis) of the estimated homography transfor-
mation on the HPatches dataset. The more accurate the method
is, the closer its curve is to the top.

estimation, outperforming USAC, MAGSAC++ and GMS-
MAGSAC++ by a large margin. This is because a large
portion of outliers exist in the matching process due to
large illumination changes or viewpoint changes. Owing
to the same reason, GMS fails to boost the performance of
MAGSAC++. The superiority of our method can be seen in
the visual results in Fig. 11, where the correspondences that
are consistent with the estimated homography transforma-
tion are shown.

4.4.2 Fundamental Matrix Estimation
The quantitative evaluation of fundamental matrix estima-
tion is conducted on the recently introduced benchmark
of [57]. Four datasets are introduced in the benchmark, in-
cluding (i) The TUM SLAM dataset [58]: It is of indoor scenes
and contains short-baseline image pairs in the resolution of
480 × 640. (ii) The KITTI odometry dataset [59]: It is in
a driving scenario, where the geometry between images is
dominated by the forward motion. It contains short-baseline
image pairs in the resolution of 370×1, 226. (iii) The Tanks
and Temples (T&T) dataset [60]: It provides many scans
of scenes or objects for image-based reconstruction, and
offers wide-baseline pairs for evaluation. The resolution is
1, 080×2, 048 or 1, 080×1, 920. (iv) The Community Photo
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Fig. 11: Some qualitative examples comparing the results of
EAS-A (first column) and MAGSAC++ (second column) on
HPatches dataset. For comparison, we only visualize the corre-
spondences with transfer error below the threshold of 2 pixels.

Collection (CPC) dataset [61]: It provides unstructured
images of well-known landmarks across the world collected
from Flickr, taken from arbitrary cameras at a different time.
Thus the image pairs are of wide-baseline and the resolution
varies.

In our experiment, the SIFT algorithm is used to establish
tentative correspondences. In addition, as suggested in [57],
the ratio test strategy with threshold as 0.8 is used to
pre-prune the potential outliers. For competing algorithms,
the settings are retained from the homography estimation
experiment, except for USAC, for which we fine-tune the
parameter and set it to 1 pixel for the short-baseline dataset
TUM and KITTI, and 2 pixels for the wide-baseline dataset
T&T and CPC.

For all the matchable image pairs, 1, 000 pairs are ran-
domly chosen for each dataset for evaluation. The ground
truth is the fundamental matrix for each image pair in the
benchmark. In particular, it can be computed from the pro-
vided camera intrinsics and extrinsics for TUM and KITTI.
For T&T and CPC, the ground-truth fundamental matrix
is obtained by reconstructing the image sequences using
COLMAP [1], which provides accurate estimates of the cam-
era parameters. The accuracy of the estimated fundamental
matrix is evaluated by computing the error of [62] referred
as symmetric geometry distance (SGD) in [57]. Essentially, it is
computed by generating virtual correspondences using the
ground-truth fundamental matrix and computing the epipo-
lar distance to the estimated one, and then reverting their
roles to compute the distance again to ensure symmetry. The
averaged distance is then used as SGD. Taking consideration
of the different image resolutions, Normalized SGD [57] is
more favored in our paper, which is computed as the SGD
(in pixels) divided by the length of image diagonals.

The quantitative results are presented in Table 1. We can
observe that compared with the results in [57] using plain
RANSAC, the state-of-the-art robust estimators USAC and
MAG++ can achieve much better results. More interestingly,
the performance can be further improved by incorporating
a mismatch removal method, such as GMS. It can be seen

TABLE 1: The recall of each method for fundamental matrix
estimation on the four datasets. The threshold to determine
whether the estimate is accurate or not is 0.05 in terms of
Normalized SGD error. Bold indicates the best results.

Dataset USAC MAG++ GMS-M EAS-F EAS-A

TUM 62.3 70.7 71.3 71.5 72.8
KITTI 88.6 88.2 86.9 90.2 90.4
T&T 89.1 84.6 92.7 91.3 92.8
CPC 60.0 60.1 66.9 67.3 72.2
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Fig. 12: Qualitative results of EAS-A for fundamental matrix
estimation. The blue epipolar lines are produced by the ground-
truth fundamental matrix and the green ones are by the es-
timates. The 1st row represents samples from the dataset of
Tanks and Temples, the 2nd from KITTI, the 3th from CPC
and the 4th from TUM.

that the improvement is quite significant, despite the slight
degradation in KITTI. As to our methods, it can be seen that
EAS-A consistently outperforms the other algorithms, espe-
cially on CPC, the most challenging wide-baseline dataset.
Also, EAS-F is not as robust as EAS-A, which can be seen in
the performance comparison on CPC. This is because EAS-A
induces much simpler optimization problems with smaller
relative dimension. Overall, the proposed EAS-A is the most
robust and accurate method for geometric estimation, some
qualitative results can be seen in Fig. 12.

4.4.3 Additional Results

We also include the comparison results of each method
on homogr, EVD, kusvod2 and AdelaideRMF in Fig. 13.
The USAC algorithm is significantly less robust than MAS-
GAC++, which implies the restriction of requiring an inlier-
outlier threshold. The GMS algorithm does not always
enhance the estimation accuracy since inliers may also be
filtered. It can be seen that our EAS-F and EAS-A achieve
the best performances, while EAS-A is the best performer.
Note that these datasets are all of wide-baselines, which
is consistent to the evaluation result on CPC, and clearly
demonstrates the advantage of our method in this scenario.

Efficiency of EAS: Due to implementation issues, it is
generally hard to directly compare the efficiency of robust
estimators with runtime. For example, C++ implementation
can be significantly faster than the MATLAB version, and
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Fig. 13: A comparison of EAS-F, EAS-A, USAC, MAGSAC++ and GMS-MAGSAC++ on homogr, EVD, kusvod2 and
AdelaideRMF. The cumulative distribution of each method w.r.t. the mean geometric error are reported. The better the method
performs, the closer its curve is to the top.
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Fig. 14: The cumulative distribution w.r.t. runtime of our EAS.
Curves of different colors represent different datasets, i.e. TUM,
KITTI, CPC and T&T.

some standard techniques in random sampling scheme can
also greatly accelerate the algorithm (such as SPRT [20]).
Thus we demonstrate the efficiency of our EAS by de-
composing it into two separate parts. Our EAS involves
two stages for geometric model fitting, i.e. efficient deter-
ministic search and post-processing. Generally the efficient
deterministic search stage is very fast using the projected
subgradient-descent solver. This can be seen in Fig. 14 that our
EAS generally require only 20 milliseconds with MATLAB
code for most cases to finish this stage. The post-processing
stage runs random sampling with 500 iterations, which
also admits very efficient implementation within tens of
milliseconds. In our implementation, the post-processing
stage takes 22.4 ms in average and the mean overall time
cost of EAS-A is 42.6 ms, tested on TUM, KITTI, CPC and
T&T. Thus, in summary, the efficiency of our EAS is quite
advantaged, running in tens of milliseconds.

Robustness to Outliers: A nice property of performing
deterministic search for geometric model fitting is that it
is very insensitive to outliers, in sharp contrast to the tra-
ditional random sampling techniques. To verify this point,
we conduct a robustness test with the homogr dataset, the
principle of synthesizing the data with certain outlier rates is
previously explained in Sect. 4.2. We use the accuracy, i.e. the
proportion of instances with mean geometric error below a
threshold (e.g. 2 pixels in our experiment) to all instances,
to evaluate the performance. The results are presented in
Fig. 15. It can be seen that our EAS-A and GMS-MAGSAC++
significantly outperform the state-of-the-art random sam-
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Fig. 15: The robustness test of EAS-A, USAC, MAGSAC++ and
GMS-MAGSAC++ on homogr dataset.

RootSIFT SOSNet

Fig. 16: The comparison of three state-of-the-art robust estima-
tors and EAS-A on the image matching benchmark. The left
figure represents the result using RootSIFT, and the right figure
represents the result using SOSNet. We report the statistics w.r.t.
different initial matches determined by the ratio test parameter
r. The performance is evaluated in mean Average Accuracy for
the estimation of camera pose.

pling techniques, i.e. USAC and MAGSAC++, while our
EAS-A achieves the best performance in terms of robustness.

4.5 EAS for Wide-Baseline Stereo
Geometric model fitting is an essential part of modern appli-
cations of image matching in computer vision, especially in
wide-baseline and multi-view stereo. The recently proposed
benchmark [63] has provided a standard pipeline to eval-
uate the numerous image matching-related techniques that
have been proposed, in an extensive and objective way, and
focusing on the downstream task of improving the accuracy

Authorized licensed use limited to: Wuhan University. Downloaded on September 03,2021 at 13:02:11 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3109784, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

reichstag sacre coeur st peters square
D

EG
EN

SA
C

EA
S-

A

Fig. 17: Some qualitative examples comparing the results of DEGENSAC (first row) and EAS-A (second row). From left to right,
the 1st and 2nd columns are from reichstag, the 3rd and 4th are from sacre coeur, and the 5th and 6th are from st peters
square. The matches are color-coded by reprojection error computed using the ground-truth depth maps, in green to yellow if
they are correct (with green encoding 0 reprojection error and yellow a maximum reprojection error of 5 pixels), in red if they
exceed the reprojection error threshold, and in blue if depth estimates are missing.

of the reconstructed camera pose. For the wide-baseline
stereo task, the robust estimators, in conjunction with other
necessary components, are used to recover the fundamental
matrix F between two images. The known intrinsics K
of the cameras are then used to compute the essential
matrix E = KTFK, which gives the relative rotation and
translation vectors with a cheirality check with OpenCV’s
recoverPose function. To evaluate the performance, the
main error metric is based on angular errors since the stereo
problem is defined up to a scale factor [5]. The difference,
in degrees, between the estimated and ground-truth transla-
tion and rotation vectors between two cameras is computed.
Then it is thresholded over a given value for all possible
pairs of images. Doing so over different angular thresholds
renders a curve, and the mean Average Accuracy (mAA)
is computed by integrating this curve up to a maximum
threshold, i.e. 10◦ as suggested in [63]. The mAA value
is the final error metric. Note that we only evaluate the
robust estimators in the wide-baseline stereo track, since
in the multi-view stereo track of the benchmark the highly
integrated Structure-from-Motion kit COLMAP [1] is used
and the robust estimator is not directly replaceable for now
in the benchmark.

We use a classical handcrafted method RootSIFT [64]
and a state-of-the-art deep-learning based method SOS-
Net [65] with 8k keypoints for constructing the image
correspondences. Three robust estimators supported in the
benchmark, i.e. DEGENSAC [25], GC-RANSAC [27] and
MAGSAC++ [29] which are established as the state-of-
the-art robust estimators in this task [63], are adopted for
comparison. The optimal value 0.5 (pixel) for the inlier-

outlier threshold is used for DEGENSAC and GC-RANSAC,
and for MAGSAC++, we set the parameter σmax as 5.0
pixels as suggested in the original paper [29]. All compared
methods are used with 0.99 confidence and maximum it-
erations of 10, 000 to balance efficiency and accuracy. In
our post-processing stage, the inlier-outlier threshold is also
set to 0.5 pixel. The methods are tested on the validation
sequences, i.e. reichstag, sacre coeur and st peters
square. The comparison result of the state-of-the-art robust
estimators and our EAS-A is presented in Fig. 16 in terms
of mAA. We can observe that generate matching with deep
learning based method SOSNet [65] achieves a much better
performance than handcrafted RootSIFT [64]. Since large
ratio test parameter r generally indicates large outlier rate,
it can be seen that owing to the different optimization-based
view, our EAS-A is clearly much more robust to outliers
than all the other methods, resulting in better mAA both in
case of high outlier rates and in terms of a maximum value
of all ratio test settings. Some qualitative examples using
SOSNet as descriptor can be seen in Fig. 17 with comparison
to DEGENSAC, the second-best performer.

5 CONCLUSION

In this paper, we investigate a long-standing and fundamen-
tally important problem in computer vision, i.e. geometric
model fitting. The crucial concept in this field, i.e. robust
loss functions, is re-considered to guide method design, by
leveraging the function properties such as exactness and
convexity. Based on the inspiration, a group of algorithms
are proposed to perform geometric model fitting accurately
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and efficiently. Experimental results on publicly available
datasets and benchmarks have extensively demonstrated
the superiority of our methods, which prevail over the
state-of-the-art robust estimators with better robustness and
accuracy.
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