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Abstract—In this paper, we propose a novel contour-based 

shape descriptor, named Multiscale Distance Matrix (MDM), to 

capture shape geometry while being invariant to translation, 

rotation, scaling, and bilateral symmetry. The descriptor is 

further combined with dimensionality reduction to improve its 

discriminative power. The proposed method avoids the 

time-consuming point-wise matching used in most of the previous 

shape recognition algorithms. It is therefore fast and suitable for 

real-time applications. We applied the proposed method to the 

task of plan leaf recognition with experiments on two datasets: the 

Swedish Leaf dataset and the ICL Leaf dataset. The experimental 

results demonstrate clearly the effectiveness and efficiency of the 

proposed descriptor. 

Index Terms—Shape recognition, plant leaf, multiscale distance 

matrix, inner distance, cost matrix 

I. INTRODUCTION 

hape is one of the most important features of an object. It 

plays a key role in many object recognition tasks, in which 

objects are easily distinguished by shape rather than other 

features such as edge, corner, color, and texture. There are 

usually two critical parts in a shape recognition approach, shape 

representation and shape matching. According to choices of 

shape representation, shape recognition approaches can be 

generally divided into two classes, i.e., contour-based and 

region-based, respectively [1].  

In the past decade, research on contour-based shape 

recognition [2-17] is more active than that on region-based due 

to the following reasons [1]: Firstly, human beings are thought 

to discriminate shapes mainly by contour features. Secondly, in 

many shape applications only the shape contour is of interest, 

while the interior content is less important. Similarly, in this 

paper, we focus on contour-based shape recognition. Several 

important contour-based approaches have recently been 

proposed. Petrakis et al. [3] presented an effective 

contour-based approach using Dynamic Programming (DP), 

which is invariant to translation, scaling and rotation. Belongie 

et al. [2] proposed a shape feature called Shape Context (SC), 

which describes a shape by a set of 2-D histograms capturing 

landmark distributions. Ling et al. [10] extended SC to the 

Inner-Distance SC (IDSC) by replacing the Euclidean distance 
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with the articulation insensitive inner-distance. McNeill et al. 

[6] introduced a multiscale shape matching algorithm named 

Hierarchical Procrustes Matching (HPM), which investigates 

shape matching at a variety of different positions. Felzenszwalb 

et al. [9] described a hierarchical shape representation called 

Shape Tree (ST) to capture shape geometry at different levels 

of resolution. Xu et al. [13] proposed a shape descriptor called 

Contour Flexibility (CF), which represents the deformable 

potential at each point on the contour. From these approaches, 

we conclude that the relative positions between the contour 

points contain rich information about the structure of objects, 

and a multiscale representation can better capture the geometric 

propensities of a shape. 

Although the aforementioned contour-based approaches 

have reported promising recognition performances, they have 

to face a crucial problem, i.e., how to solve the correspondence 

between two shapes in the matching stage. The solution often 

requires computing the distance between the two shapes as a 

sum of matching errors between corresponding points or 

segments. Many existing contour-based approaches have 

applied DP procedures to address this problem, which is very 

time consuming [2-4]. As a result, alternative solutions that are 

computationally more efficient are desired for real-time 

applications [1].  

In this paper, we propose a novel contour-based shape 

descriptor named Multiscale Distance Matrix (MDM) to 

capture the geometric structure of a shape while being invariant 

to translation, rotation, scaling, and bilateral symmetry. When 

applying MDM to shape recognition, there is no need to use DP 

to build point wise correspondence, which makes MDM an 

efficient shape descriptor. In addition, MDM is flexible in the 

underlying building distances: either the Euclidean distance or 

other metrics can be utilized in MDM to compute the 

dissimilarity of two shapes. Furthermore, we apply 

dimensionality reduction methods to MDM to extract 

discriminant information, which further improves the 

efficiency and accuracy of the proposed method. Compared 

with other contour-based approaches such as SC and IDSC, 

MDM can achieve comparable recognition performance while 

runs much faster. 

We applied the proposed method to plant leaf recognition 

tasks, which has been attracting research attention recently [4]. 

Automatic plant leaf recognition is very important for 

phytotaxonomy [18] and real time performance is often desired 

in electronic field guide or online retrieval systems. Our 

experiment is conducted on two plant leaf datasets: the Swedish 

Leaf [19] and the ICL Leaf [22]. The Swedish Leaf, a 
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well-known public dataset established by Soderkvist, has been 

tested by many shape recognition approaches [4, 9, 10, 12, 16, 

17, 20, 21]. It however involves only 15 species, which makes 

the analysis on it less effective to generalize. Recently, in order 

to provide a larger dataset for more thorough evaluation, we 

collected the ICL Leaf dataset containing 6000 plant leaf 

images from 200 species, which can be freely downloaded from 

[22]. 

The rest of this paper is organized as follows: Section II 

gives the definition of MDM. Then Section III reports the 

experimental results. Finally, Section IV concludes the whole 

paper. 

II. MULTISCALE DISTANCE MATRIX  

A. Two-stage scheme for shape recognition 

A typical contour-based shape recognition approach contains 

two stages: shape representation and shape matching. We can 

divide contour-based approaches into two subcategories, i.e., 

local-based and global-based, as shown in Fig.1 and Fig.2, 

respectively. The local-based approaches extract local features 

of a shape and then find the correspondence of contour points in 

the matching stage, while the global-based approaches extract 

global features of a shape, and perform the matching without 

finding the correspondence of contour points. Obviously, all 

previous approaches we have mentioned in Section I are 

local-based approaches.  

On the other hand, global approaches have also been applied 

for shape matching. One example is the Principal Component 

Analysis of Census Transform histograms (PACT) [21]. In 

PACT, Census Transform (CT) histograms are used to 

summarize local shape information into global features, and 

Principal Component Analysis (PCA) [23] is then applied to the 

CT histograms to extract the most important components 

among the distribution of CT histograms. PACT, however, is 

not invariant to rotation and scaling. Our proposed MDM, in 

comparison, is a global-based feature and invariant to rotation 

and scaling. Therefore, it has wider range of application for 

shape recognition problems, at the same time it is also as 

efficient as PACT.  

B. MDM  

We define a shape O as a connected and closed subset of R
2
. 

Given n sample points p1, p2, ... , pn on the contour of shape O 

with certain order that each point has a coordinate (xi,yi), an n×n 

distance matrix D can be constructed, where Dij denotes the 

Euclidean distance between point pi and point pj. Obviously, 

this distance matrix is symmetric, with all diagonal entries 

being zeros. 

Based on D, the MDM can be computed by the following 

steps: 

1) For each column of matrix D, it is shifted up circularly so 

that the first element becomes zeros. This way, a new 

matrix Dm is constructed in which the first row has straight 

zeros. 

2) For each row of Dm, its elements are sorted ascendently. 

This generates a matrix Dms.  

3) For Dms, we remove its first and the last 1

2

n− 
 
 

rows to 

construct a new matrix, which is the basic MDM. 

An example for how to construct MDM is illustrated in Fig.3, 

where n is 4.  

For the matrix Dms, each row captures certain range of 

geometric properties of a shape. For example, the entries of the 

first row are all zeros, which are the distances between each 

point and itself. The entries of the second row are all the 

distances between points and the points next to them, which 

captures the finest level geometric properties of the shape. For 

the rest rows of Dms, the entries capture coarser level geometric 

properties. As the row moves down, the entries can capture 

even coarser level geometric properties until the row number 

reaches
2

n 
  

, where the coarsest level geometric properties 

present. It is easy to see that, for a closed contour, the second 

row of Dms is identical with the last row, both of which depict 

the distances between the points with interval of 1. For similar 

reason, about half of rows of Dms are redundant and should be 

removed. 

In Fig.4, an example of MDM extracted from a leaf shape is 

given.  For this leaf shape, 64 points are sampled on the contour, 

thus the size of its MDM is 32×64. In the feature matrix (Fig. 

 
Fig. 3.  An example illustration of constructing MDM  

 
Fig. 2.  Two-stage scheme for global-based approaches.  

 
Fig. 1.  Two-stage scheme for local-based approaches.  
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4(e)), blue entries represent small values while red entries 

represent large ones. We select four rows of the matrix to 

illustrate the features, where the distances between points are in 

green lines.  Fig. 4(a), (c) (d) and (f) depict row 1, 8, 16, 32 of 

the MDM, respectively. It can be noticed that the first row 

depicts the finest level of the shape and the last row depicts the 

coarsest level of the shape. 

 
Given the contour of a shape in an image, the translation of 

the image has nothing to do with the distances between contour 

points, so the MDM is invariant to translation.  

Generally, the rotation of image will change the order of the 

contour points. When computing MDM, the sorting step 

naturally neglects the original order of the points set and brings 

the invariability to rotation. But this step also results in the 

missing of some important discriminant information of the 

original distance matrix. In order to keep as much information 

as possible in Dm, we compute the differences between 

neighbor elements along each row of Dm circularly and sort 

them ascendently too. In particular, for a row of Dm with entries 

d1,d2,…,dn, the circular differences of this row are 

d2-d1,d3-d2,…,d1-dn. Then we can add such difference matrix to 

the bottom of the MDM to construct a new MDM-CD matrix, 

which doubles the size of MDM. 

Note that clockwise and counter-clockwise contours of a 

shape will result in different order of columns of the matrix Dm, 

but will not affect the matrix Dms. Consequently, both orders 

generate exactly the same MDM descriptors. In other words, 

the MDM is insensitive to bilateral symmetry of the shape. In 

many cases, shapes with bilateral symmetry should be 

classified to one class, but this invariability may not be a 

suitable property in some applications. 

To make the MDM invariant to scaling, we introduce five 

normalized versions of MDM, i.e., MDM-M, MDM-A, 

MDM-C, MDM-RM and MDM-RA, using different 

normalization schemes. MDM-M, MDM-A and MDM-C 

normalize the MDM with, respectively, the maximum value of 

the whole matrix, the average value of the whole matrix and 

largest distance of the contour points to the centroid of the 

shape. MDM-RM and MDM-RA normalize each row of the 

MDM with the maximum value of each row and the average 

value of each row, respectively. 

We now apply dimensionality reduction to the proposed 

descriptors for improving their efficiency and effectiveness. 

Generally speaking, dimensionality reduction methods seek to 

find a low-dimensional subspace in a high-dimensional input 

space by linear transformation. This low-dimensional subspace 

can provide a compact representation or extract the most 

discriminant information of the high-dimensional input data. It 

is well known that PCA [23] and linear discriminant analysis 

(LDA) [24] are two typical dimensionality reduction methods, 

which could be regarded as the simplest unsupervised and 

supervised dimensionality reduction methods, respectively. 

Usually, in most cases LDA could achieve better recognition 

performances than PCA. However, traditional LDA suffers 

from the Small Sample Size (SSS) problem, and the solution is 

approximate and sometimes unstable. To address this problem, 

Jia et al. [25] proposed the Decomposed Newton’s Method 

(DNM) to solve LDA in an iterative way. Li et al. [26] 

proposed the Maximum Margin Criterion (MMC) to change the 

objective function of LDA from the form of ratio to the form of 

difference. In fact, DNM and MMC are as effective as LDA, 

but do not suffer from the SSS problem. In our scheme, for the 

sake of simplicity and robustness, we apply DNM and MMC 

for dimensionality reduction after extracting MDM features 

from shape contours, and then use Euclidean distance and  the 

nearest neighbor rule (1NN) for classification. 

C. Extension of MDM 

The MDM presented above uses the Euclidean distance 

when building the distance matrix D. We can extend MDM by 

using different distance measures. One such measure is the 

inner-distance (ID) used in IDSC [10] to achieve the 

articulation insensitivity by replacing Euclidean distance in SC 

[2]. The inner-distance between two points is the length of the 

within-shape shortest path between these two points, and the 

computing of the inner-distance matrix could refer to [10]. To 

further explore the discriminability of MDM, we extend the 

matrix D by using the inner-distance, and keep unchanged other 

components. We name such descriptor as Multiscale Distance 

Matrix with Inner-Distance (MDM-ID).  

Besides the Euclidean distance and the inner-distance, other 

dissimilarity measures between a pair of points can be used to 

extend the MDM descriptors. These metrics may not have clear 

geometric explanations, but they may be effective and useful to 

certain applications. For example, in MDM, we can also use the 

histogram comparison-based cost distance matrix, like the one 

used in [2,10]. In this case, each entry in the distance matrix is 

the matching cost of two points on different shapes, where each 

point is represented by its SC or IDSC histogram. To compute 

the dissimilarity between points on the same shape we only 

need to apply the histogram comparison method on one shape 

and its own. We call it Multiscale Cost Matrix (MCM). 

Generally speaking, each row of MCM can capture the 

statistical property of dissimilarity between contour points in a 

certain scale. Note that MCM is irrelevant to the real geometric 

distance and is intrinsically invariant to scaling, so it does not 

have the versions with different normalizations. 

Fig. 4.  Different rows of MDM of a leaf. (b) The leaf image, (e) The extracted 

MDM of the leaf. The green connections in (a) (c) (d) (f) correspond to the 

first, eighth, sixteenth and last row of the MDM, respectively. 
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III. EXPERIMENTS AND DISCUSSIONS 

To validate the proposed methods, we apply them to leaf 

shape classification tasks using two leaf datasets: the Swedish 

Leaf dataset and the ICL Leaf dataset. The latter is collected by 

ourselves to compensate to the limitation of the former. Note 

that there is another public dataset, the Smithsonian Leaf 

dataset [10] which contains 343 leaves from 93 species. It, 

however, has in average less than four images per species and 

therefore not suitable for an extensive experiment.  

In this paper, we compare the recognition performance of the 

proposed methods with IDSC and the classic Fourier shape 

descriptor (FD) [1] for several reasons. Firstly, IDSC has been 

successfully applied for foliage shape analysis and has been 

used in a real electronic field guide system [4,10]. Secondly, 

IDSC is a typical local-based shape descriptor and has a 

computation complexity similar to many others, which makes it 

a reasonable choice for comparison since one of our major 

concern is about efficiency. Thirdly, FD is a classic 

global-based descriptor that runs very fast. It is therefore an 

excellent choice for evaluating the accuracy-efficiency 

trade-off of the proposed methods. Other methods mentioned in 

Section I such as ST [9], HPM [6] and CF [13] are difficult to 

be implemented fairly due to lacking some technical details in 

literatures.  

For each shape, we uniformly sample 128 points on its 

contour and build MDM over these points. Sample points are 

used for IDSC as well. Notice that to apply the dimensionality 

reduction methods, the MDM is transformed into a vector and 

the final feature dimension is experimentally determined, 

ranging from 20 to 50. Notice that DNM and MMC have quite 

similar objective function and similar performances on most 

datasets, but none of them is always superior to the other. So in 

our experiments, we report the best results among them on the 

Swedish Leaf dataset and ICL Leaf dataset, respectively. 

A. Experimental results on Swedish Leaf dataset 

The Swedish Leaf dataset [19] contains isolated leaves from 

15 different Swedish tree species, with 75 leaves per species. 

Fig.5 shows some representative examples. Following the 

protocol of previous works [9, 12, 19, 21], the first 25 images 

from each class are used for training and the rest 50 images are 

exploited for test.  

In Table I, we report the recognition rates of different 

versions of MDM, in which the method of DNM is used for 

dimensionality reduction. In this table, we also list the 

recognition rates of IDSC and FD reported in [10]. From the 

results we have several observations: First, the recognition 

performances of MDM versions with ‘-CD-’ are better than that 

of the basic versions, which suggests the usefulness of circular 

difference in MDM-CD. Second, the recognition performances 

of MDM versions with ‘-RA’ or ‘-RM’ are a little worse than 

the ones of the versions with ‘-A’ or ‘-M’ or ‘-C’. This indicates 

that normalizing the matrix along each row is less effectively 

than normalizing the matrix globally. Third, for MDM the 

inner-distance based versions with labels ‘-ID-’ achieve better 

performances than Euclidean distance based versions do, which 

demonstrates the merits of inner-distance on this dataset.  

It should be noted that the original Swedish leaf images 

contain footstalks. Obviously, the length and orientation of 

those footstalks heavily depend on the collecting and imaging 

process. Though these footstalks might provide some 

discriminant information for recognition, they may be 

unreliable when extracting from the images. For this reason, we 

cut them off to construct a clean dataset, named the Clean 

Swedish Leaf, as shown in Fig.6. Here, we only test the 

versions of MDM with ‘-CD-’ on the Clean Swedish Leaf 

dataset, since they have better recognition performances in the 

experiments on original Swedish Leaf dataset. The 

experimental results obtained from Clean Swedish Leaf dataset 

are listed on Table II. We notice that the performance of IDSC 

decreases dramatically from 93.73% to 85.07% in this 

experiment, which may indicate that those footstalks indeed 

provide useful information for recognition and the method of 

IDSC can not benefit from them in the clean dataset anymore. 

All performances of MDM versions decline too, but within a 

much small range. The version of MDM-ID-CD-M decreases 

only from 93.60% to 90.80%, and the version of MDM-CD-A 

Fig. 5.  Eight samples from Swedish Leaf dataset 

 

TABLE I 
RECOGNITION RATES (%) ON THE SWEDISH LEAF DATASET 

MDM-M MDM-A MDM-RM MDM-RA MDM-C 
IDSC[10]  

92.53 92.40 91.20 91.60 92.40 

MDM-CD-M MDM-CD-A MDM-CD-RM MDM-CD-RA MDM-CD-C 
94.13 

93.33 92.67 92.13 92.53 93.20 

MDM-ID-M MDM-ID-A MDM-ID-RM MDM-ID-RA MDM-ID-C 
FD[10] 

92.67 92.67 91.60 92.13 93.07 

MDM-ID-CD-M MDM-ID-CD-A MDM-ID-CD-RM MDM-ID-CD-RA MDM-ID-CD-C 
89.60 

93.60 92.80 92.53 92.67 93.47 

 

Fig. 6.  Eight samples from Clean Swedish Leaf dataset 

TABLE II 
RECOGNITION RATES (%) ON CLEAN SWEDISH LEAF 

IDSC MDM-CD-C MDM-CD-M MDM-CD-A 

85.07 91.07 91.20 91.33 

FD MDM-ID-CD-C MDM-ID-CD-M MDM-ID-CD-A 

83.60 89.60 90.80 90.67 
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achieves the best performance of 91.33%. We should notice 

that the extended versions with inner-distance achieve worse 

performances than the basic Euclidean distance based MDM on 

this dataset.  

 
In IDSC, the distance is in the log space and is insensitive to 

long footstalk length, while in MDM linear space of distance is 

used. So IDSC is more robust to different footstalk lengths, and 

this may explain why IDSC achieves better performance than 

MDM methods on the original Swedish Leaf dataset. The 

inner-distance is insensitive to articulation variations, which 

makes the methods based on this distance metric more robust to 

footstalk changes than those methods based on Euclidean 

distance, so the versions of MDM with label ‘-ID-’ yield better 

performance in the first experiment. While on the Clean 

Swedish Leaf dataset, the merits of inner-distance are no longer 

available and the traditional Euclidean distance seems to better 

represent the geometric statistical properties of the shape. For 

the same reason, IDSC could no longer benefit from the 

footstalks and its performance decreases dramatically. 

B. Experimental results on ICL Leaf dataset 

 In the ICL Leaf dataset, all images were collected at the 

Botanical Garden of Hefei, Anhui Province of China by the 

members of Intelligent Computing Laboratory (ICL) in 

Institute of Intelligent Machines, Chinese Academy of Sciences. 

The ICL Leaf dataset contains 6000 plant leaf images from 200 

species, in which each class has 30 samples. All the footstalks 

have been cut off and this dataset is totally clean. We intended 

to use the whole dataset to test the algorithms, but the DP 

process in IDSC need a long time to complete the matching 

procedure when the number of samples is large. So we 

construct three subsets, named subsets A, B, and C, from the 

whole dataset for performance evaluation. Each subset contains 

50 species and each class contains 30 samples. In subset A, all 

classes are carefully selected and most of the shapes could be 

distinguished easily by human. In subset B, all classes are 

randomly selected from the whole dataset, which approximates 

the distribution of the whole dataset while being smaller in size, 

and there are some classes with similar shapes. In subset C, all 

classes are also carefully selected and most of the shapes are 

similar but still distinguishable. Fig.7 shows some examples 

from these three subsets. Obviously, subset B is more difficult 

than subset A for recognition, and subset C is the most difficult 

for recognition among three subsets. We test methods in two 

situations. In the first situation, half samples of each class are 

selected for training, and the rest 15 samples are used for test. In 

the second situation, 29 samples of each class are randomly 

selected for training and the rest 1 sample of each class is used 

for test. All these tests are repeated for 50 times, consequently, 

the average recognition rates are reported.  

With extensive experiments of different MDM versions, we 

find that for all three subsets, the versions with label ‘-C-’ 

achieve the best performances in most cases. So in table III, we 

list them and results from MCM on all three subsets, and MMC 

is applied for dimensionality reduction. Meanwhile we report 

the recognition rates of IDSC and FD for comparison. From the 

results we can see: First, on subset A the MCM methods 

achieve the best among all methods, while on subsets B and C 

the MCM methods perform the worst in all the situations. This 

indicates that different distance metrics have quite different 

properties and different suitable situations. Second, from subset 

A to B to C, the difficulty of recognition is increasing as the 

performances of IDSC demonstrate. Surprisingly, though the 

performances of MDM methods decrease from subset A to B, 

they show much better discriminability on subset C than B. 

This proves the potential of MDM methods to classify shapes 

with small variations due to the further discriminant feature 

extraction of dimensionality reduction methods.  

In the first two rows of Table IV, we report the average CPU 

time of completing one test including feature extraction and 

matching, which gives us a rough feeling of the advantage of 

MDM. Since the final feature of MDM is only a vector, 

Euclidean distance is directly computed for matching, on the 

contrary, DP is applied to match two SCs. We would only 

regard the computing of Euclidean distance or DP as matching 

while other processes are feature extraction. All algorithms are 

coded in Matlab except that the DP procedure of IDSC is coded 

in C in the mex form. Then we show the comparison of 

one-to-one matching time in the third row, where the DP 

 
Fig. 7.  Samples of different species from three subsets 

TABLE III 
RECOGNITION RATES (%) ON THE ICL PLANT LEAF SUBSET 

Subset Situations IDSC FD MDM-CD-C MDM-ID-CD-C MCM-CD MCM-ID-CD 

30T15 95.79 92.90 95.47 94.97 95.73 94.91 
A 

30T29 98.00 96.00 98.20 98.20 98.20 97.76 

30T15 65.42 60.00 68.75 68.13 63.25 55.13 
B 

30T29 70.32 66.56 74.20 74.08 70.44 59.64 

30T15 63.99 59.37 73.88 73.93 67.27 63.95 
C 

30T29 66.64 62.96 80.88 80.80 73.52 69.72 

 
TABLE IV 

EXECUTIVE TIME (S) OF IDSC, FD AND MDM ON DIFFERENT SITUATIONS 

Situations IDSC FD MDM 

Test 30T15 27344 8 37 

Test 30T29 3481 7 55 

One-to-one Matching 7.295 0.001 0.001 
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procedure of IDSC is also coded in Matlab rather than in C. In 

both cases, the MDM approach costs much less time than IDSC. 

Noted that in the ICL Leaf dataset, all leaf images have be 

rotated to a canonical direction, which means that no starting 

point difference needs to be taken into account in these 

experiments. While in a real application, either direction 

normalization or a more adaptable matching is necessary. This 

would affect the matching of IDSC, but would not affect the 

matching of MDM. So IDSC needs more time to match two 

common leaves, and the MDM approach is more suitable for a 

real-time recognition system.  

IV. CONCLUSIONS 

In this paper, we proposed a novel shape descriptor, i.e., 

MDM, and its extensions to capture multi-scale geometric 

prosperities of a shape. In leaf recognition experiments on two 

datasets, our approach achieves comparable or better 

performances in comparison with IDSC, which shows our 

approach  is much more efficient and effective. Besides good 

recognition performance and invariability to translation, 

rotation, and scaling, the proposed method for shape 

recognition has three additional advantages in comparison with 

the state-of-the-art approaches:  

1) Significantly fewer parameters to tune. Specifically, only 

one parameter is needed, i.e., the number of points on the 

shape contour; 

2) Extremely fast evaluation speed compared with DP-based 

procedure; 

3) Very easy to implement since it is based only on the 

distance matrix of the shape. 

There are several important issues about the MDM that have 

to be addressed here. First, to compute the MDM, the distance 

matrix of the shape boundary points are assumed to be known. 

This limits the proposed approach to those applications where 

the segmentation of the shape image is unstable or unavailable. 

Second, the metric selection is critical, and the discriminability 

highly depends on the properties of the metric. If the metric is 

sensitive to shape topology such as inner-distance, the methods 

may cause some problems. For example, occlusion may cause 

the topology of shapes to change, and in such cases MDM will 

surely have a degrading performance due to the disadvantages 

of the metric. Third, MDM is data-independent while the 

dimensionality reduction used is data-dependent, so the 

proposed approach may be limited in shape recognition 

applications. At last, though we only tested the proposed 

method on two leaf shape datasets, the MDM approach could 

be applied to other shape recognition tasks involving single 

closed contours. How to extend MDM to capture the features of 

an open curve or a multi-contour shape is our future research 

focus. 
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