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ABSTRACT

Existing camera-projector calibration methods typically warp fea-
ture points from a camera image to a projector image using estimated
homographies, and often suffer from errors in camera parameters
and noise due to imperfect planarity of the calibration target. In
this paper we propose a simple yet robust solution that explicitly
deals with these challenges. Following the structured light (SL)
camera-project calibration framework, a carefully designed corre-
spondence algorithm is built on top of the De Bruijn patterns. Such
correspondence is then used for initial camera-projector calibration.
Then, to gain more robustness against noises, especially those from
an imperfect planar calibration board, a bundle adjustment algorithm
is developed to jointly optimize the estimated camera and projec-
tor models. Aside from the robustness, our solution requires only
one shot of SL pattern for each calibration board pose, which is
much more convenient than multi-shot solutions in practice. Data
validations are conducted on both synthetic and real datasets, and
our method shows clear advantages over existing methods in all
experiments.

Index Terms: Computing methodologies—Camera cali-
bration; Computing methodologies—3D imaging; Computing
methodologies—Reconstruction

1 INTRODUCTION

Camera-projector systems are popular in 3D surface reconstruction
and projected augmented reality, where in most cases, structured
light (SL) is applied due to its ease of use and accuracy. Compared
with passive feature point based 3D reconstruction methods, such
as stereo vision and structure from motion (SfM), SL is able to
reconstruct a denser and more precise surface. Moreover, SL works
for texture-less or repetitively textured objects.

A typical SL system consists of a calibrated camera and projector
pair placed at a fixed distance and orientation as shown in Fig. 1.
Firstly, the projector projects known encoded patterns onto the tar-
get object, then the projected patterns are deformed according to
the surface shape of the target object. Once the camera captures
the deformed patterns, pixel correspondences between camera and
projector can be established by matching the captured and projected
patterns. In the end, the 3D coordinates of the deformed pattern
pixels are triangulated, given the camera-projector parameters and
pixel correspondences.

Despite the simplicity, the 3D reconstruction precision of an
SL system is highly dependent on the joint camera-projector pair
calibration. Unlike a binocular stereo vision system, in an SL system,
the projector is unable to capture images. So most SL calibration
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Figure 1: System setup: a projector on the bottom-right, a camera
on the bottom-left and calibration board with a checkerboard pattern
attached to it.

systems model the projector as an inverse camera that can “see” the
calibration target [4, 20, 37]. Then it can be simply calibrated like a
camera using Zhang’s method [39].

The above camera-projector framework requires correspondences
between the projector image plane and a reference plane, which is
usually approximated by a planar calibration board with a printed
checkerboard, dots or circles pattern. The camera can be calibrated
using these patterns. Afterwards, the projector projects encoded
SL patterns onto the calibration board, and these patterns are then
captured by the camera for calibrating the projector.

In practice, the calibration board and printed pattern are hardly
perfect planar due to manufacturing and/or glue. As pointed out
by [1,13,29,30,39], an imperfect calibration target may significantly
impact the accuracy of Zhang’s method. As most existing calibration
methods rely on camera parameters to warp printed feature points
to the projector image space, the camera error may be propagated
to the projector image plane. This adds to the error of projector
calibration that is again done by Zhang’s method.

To address this issue, we propose a novel additional step to jointly
rectify the camera and projector models. Specifically, after calibrat-
ing the camera and projector using the traditional method, we put
them into a bundle adjustment (BA) framework [10] for rectifica-
tion, together with a scale regularization for further improvement.
Another key component in our system is the reliable correspondence
construction process. By using an efficient De Bruijn pattern [12,36]
and a carefully designed keypoint extraction algorithm, our system
provides reliable keypoint correspondence for the calibration algo-
rithms. Moreover, being a single-shot per pose1 solution, our system
brings practical convenience over systems that require multiple shots
of SL patterns for a single calibration board pose. This is particularly
important for applications that require frequent re-calibrations, e.g.,
with the camera/projector moving around.

1Following [11], we call it single-shot for conciseness in the rest of the
paper.



To summarize, our system brings the following contributions:

• Our system explicitly deals with the noise in target planarity
with a novel BA solution. This is the first such system for joint
camera-projector calibration, to the best of our knowledge.

• Unlike many existing methods, to calibrate the system, we ap-
ply points from an SL pattern rather than from a checkerboard.
This strategy boosts both the number of feature points and their
spatial distribution, and hence improves calibration robustness.

• The proposed method performs camera-projector pair calibra-
tion with only a single-shot per pose, making it practically
convenient in many applications. It can provide a flexible and
accurate results even when the board is handheld.

The effectiveness of the proposed solution over existing ones is
clearly demonstrated in our experiments on both synthetic and real
data, especially when the calibration board is imperfect planar. In
addition, the source code is publicly available at https://github.
com/BingyaoHuang/single-shot-pro-cam-calib.

In the rest of the paper, we summarize related work in Sec. 2 and
introduce our camera-projector calibration method in Sec. 3. Then,
we report experiments in Sec. 4, and conclude this paper in Sec. 5.

2 RELATED WORK

Most existing camera-projector pair calibration methods apply
Zhang’s method [39], where the 3D-2D correspondences between
the points on the calibration board and the projector image are
computed by some transformations. Regardless of a multi-shot or
single-shot method, their transformations fall into one of the follow-
ing methods: global homography [2, 7–9, 14, 16, 21, 22, 35], local
homography [19, 20], direct pixel-to-pixel transformation [37] and
incremental projector image pre-warp [3, 6, 28, 34, 38].

It is worth noting that a global homography-based method usually
ignores both projector lens distortions and imperfect planarity of
the calibration board. While the other three types of calibration
methods can model projector lens distortion [6, 19, 20, 37, 38], they
are highly dependent on camera calibration accuracy. In addition,
the imperfect planarity of calibration board is ignored in all the
reviewed methods above, and such imperfectness can cause errors
as pointed out in [1, 13, 29, 30, 39] and illustrated in Sec. 4.

Other than using Zhang’s method, self-calibration algorithms
[18, 32, 33, 35] are capable of calibrating intrinsics and extrinsics
of the camera-projector pair without a known planar target, instead
a fundamental matrix or its variant is estimated using camera and
projector image correspondences. With some priori of the intrinsics,
e.g., unit aspect ratio and the principle point is assumed to be at
the center of the image. However, these two assumptions are often
violated, especially for projectors [20].

Additional cameras can also be included to either reduce cal-
ibration board poses [5] or allow arbitrary shapes as calibration
targets [24]. However, these methods are even inflexible since they
either require additional hardware or precise 3D measurement of a
complex object, let alone multiple shots.

Multi-shot and single-shot methods According to [11], SL-
based camera-projector calibration methods can be categorized
into two types: multi-shot [5, 6, 20, 23, 32–34, 37] and single-
shot [2, 4, 17, 35, 36]. Specifically, multi-shot and single-shot in-
dicate the number of SL pattern shots for each calibration board
pose, rather than the total number of shots for the whole process.

Multi-shot methods project a sequence of patterns onto the calibra-
tion board, the patterns are encoded in Gray/binary code [20, 23, 32]
or multiple phase shifting [37], leading to a pixel-wise or even
sub-pixel resolution. However, a disadvantage is that it is slow
and computationally expensive due to multiple shots, e.g., [20]
requires about 20 shots and captures for each pose. Incremental
methods [3, 6, 19, 28, 34, 38] also belong to multi-shot, since the
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Figure 2: Coordinate system. The world origin is at the camera
optical center. Red, green and blue axes represent X, Y and Z
directions, respectively.

projected pattern is incrementally adjusted to fit the printed pattern
until a perfect superimposition is achieved, which requires at least
two shots per pose.

Despite the correspondence accuracy, multi-shot calibration meth-
ods are both computationally expensive and memory inefficient
compared with single-shot ones. Moreover, multi-shot methods are
sensitive to motion; even a little shift or jitter between two consec-
utive captures can produce huge SL decoding errors due to pattern
misalignment. For example, when a user holds the calibration board
or a mobile camera-projector pair, it is very hard to ensure absolute
stillness of the target between consecutive shots.

Single-shot methods only require one shot per pose and adopt
spatial multiplexed patterns including the De Bruijn sequence [12,
15, 25, 27, 36], M-array [4, 35], checkerboard [2] and phase shifting
fringes. The feature point correspondences are uniquely encoded in
a single SL pattern. Consequently, single-shot SL allows for faster
and more flexible camera-projector calibration than multi-shot SL.

Compared with previous studies, our camera-projector calibra-
tion is simple and fast, and requires only one shot per calibration
board pose. Moreover, it refines imperfectly calibrated camera and
projector parameters due to imperfect planar calibration board using
a bundle adjustment method. The experiments show that our method
outperforms the other counterparts on both synthetic and real data.

3 METHOD

Notations. Throughout the paper, we use the mathematical nota-
tions as shown in Tab. 1. In addition we use subscripts c, p and m
for camera, projector and calibration board model space, respec-
tively. Thus, the subscript cp (or mp) stands for the transformation
from camera (or calibration board) coordinate system to projector
coordinate system (Fig. 2).

Table 1: Notations

Notation Example Meaning
italic a,A, . . . scalars

lower-case boldface a,b, . . . vectors
boldface capital A,B, . . . matrices

calligraphic A ,B, . . . sets
index range a1:N a1,a2, . . . ,aN

dot ȧ, Ȧ, . . . initial guess
hat â, Â, . . . estimation
bar ā, Ā, . . . homogeneous coordinates

3.1 System Overview
Our camera-projector calibration system (Fig. 1) consists of an RGB
camera, a projector and a white board with a printed checkerboard

https://github.com/BingyaoHuang/single-shot-pro-cam-calib
https://github.com/BingyaoHuang/single-shot-pro-cam-calib
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Figure 3: System flowchart. We divide the calibration algorithm into three procedures (Alg. 1): Yellow blocks: camera initial calibration. Blue
blocks: projector initial calibration and Green block: bundle adjustment. Best viewed in color.

pattern attached to it. As summarized in Alg. 1, it contains three
stages: (1) initial camera calibration using checkerboard images,
(2) initial projector calibration using projected SL patterns, and (3)
joint refinement of camera and projector parameters using bundle
adjustment (BA).

As shown in the system flowchart in Fig. 3, we start by capturing
an image of the calibration board, then we project a color-encoded
SL pattern to the calibration board and take an image of the super-
imposed SL pattern. We change the pose of the calibration board
manually and repeat the steps above to get sufficient (at least three)
pose samples. Then, we first calibrate the camera using Zhang’s
method to get the initial camera model, including camera intrinsics
and rotations and translations of each calibration board pose relative
to the camera.

We then undistort the captured SL images. After that, we decode
the SL patterns in the camera image plane and find their corre-
spondences to the original SL pattern in the projector image plane.
Following that, we transform the SL points to the calibration board
model space using rotations and translations obtained in last step.
Note the SL points in the calibration board model space may also
be erroneous due to inaccurate camera calibration. With these cor-
respondences, we apply Zhang’s method again to calibrate the pro-
jector. The relative rotation and translation between camera and
projector are estimated using stereo calibration. Similar to cam-
era parameters, the projector parameters obtained are also initial
guesses and subject to propagated errors from camera calibration
and imperfect planarity of the calibration board.

Finally, we gather camera and projector parameters along with
the SL points to perform a BA refinement. This last step largely
reduces errors in initial calibration (Subsec. 3.4).

3.2 Structured Light Pattern

To allow for single-shot calibration, we employ a spatial multiplexed
SL technique and use only a single color-encoded pattern (Fig. 3
steps 2-3). The SL pattern is a variant of [26] composed of vertical
and horizontal colored stripes with a De Bruijn sequence encoding.
A De Bruijn sequence of order n over an alphabet of k color symbols
is a cyclic sequence of length kn with a so-called window property
that each subsequence of length n appears exactly once [31].

Let C = {1,2, ...,8} be the set of encoding color primitives, each
number represents a different color. In particular, red (1), lime (3),
cyan (5) and purple (7) are used for the horizontal stripes, while
yellow (2), green (4), blue (6) and magenta (8) for vertical ones. In
the inset of Fig. 3 step 2, the vertical color stripes are (4,8,2) from
left to right, the horizontal stripes are (1,3,7) from top to bottom.

We employ De Bruijn encoding to both vertical and horizontal
stripes, and construct a color grid with m×m intersections, where
m = kn + 2, in our case k = 4,n = 3. More importantly, a unique
k-color horizontal sequence overlain atop a unique k-color vertical
sequence only occurs once in the grid. As shown in inset of Fig. 3

step 2, this 3×3 subset color grid appears only once in the whole
pattern. We represent the color-coded pattern using an undirected
graph G = (V ,E ), in which V = {v1,v2, . . . vm×m} is a set of graph
nodes, which represent color stripes intersections, where

vi = {xc(i),xp(i),xm(i)}, (1)

such that xc(i) = [uc(i),vc(i)]T , xp(i) = [up(i),vp(i)]T , and
xm(i) = [xm(i),ym(i),zm(i)]T represent the coordinates of the
ith node in, respectively, the camera image space, the projec-
tor image space and the calibration board model space. E =
{e00,e01, . . . ,ei j, . . . ,em2×m2} is the set of all edges representing
color stripe segments. We have ei j = {L ,τ}, where L is a list of
pixels belonging to this edge and τ ∈ C ∪{0} is the color label of
the edge (if the link exists) or 0 (otherwise).

The correspondences between the camera captured image and the
projected SL pattern is built by decoding the color codeword of the
SL pattern. Since finding SL correspondences is not the main focus
of this paper, we provide the details in the supplementary material.

Once we have the camera and projector coordinates of all the
nodes, we apply the homography H j to transform node points from
the camera image plane to the calibration board model space, where
H j is the transformation for the j-th pose estimated by initial cali-
bration (Subsec. 3.3).

3.3 Initial Calibration
The camera and projector view spaces and calibration board model
space follow a right hand coordinate system as shown in Fig. 2. The
world origin is at the camera optical center.

Camera and Projector Model We employ the pin-hole model
for both camera and projector calibration, with intrinsic matrices
denoted by Kc and Kp, respectively:

Kc =

 fx 0 cx
0 fy cy
0 0 1

 , Kp =

 f ′x 0 c′x
0 f ′y c′y
0 0 1

 , (4)

where fx, f ′x and fy, f ′y represent camera and projector focal lengths
in x and y directions. (cx,cy) and (c′x,c

′
y) represent camera and pro-

jector image principle point coordinates. The camera and projector
distortion coefficients are given by:

dc = [k1,k2, p1, p2], dp = [k′1,k
′
2, p′1, p′2], (5)

where k1,k′1 and k2,k′2 are radial distortion factors; p1, p′1 and p2, p′2
are tangential distortion factors. In addition, we model extrinsics
parameters, i.e., relative rotation and translation of the camera with
respect to the projector as:

rcp = (rx,ry,rz)
T , tcp = (tx, ty, tz)T . (6)

Note that rcp ∈ so(3) is a rotation vector, i.e., the associated Lie
algebra of rotation matrix Rcp ∈ SO(3).

Camera Calibration We first calibrate the camera using Zhang’s
method [39], with all the checkerboard corner correspondences from



Algorithm 1 The proposed calibration algorithm

1: Input: camera captured images I 1:N

2: Output: camera-projector pair parameters Ψ̂ΨΨ

3: // Stage 1. Initial Camera Calibration
4: Kc,dc,R1:N

mc , t1:N
mc ← ZhangCalib(I 1:N)

5: for j← 1 to N do
6: H j = Kc ∗ [r1 j

mc,r2 j
mc, t

j
mc] (2)

7: end for
8: // Stage 2. Initial Projector Calibration
9: for j← 1 to N do

10: x̄ j
c← undistort(x j

c,dc)

11: for i← 1 to M j do
12: ẋ j

m(i) = inv(H j)∗ x̄ j
c(i) (3)

13: end for
14: end for
15: Kp,dp,R1:N

mp , t1:N
mp ← ZhangCalib(ẋ1:N

m , x̄1:N
p )

16: Rcp = median(R1:N
mp ∗ (R1:N

mc )
T )

17: tcp = median(t1:N
mp −R1:N

mp ∗ (R1:N
mc )

T ∗ t1:N
mc )

18: // Stage 3. Bundle Adjustment
19: Ψ̇ΨΨ = [Kc,dc,R1:N

mc , t1:N
mc ,Kp,dp,Rcp, tcp, ẋ1:N

m ]

20: Ψ̂ΨΨ← bundleAdjust(Ψ̇ΨΨ)

21: return Ψ̂ΨΨ

camera images {I 1,I 2, . . .I N} to the calibration board model
space. We obtain initial guess of camera intrinsics Kc and dc, as
well as relative rotation R j

mc and translation t j
mc between the jth

calibration board pose and the camera view space. A homography
H j between the calibration board and the camera image plane can
then be calculated by Eq. 2, where r1 j

mc and r2 j
mc are the 1st and

2nd columns of R j
mc of the jth pose.

Projector Calibration After initial camera calibration, we trans-
form the SL pattern nodes from camera image space to calibration
board model space by Eq. 3 in Alg. 1, where x̄ j

c(i) is the undistorted
homogeneous coordinates of node vi in the camera image space,
imaged at the jth pose. To be clear, we do not use checkerboard
corners for projector calibration, instead we employ the SL nodes
since they provide more robust and accurate initial guess.

Once we obtained the node point pairs (ẋm, x̄p), Zhang’s method
is applied to calibrate the projector parameters, as shown in line 15
of Alg. 1. The relative translation and rotation between camera and
projector are computed as shown in lines 16-17 of Alg. 1.

3.4 Bundle Adjustment

The imperfect planarity of the calibration board can bring errors to
the initial calibration. Attacking this problem, given the initial cam-
era and projector calibration, we propose a bundle adjustment (BA)
algorithm (Stage 3 of Alg. 1) on the initial intrinsics and extrinsics,
as well as node point coordinates x1:N

m subject to reprojection errors.
Specifically, we set the world origin at camera optical center and

let camera and projector parameters be:

ΨΨΨc = (Kc,dc,r1:N
mc , t

1:N
mc ) (7)

ΨΨΨp = (Kp,dp,rcp, tcp), (8)

where r1:N
mc and t1:N

mc are relative rotation and translation vectors of
the calibration board with respect to the camera; rcp, tcp are relative
rotation and translation of the camera with respect to the projector.

Now, the camera-projector calibration problem can be formulated

as minimizing the following BA cost:

{Ψ̂ΨΨc,Ψ̂ΨΨp, x̂1:N
m }= argmin

ΨΨΨc,ΨΨΨp,x1:N
m

(
cost(ΨΨΨc,ΨΨΨp,x1:N

m )
)
, (9)

More specifically, suppose the jth calibration board pose has M j

nodes imaged on the calibration board, and denote np = ∑
N
j=1 M j.

The objective function is formulated as:

cost =
N

∑
j=1

M j

∑
i=1

(
δ

j
c (i)+δ

j
p (i)+λδ

j
m(i)

)
. (10)

The first two terms represent reprojection errors of the node vi in
camera and projector image space:

δ
j

c (i) = ‖x j
c(i)− f (ΨΨΨc;x j

m(i))‖2 (11)

δ
j

p (i) = ‖x j
p(i)− f (ΨΨΨp,r1:N

mc , t
1:N
mc ;x j

m(i))‖2, (12)

where f : R3 7→ R2 projects a node coordinate x j
m(i) from the cal-

ibration board model space to the camera/projector image space
using camera/projector parameters.

In addition, we add a scale constraint that bounds the scale of
model point coordinates during bundle adjustment:

δ
j

m(i) = ‖x̂ j
m(i)− ẋ j

m(i)‖2 (13)
This term is necessary since the model point coordinates are coupled
with extrinsic parameters rcp and tcp. The original model point
coordinates ẋ j

m(i) are computed by Eq. 3. We introduce a weight
λ to control the weight of the scale constraint, and empirically set
λ = exp(−δ

j
m(i)).

We apply the trust-region-reflective algorithm to solve for Eq. 9.
Since we introduce np node model coordinates xm to bundle adjust-
ment, leading 3×np extra parameters to optimize, a sparse Jacobian
matrix pattern is designed to speed up numerical finite derivative
computation.

4 EXPERIMENTS AND RESULTS

Our camera-projector pair consists of an Intel RealSense F200 RGB-
D camera with image resolution of 640×480, and an Optima 66HD
DLP projector set to the resolution of 800×600, as shown in Fig. 1.
Note we only use RGB camera for calibration and reconstruction,
the depth camera is employed only for generating ground truth. The
distance between the camera and the projector is 1500 mm and all
the calibration board poses are around 700 mm to 3000 mm in front
of the camera-projector pair.

4.1 Evaluated Baselines
We compare our method with three other methods: a generalized
global homography method, a multi-shot local homography method
[20], and a degenerated baseline of the proposed method.

To compare with other camera-projector calibration methods
(e.g., [3]), even if we replicate their calibration patterns (e.g., the
ARTags pattern) and configurations, the obtained calibration points
are different. It is hard to make a fair comparison this way. Instead,
we generalize a method named Global homography to represent
global homography-based methods in our experimental configura-
tion and therefore we are able to use the same calibration points. For
local homography-based method, we employ the popular system by
Moreno & Taubin [20] with default parameters.

In addition, we generate a degraded version of the proposed al-
gorithm by excluding the BA stage, named as Proposed w/o BA. In
particular, this baseline only includes r1:N

mc and t1:N
mc in the nonlinear

optimization. Unlike Global homography that uses points from
a checkerboard, the degraded method applies points from an SL
pattern. This strategy boosts both the number of feature points and
their spatial distribution, and hence is more robust and accurate.

The three methods are tested together with the proposed one using
both synthetic and real data. Root mean square (RMS) reprojection
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Figure 4: Synthetic data. Reprojection, 3D alignment, rotation and
translation errors when noise level σ = 0→ 1.
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Figure 5: Synthetic data. Errors in camera intrinsics for different
noise levels σ = 0→ 1. fx and fy are camera focal lengths in two
directions, (cx,cy) is the camera image principle point, and k1,k2
and p1, p2 are radial and tangential distortion factors, respectively.

errors, 3D alignment errors, intrinsics and extrinsics errors are used
as criteria. The synthetic data results (Fig. 4-Fig. 6) and real data
results (Fig. 7) show clearly the benefits of the proposed method.

4.2 Synthetic Data
To compare the proposed method with baseline methods statistically,
we first use synthetic data as benchmarks, where the camera and pro-
jector intrinsics and extrinsics, checkerboard corners and calibration
board geometry are known. In particular, synthetic data provides
absolute ground truth and accurate error measurement.

We start by generating the data by projecting the projector SL
patterns to the world space. Each pair of node coordinate in projector
image space xp and projector optical center forms a ray that inter-
sects with a set of predefined calibration boards, those intersections
represent node’s coordinates in the calibration board model space
xm. Next we project xm to the camera image space using pre-defined
camera intrinsics and extrinsics, obtaining node’s coordinates in
camera image space xc. Finally, we follow the steps in Alg. 1 to
calibrate our camera-projector pair.

We add Gaussian white noise with zero mean and standard devia-
tion of σ to both camera and projector images. It is worth noting that,
to simulate imperfect planarity, we also add Gaussian white noise
to checkerboard and SL nodes in calibration board model space,
whereas the noise units are in millimeters (mm). We generate the
statistical benchmarks by inspecting the RMS reprojection errors,
3D alignment errors, intrinsics errors and extrinsics errors at each
noise level σ = 0→ 1. The 3D alignment errors are discrepancies
between a synthetic 3D geometry and reconstructed 3D geometry.

The experiments are performed 100 times for each noise level σ

and we plot the median of the errors as shown in Fig. 4 to Fig. 6.
The proposed method clearly outperforms the other three methods.
Moreover, Global homography’s reprojection error, rotation error,
translation error and some projector intrinsics errors are nonzero
even when the noise level σ = 0 due to its inability to model projec-
tor lens distortions (Fig. 4). In Fig. 5, Global homography’s and
Moreno & Taubin’s curves overlap because they apply the same
camera calibration method to the same set of checkerboard points.

4.3 Real Data
We evaluate our calibration using an imperfect planar white board
with a printed checkerboard pattern glued to it. As shown in Tab. 2
column 2, our method is able to refine imperfect planar points and
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Figure 6: Synthetic data. Errors in projector intrinsics for different
noise levels σ = 0→ 1. f ′x and f ′y are projector focal lengths in two
directions. (c′x,c

′
y) is the projector image principle point, and k′1,k

′
2

and p′1, p′2 are radial and tangential distortion factors, respectively.

Figure 7: Real data. Reconstructed paper box (1st row), plaster bust
(2nd row) and folded paper board (3rd row) using a camera-projector
pair calibrated by the four calibration methods. Reconstruction
errors (mm) are shown in pseudocolor.

inaccurate camera parameters using BA, thus leading to lower pro-
jector and stereo RMS reprojection errors than its counterparts. Note
the stereo RMS reprojection error is the RMS of camera and projec-
tor reprojection errors.

It is worth noting that the projector RMS reprojection errors of
the first two methods are high for two reasons: (1) they use Zhang’s
method to calibrate the camera-projector pair and thus suffer from
imperfectness in the planarity of the calibration board. (2) The errors
of extrinsics, i.e., Rcp and tcp, propagate to the projector (see Eq. 8
and Eq. 12), leading to enlarged high RMS reprojection errors.

One may notice that our camera reprojection error is a bit higher
than the other two methods. This is because SL nodes are used for
camera-projector calibration, while the reprojection errors are based
on nodes rather than checkerboard points. Namely, reprojection
errors solely are not sufficient to represent calibration accuracy if
different set of points are employed.

Thus, we evaluate reconstruction errors by comparing the recon-
structed point cloud with the ground truth. We first employ the
calibration data from the four methods to reconstruct a point cloud
using SL. Then the reconstruction errors are calculated as the RMS
discrepancies between the SL reconstructed point cloud and the
RGB-D camera captured point cloud. As shown in Fig. 7, a paper
box, a plaster bust and a folded paper board are reconstructed using
the calibration data of the four evaluated methods. The statistics of
reconstruction errors are given in Tab. 2, columns 3-5, the proposed
w/o BA method outperforms Global homography and Moreno &
Taubin [20], since it applies SL nodes to calibration. The proposed
method outperforms the degraded version, proving that BA is able
to compensate for imperfect nonplanarity.

Our method outperforms both global and local homography-based
methods on projector and stereo RMS reprojection errors and recon-



Table 2: Calibration RMS reprojection errors (pixels) (column 2) and reconstruction errors (mm) of real objects (columns 3-5).

Method Reproj. errors (pixels) Paper box (mm) Plaster bust (mm) Folded paper board (mm)
Cam. Pro. Stereo Mean Median Std. Mean Median Std. Mean Median Std.

Moreno & Taubin [20] 0.12 1.59 1.13 8.47 7.08 5.93 5.60 4.72 3.93 9.82 9.69 5.72
Global homography 0.12 5.79 4.09 11.88 11.94 9.99 9.81 9.86 4.85 18.42 19.91 9.41
Proposed w/o BA 0.42 0.71 0.58 6.78 6.88 4.10 6.10 5.28 4.16 5.68 4.86 4.09
Proposed 0.35 0.64 0.51 5.60 4.59 4.70 4.82 4.12 3.50 5.09 4.46 3.53

struction errors. In practice, our single-shot method also overcomes
the drawbacks of requiring many shots per pose, whereas Moreno
& Taubin [20] needs 20 shots per pose, and one local homography
per checkerboard corner. Additionally, Audet et al. [3] and Yang et
al. [34] need at least two shots per pose for prewarp and additional
time for incremental adjustment.

5 CONCLUSIONS

In this paper we present a flexible single-shot camera-projector
calibration method. Compared with existing calibration systems,
our method has two advantages: (1) Both synthetic and real data
demonstrate that our method can refine imperfectly calibrated cam-
era/projector parameters and imperfect planar calibration board
points, thus leading to higher calibration accuracy and robustness
against noises in planarity. (2) Requiring only a single shot of SL
pattern per pose, our system enables fast and efficient calibration,
especially in applications that need frequent re-calibration. Fur-
thermore, the one-shot calibration provides a flexible and accurate
results even when the board is handheld.
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