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Abstract

Joint learning of similar tasks has been a popular
trend in visual recognition and proven to be bene-
ficial. Between-task similarity often provides useful
cues, such as feature sharing, for learning visual clas-
sifiers. By contrast, the competition relationship be-
tween visual recognition tasks (e.g., content indepen-
dent writer identification and handwriting recognition)
remains largely under-explored. A key challenge in vi-
sual recognition is to select the most discriminating fea-
tures and remove irrelevant features related to intra-
class variations. With the help of auxiliary compet-
ing tasks, we can identify such features within a joint
learning model exploiting the competition relationship.
Motivated by this intuition, we propose a novel way
to exploit competition relationship for solving visual
recognition problems. Specifically, given a target task
and its competing tasks, we jointly model them by a
generalized additive regression model with a competi-
tion constraint. This constraint effectively discourages
choosing of irrelevant features (weak learners) that sup-
port the auxiliary competing tasks. We name the pro-
posed algorithm CompBoost. In our study, CompBoost
is applied to two visual recognition applications: (1)
content-independent writer identification from hand-
writing scripts by exploiting competing tasks of hand-
writing recognition, and (2) actor-independent facial
expression recognition by exploiting competing tasks
of face recognition. In both experiments our approach
demonstrates promising performance gains by exploit-
ing the between-task competition.

Introduction
Extensive studies have proved that sharing features between
related visual recognition tasks is helpful (Torralba, Mur-
phy, and Freeman 2007; Pan and Yang 2010). A basic as-
sumption underlying these methods is that the tasks are
positively correlated and can be learned in a synergic way.
For example, the useful features might be shared between
different tasks/classes, and regularizing classifiers to fa-
vor features used by other tasks might be beneficial (Tor-
ralba, Murphy, and Freeman 2007). Following this idea, a
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rich body of work has been done in recent years (Shalev-
Shwartz, Wexler, and Shashua 2011; Argyriou, Evgeniou,
and Pontil 2008; Torralba, Murphy, and Freeman 2007;
Hwang, Sha, and Grauman 2011; Yao and Doretto 2010;
Wang, Zhang, and Zhang 2009). By contrast, the role of
competition relationship between tasks has received insuf-
ficient attention.

Roughly speaking, we say that tasks are competing with
each other if there are competitions or conflicts between
their goals. Such competitions are often reflected in fea-
ture selection for these tasks: features favored by differ-
ent competing tasks are likely to be exclusive. To motivate
our discussion, we use content-independent writer identifi-
cation (CIWI) and handwriting recognition (HR) as an ex-
ample. The objective of CIWI is to determine the identity
of a person by handwriting script (Schomaker 2007). On the
other hand, the objective of HR is to recognize the handwrit-
ten characters, regardless of the person who wrote it (Arica
and Yarman-Vural 2001). Variances of different handwriting
scripts can stem from both the writers’ writing styles and the
contents of the scripts. For CIWI, writing style is important
factor while the script content is a distracting one. This ob-
servation is reversed for HR. We conjecture that it will be
beneficial to exploit the competition relationship by encour-
aging feature exclusion rather than sharing to achieve robust
visual recognition. Considering that tasks with competition
relationship are universal, it is worthwhile to accommodate
this intuition from an algorithmic perspective.

In this paper, we develop a general algorithm to utilize the
between-task competition relationship for visual recognition
tasks. We name the task we target on as the target task and
its competing tasks as the auxiliary task. We jointly model
the target and auxiliary tasks with a generalized additive
regression model regularized by competition constraints.
This model treats the feature selection as the weak learner
(i.e., base functions) selection problem, and thus provides a
mechanism to improve feature filtering guided by task com-
petition. More specifically, following a stepwise optimiza-
tion scheme, we iteratively add a new weak learner that bal-
ances between the gain for the target task and the inhibition
on the auxiliary ones. We call the proposed algorithm Comp-
Boost, since it shares similar structures with the popular Ad-
aBoost algorithm.

The proposed CompBoost algorithm can be applied



for various visual recognition tasks. In this paper we
use two test beds for evaluation: (1) content-independent
writer identification by exploiting competing tasks of
handwriting recognition, and (2) actor-independent facial
expression recognition by exploiting competing tasks of
face recognition. In the experiments for both applications,
our approach demonstrates promising performance gains by
exploiting the between-task competition relationship. We
will release the source code for the CompBoost algorithm
at http://www.dabi.temple.edu/∼hbling/code/competing-
task.htm.

The rest of the paper is organized as follows. In the next
section, we review related works. After that, the setting and
notations of the problem are presented. The details of the
proposed algorithm are presented in the section afterwards,
followed by the description of the experimental validation.
Finally, we conclude this paper in the last section.

Related Works
Considering the increasing number of visual concepts
needed to be recognized, jointly learning multiple predic-
tion tasks has gained popularity in visual recognition re-
cently (Torralba, Murphy, and Freeman 2007; Hwang, Sha,
and Grauman 2011; Yao and Doretto 2010; Wang, Zhang,
and Zhang 2009). In (Torralba, Murphy, and Freeman 2007),
a method is proposed to encourage feature sharing across
object classes and/or views. In (Hwang, Sha, and Grau-
man 2011), sharing common sparsity patterns across objects
and their attributes is investigated for visual recognition. In
(Yao and Doretto 2010), multiple sources of visual data are
jointly learned by sharing data instances or weak learners in
a boosting framework. In (Wang, Zhang, and Zhang 2009),
face verification classifiers for multiple people are jointly
learned by sharing a few boosting classifiers in order to
avoid over-fitting. General studies on joint multi-task learn-
ing (Caruana 1997) have been a popular topic in machine
learning, and a survey can be found in (Pan and Yang 2010).

Our study, while modeling multiple visual recognition
tasks jointly, is different from the aforementioned works.
The key innovation in our study is to address the task compe-
tition that is totally different from the task similarity studied
before. More specifically, instead of seeking feature sharing
among tasks, our method takes advantage of feature exclu-
sion among tasks during the learning process.

There are a few works employing feature exclusion
(Zhou, Jin, and Hoi 2010; Hwang, Grauman, and Sha 2011;
Xiao, Zhou, and Wu 2011). However, our work differs from
them in many aspects. Firstly, the underlying motivation and
task competition is different. These papers explore feature
exclusion in discriminating hierarchical category taxonomy,
that is, in a top-down taxonomy, when distinguishing sub-
classes within the same superclass, the features used for the
superclass should not be useful for subclasses. Secondly, the
methods proposed in the three papers use linear models for
feature exclusion. By contrast, our solution uses nonlinear
models, which are more suitable for visual recognition. Fi-
nally, the visual recognition tasks studied in our paper are
different than those in the three papers. We will provide
more detailed discussion in future revision.

A recent work in (Romera-Paredes et al. 2012) also ex-
ploits feature exclusion between tasks, in which linear mod-
els for multiple tasks are jointly learned with an orthogo-
nal regularization between model coefficient vectors of un-
related tasks. Our study differs from the work in two major
aspects: (1) The work in (Romera-Paredes et al. 2012) fo-
cuses on uncorrelatedness while ours on negatively correla-
tion. Consequently, different regularization terms are used.
(2) Linear models are used in (Romera-Paredes et al. 2012)
for classification, while non-linear ones in ours. Note that
the introduction of nonlinearity is very important for many
visual recognition tasks where observations often lie in a
highly nonlinear spaces. In fact, as illustrated in the exper-
iments, our approach demonstrate significant improvements
over (Romera-Paredes et al. 2012) in the face expression
recognition task.

The two visual recognition test beds used in our study
are both important topics in computer vision. Content-
independent writer identification from handwriting scripts
is to determine the identity of a person by his/her handwrit-
ten script (Schomaker 2007). It is desirable to identify fac-
tors related to writing styles and avoid interferences of fac-
tors related to writing contents. On the contrary, for the task
of handwriting recognition, tremendous efforts have been
made in avoiding interferences from factors related to writ-
ers’ writing styles (Zhang and Liu 2013). To the best of our
knowledge, the two tasks have never been coupled together
like in our study.

Facial expression recognition aims to determine facial
emotion from an input image or video. A main challenge
in the problem is the variability of facial image across in-
dividuals (Zeng et al. 2009). This makes the problem natu-
rally conflicting with a widely studied problem: face recog-
nition (Zhao et al. 2003). Again, these competing tasks have
never been jointly modeled in previous studies.

Our study is the first attempt, for both problems, to ex-
ploit the competition priors for improving their solutions.
In other words, our approach treats the competition rela-
tionship between visual recognition tasks as blessings rather
than curses. We expect the idea can be generalized to more
visual recognition tasks in the future.

Problem Setting
Though the competition relationship are symmetric between
competing tasks, in practice we usually focus on one task,
hereafter referred as target task, while treating its competi-
tors as auxiliary tasks.

For visual recognition, we write the target classification
function to be learned as F (x) : Ω → L, such that Ω ⊂ Rp

denotes the p-dimensional feature space and L denotes the
label set which is set as L = {−1,+1} by default. In other
words, F (x) predicts the label given an input feature vector
x. Our goal is to learn F (·) given the training samples.

In the following we denote the nT training samples for the
target task by D(t) = {(x(t)

i , y
(t)
i )}nT

i=1, in which x
(t)
i ∈ Ω

is a sample feature vector and y(t)i ∈ L its corresponding
label. Similarly, we denote the N auxiliary training sets by
D(1), · · · ,D(N), such that D(a) = {(x(a)

i , y
(a)
i )}na

i=1, where



na is the number of training samples for the a-th auxiliary
task. Note that the feature space Ω for the target task is used
for the auxiliary tasks as well. This may not be “fair” for the
auxiliary tasks, but it is strategically assumed since our true
interest is the target task.

Boosting by Competition Relationship
In this section, we present the formulation and derivation of
the proposed CompBoost algorithm. We first introduce some
notations used in the derivation. E denotes the expectation
operation. E(a) and E(t) denote the expectation operation of
the a-th auxiliary task (dataset) and target task (dataset) re-
spectively. Ew denotes the expectation operation according
to the weighted samples with weight vector w. In practice,
the expectation is approximated by the empirical expectation
over the training data.

Generalized additive regression model
Since our joint learning is built upon the generalized additive
regression model, we first give a brief introduction of the
model. Considering a regression problem mapping an input
feature vector x ∈ Ω to the output label y ∈ R, and x, y
have a joint distribution. We want to model the mean E[y|x]
by a function1 F : Ω → R. The generalized additive model
has the form:

F (x) =

M∑
m=1

fm(x),

where fm’s are the base predictors or weak learners and M
is the number of base predictors selected for the regression.
A back-fitting algorithm can be used to select weak learners
to fit this model:

fm(x)← E[y −
∑
k 6=m

fk(x)|x], m = 1, 2, · · · ,M. (1)

Theoretically, any methods for function estimation can be
used to estimate the conditional expectation in (1). In prac-
tice, by restricting fm(x) to be a simple parameterized func-
tion, one can solve for an optimal set of parameters through
generalized back-fitting algorithms.

Additive models can be used to fit any form of functions
(Hastie and Tibshirani 1990). In (Friedman, Hastie, and Tib-
shirani 2000), the classic AdaBoost algorithm is viewed as
building an additive logistic model by minimizing loss func-
tion E[exp(−yF (x))]. Our method follows this derivation
but learns the target task classifier with regularizers that pe-
nalize the sharing of weak learners with auxiliary tasks.

Boosting by competition relationship
Now we formulate the proposed method as an additive mod-
eling of exponential loss with constraints over competing
auxiliary tasks.

For the target task, we define the the exponential loss for
the target task as

Etar(F ) = E(t)[e−yF (x)]. (2)

1L is relaxed to the real domain here.

To exploit the competing factors between the target task
and its competing counterparts, we penalize those classifiers
that perform well on both auxiliary and target tasks. For this
purpose we introduce the following regularization term:

Eaux(F ) =

N∑
a=1

E(a)[eyF (x)]. (3)

Obviously, the more correct samples F predicts on the
auxiliary tasks, the larger Eaux(F ). This property implies
that, in the minimization problem, the regularization term
discourages F from performing well on the auxiliary tasks,
which have competition relationship with the target task.

Combining Etar and Eaux, our regularized objective func-
tion is

E(F ) = Etar(F ) + λEaux(F ), (4)
where λ > 0 is a parameter to balance the effects of the two
terms.

Following the derivation in (Friedman, Hastie, and Tib-
shirani 2000), we resort to a generalized additive regression
model for the classification function. Consequently, F takes
the form of F (x) =

∑
i fi(x). The optimization is done by

iteratively adding a weak learner f to current estimation of
F .

In each iteration, suppose that we have a current estimate
F̂ and are seeking for an improved estimate in the form of
F̂ + f . The cost function has the following form:

E(F̂ + f) = E(t)[e−y(F̂ (x)+f(x))]

+ λ
N∑
a=1

E(a)[ey(F̂ (x)+f(x))].
(5)

While (5) entails expectation over the joint distributions
of y and x, it has been shown (Friedman, Hastie, and Tib-
shirani 2000) to be sufficient to minimize the criterion con-
ditioned on x, i.e.,

E(F̂ + f |x) = E(t)[e−y(F̂ (x)+f(x))|x]

+ λ
N∑
a=1

E(a)[ey(F̂ (x)+f(x))|x].
(6)

Therefore, our goal boils down to find f to minimize
E(F̂ + f |x), which can be expanded as

E(F̂ + f |x) = e−f(x)E(t)[e−yF̂ (x)1[y=1]|x]

+ ef(x)E(t)[e−yF̂ (x)1[y=−1]|x]

+ λ
N∑
a=1

ef(x)E(a)[eyF̂ (x)1[y=1]|x]

+ λ
N∑
a=1

e−f(x)E(a)[eyF̂ (x)1[y=−1]|x],

(7)

where 1A =

{
1, if A is true,
0, otherwise.

is the indicator function.

Dividing (7) by E(t)[e−yF̂ (x)|x], we have the following min-
imization goal:

E ′(f) , e−f(x)
(
γ+(x) + λ

η−(x)

E(t)[e−yF̂ (x)|x]

)
+ ef(x)

(
γ−(x) + λ

η+(x)

E(t)[e−yF̂ (x)|x]

)
,



where
γ+(x) = E(t)[1[y=1]|x],
γ−(x) = E(t)[1[y=−1]|x],

η+(x) =
∑N
a=1 E(a)[eyF̂ (x)1[y=1]|x],

η−(x) =
∑N
a=1 E(a)[eyF̂ (x)1[y=−1]|x].

The boosting procedure can be interpreted as gradient de-
scent in the functional space by using the functional deriva-
tives and gradients (Frigyik, Srivastava, and Gupta. 2008).
Set the derivative of E ′ w.r.t. f(x) to zero, we get:

f(x) =
1

2
log

(
γ+w(x) + λη−w(x)

γ−w(x) + λη+w(x)

)
, (8)

where γ+w(x) = E(t)
w [1[y=1]|x], γ−w(x) = E(t)

w [1[y=−1]|x]

are the sample-weighted version of γ+, γ−; η+w, η
−
w are

the similar version of η+, η−; and the weight vec-
tor w = (w1, w2, · · · , wnT

)> is defined by wi =
exp(−yiF (xi))/A, i = 1, · · · , nT , in which A =∑nT

i=1 exp(−yiF (xi)) Note that, while γ±w and η±w are orig-
inally defined based on conditional expectation, in prac-
tice we replace the expectation by corresponding conditional
probability estimation.

Finally, a binary version of weak learner is achieved from
f(x) as

f ′(x) = sign(f(x)) . (9)
The above population version of weak learners can be

flexibly replaced by a data version using trees and other clas-
sifiers. In our implementation, we use decision stumps as
our weak learners such that f(x) has the form g(xi, θ) =
1[xi>θ], i ∈ {1, · · · , p}, in which θ ∈ R is a thresholding
parameter.

The above fitting process iterates until the preset maxi-
mum number of base functions are collected. The algorithm
is summarized in Algorithm 1.

Discussion
If λ = 0, we have

f(x) =
1

2
log

(
γ+w(x)

γ−w(x)

)
.

This way the proposed CompBoost algorithm is reduced to
the RealAdaboost algorithm (Friedman, Hastie, and Tibshi-
rani 2000).

When λ 6= 0, the difference between the proposed Comp-
Boost and the existing boosting methods is controlled by the
terms η+w(x) and η−w(x). These two terms capture the com-
petition relationship between the target task and the auxil-
iary tasks, and consequently render our algorithm in favor
of weak classifiers that perform well for the target and bad
on auxiliary tasks. This accords with our motivation that a
classifier performs well for one task is unlikely to perform
similarly for its competitors.

CompBoost differs from existing boosting-based methods
only on the selection of weak learners during training, where
additional overhead is to fit a weak learner for the auxil-
iary tasks. Therefore, the cost if (k+1)-times of the base-
line boosting algorithm for k competing tasks. In the testing
phase, the computational cost of our approach is the same as
the baseline boosting algorithm.

Algorithm 1 CompBoost
Require: Target training dataset D(t), auxiliary training

datasets D(1), . . . ,D(N), and the maximum number of
iterations M .

1: Initialize the weight vectors w and w(a):
wi = 1, i = 1, · · · , nT ,

w
(a)
i = 1, i = 1, · · · , na; a = 1, · · · , N

2: for t = 1, · · · ,M do
3: Normalize to 1 the target data weight vectors

w ← w/‖w‖1,
w(a) ← w(a)/‖w(a)‖1, a = 1, · · · , N

4: Fit a classifier ft(x) according to (9)
5: Update the weight vectors

wi ← wie
−yift(xi), i = 1, ..., nT .

w
(a)
i ← w

(a)
i eyift(xi), i = 1, ..., na; a = 1, ..., N.

6: end for

7: return F (x) = sign
( M∑
t=1

ft(x)
)

Experimental Results
In this section, we evaluate the proposed method using two
visual recognition applications: content-independent writer
identification and facial expression recognition. In addition
to the classic algorithms AdaBoost (Freund and Schapire
1997) and RealAdaBoost (Friedman, Hastie, and Tibshirani
2000), we also include two recently proposed jointly learn-
ing boosting variants briefly described below:
• MultiSourceTrAdaBoost: MultiSourceTrAdaBoost em-

ploys a mechanism that every weak learner is selected
from ensemble classifiers learned from the auxiliary
datasets which appears to be the most closely related to
the target, at the current iteration (Yao and Doretto 2010).
It is an extension of the seminal work of boosting based
transfer learning TrAdaBoost (Dai et al. 2007).

• TaskTrAdaBoost: TaskTrAdaBoost is an instance of
parameter-transfer approach which can be thought of as
a task-transfer approach. During its learning phase, sub-
tasks, coming from the various auxiliary tasks, can be
reused, together with the target training instances(Yao
and Doretto 2010). Instead of using the union of datasets
for training weak learners as done in MultiSourceTrAd-
aBoost, TaskTrAdaBoost trains weak learners on source
datasets and used as weak learner candidate pool for the
target task.

We emphasize that MultiSourceTrAdaBoost and TaskTrAd-
aBoost are compared because they share similar jointly
learning mechanism with us, but with totally different mo-
tivation. Our experimental results show that, when their as-
sumptions on task similarity are violated, they even perform
worse than baseline algorithms. In addition to the aforemen-
tioned methods, for expression recognition, we also include
the results reported from (Romera-Paredes et al. 2012).



Figure 1: Handwriting samples from our handwriting
dataset: each row shows sample images from one subject.

In all experiments, we use 100 weak learners in our algo-
rithm, i.e., M = 100. Note that although identical feature
sets are used for both auxiliary and target tasks, they are vir-
tually different tasks, since each task is associated with dif-
ferent labels. Training samples are randomly selected in all
experiments. Five-fold cross validation strategy is applied in
the training data to automatically determining the parame-
ter λ in (4) in the candidate set of {λ = m × 10k : k ∈
{−2,−1, 0},m ∈ {1, 2, 5, 8}}. Different numbers of train-
ing samples are tested.

Content-Independent Writer Identification
Competing with Handwriting Recognition
Data set. We collected a dataset consisting of 14 writers’
writing scripts. Each writer was asked to write digits from 0
to 9 ten times. This leads to a handwriting dataset with 1, 400
writing samples. Our experiments are based on the visual
features extracted from these handwritten scripts. We regard
classifying each writer from the rest as a binary target task.
In addition, classifying each digit from the rest generates the
ten auxiliary tasks. Note that here the auxiliary and target
datasets are actually using the same images. However, since
each task have different labels, they still can be regarded as
different. Thus, the number of auxiliary datasets N = 10.
Some writing samples are shown in Figure 1.
Experimental setup. The scripts in the dataset are first digi-
talized and then preprocessed as follows: each digit is manu-
ally segmented and normalized into an image of size 40×20.
After that, PCA is applied to the data to reduce the dimen-
sion of the original data and the first 140 PCA coefficients
(preserving 99% of the total energy) are used as features, de-
noted as PCA Coef. In addition, local binary patterns (LBP)
(Ojala, Pietikainen, and Maenpaa 2002) (116 = 58 × 2 di-
mensions, which is the combination of the upper and lower
halves of the original images) and the projected features (60
dimensional) are also extracted from the images. The pro-
jected features, denoted by Projection, are obtained by pro-
jecting the character intensities along the horizontal and ver-
tical axis respectively, which amount to a feature dimension
of 60 (= 40+20 dimensions). In addition, the gray level co-
occurrence matrix feature (GLCM) (Haralick, Shanmugam,
and Dinstein 1973) is extracted (1024 dimensions). The con-
catenation of these features leads to a final feature vector of

Table 1: Performances (%) on the writer identification tasks
Training samples 400 600 800 1000

MultiSourceTrAdaBoost 89.80 88.29 87.93 87.69
TaskTrAdaBoost 92.54 92.52 92.54 92.54

AdaBoost 92.20 92.75 93.04 93.31
RealAdaBoost 92.25 92.80 92.94 93.15

CompBoost 93.09 93.39 93.73 93.83

Figure 2: Distribution of selected features for writer identi-
fication.

length 1340 (= 1024 + 140 + 116 + 60). We intentionally
construct a large heterogeneous feature pool to test the abil-
ity of CompBoost in selecting the most relevant features for
the target tasks (Results shown in Figure 2).

Since for each task, the dataset is unbalanced, weights
which are inversely proportional to the number of training
instances are assigned as initial weights in the training pro-
cess. For evaluation of experimental results, each experi-
ment is randomly repeated 100 times and the mean accu-
racies are reported as results for comparison.

Results. The classification rates of writer identification us-
ing different approaches are summarized in Table 1. It
shows that the proposed method consistently outperforms
other boosting-based alternatives. Interestingly, we found
that TaskTrAdaBoost and MultiSourceTrAdaBoost perform
worse even than the AdaBoost baseline. This is because the
task similarity assumption for them is directly violated in
current scenario. Figure 2 shows the comparison of feature
weights for each feature channel of the weak learners when
using 1000 training samples. We can see that, for Comp-
Boost, more LBP and GLCM features are selected. This
could be explained by the fact that writer identification is de-
termined by the writing styles (e.g., stroke structure’s statis-
tics) whose features can be extracted by LBP and GLCM. In
comparison, the other two features are more related to the
writing content.



anger disgust fear happiness neutral sadness surprise
Figure 3: Sample images from JAFFE dataset: each row shows sample images of seven different expressions of a subject, with
the expression labels shown in the bottom row.

Actor-Independent Facial Expression Recognition
Competing with Face Recognition

Data set. For actor independent expression recognition,
we use the Japanese Female Facial Expression (JAFFE)
database (Lyons et al. 1998) as our testbed. The dataset is
composed of 213 images of 10 subjects displaying seven
mutually exclusive facial expressions, as illustrated in Fig-
ure 3. We treat classifying each expression from the rest as a
binary target task and classifying each subject from the other
subjects as a binary auxiliary task. Therefore, there are ten
auxiliary tasks (N = 10).

Experimental setup. We follow the same experimental
setup as in (Romera-Paredes et al. 2012) for fair comparison.
For each face image, the face and eyes are first extracted by
using the OpenCV implementation of the Viola-Jones face
detector (Viola and Jones 2004). After that, we rotated the
face so that the eyes are horizontally aligned. Finally, the
face region is normalized to the size of 200 × 200. In order
to obtain a descriptor of the textures of the image we used
the Local Phase Quantization (LPQ) (Ojansivu and Heikkil
2008). Specifically, we divided every image into 5× 5 non-
overlapping grids. We computed the LPQ descriptor for each
region and we created the image descriptor by concatenating
all the LPQ descriptors. Finally, Principal Component Anal-
ysis is applied to extract component coefficients that retain
99% of the data variance energy. After the preprocessing, we
obtained a descriptor of 203 dimensions for each image.

For evaluation, each experiment is randomly repeated 200
times and the mean accuracies are reported for comparison.
Different numbers of training samples are tested.

Results. Table 2 shows the classification rates of different
approaches for various numbers of training samples. We can
see that the CompBoost performs the best compared with
the other alternatives. Note that CompBoost outperforms the

Table 2: Performances (%) on expression recognition tasks
Training samples 60 80 100 120

MultiSourceTrAdaBoost 83.32 83.74 83.96 84.09
TaskTrAdaBoost 83.37 84.02 84.15 84.24

AdaBoost 84.71 84.97 85.70 86.02
RealAdaBoost 84.23 84.55 85.60 85.95

ORTHOMTL-EN 64.0 69.0 71.0 n/a
(Romera-Paredes et al. 2012)

CompBoost 85.52 86.00 86.92 87.04

linear model with orthogonal regularization as in (Romera-
Paredes et al. 2012)2 by a large margin. We attribute the large
improvement partly to the nonlinearity in CompBoost and
partly to the exploitation of competition priors in our algo-
rithm. This suggests that CompBoost is more suitable for
visual recognition problems with nonlinear observations or
representations.

Conclusions
We have shown that exploiting between-task competition
can be beneficial for robust visual recognition. The idea is
implemented by harnessing a generalized additive regres-
sion model with a competition-regularization term, which
inhibits weak learner (or feature) sharing between compet-
ing tasks. Experimental validations on content independent
writer identification and actor independent facial expression
recognition show the effectiveness of the proposed method.
Since between-task competition exists in many visual recog-
nition tasks, we expect the study to be broadly generalized
to other applications in the future.

2Results reported in (Romera-Paredes et al. 2012) are error
rates, we converted them into accuracies here.
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