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A. More Model and Training Details
Our implementation is based on the timm library1.

We use ViT-B/16 [2] (vit base patch16 224 in timm) and
ViT-S/16 [2] (vit small patch16 224 in timm) as the vi-
sion transformer backbones in the paper. Transformer
weights are restored from the checkpoints released by of-
ficial Google JAX implementation2, which are obtained by
first training on ImageNet-21k [7] and then fine-tuning on
Image-1k [7, 8]. The classifier head consists of a bottle-
neck module (Linear → BatchNorm1d → ReLU →
Dropout(0.5)) and a class predictor (Linear→ ReLU
→ Dropout(0.5) → Linear). The domain discrimi-
nator has the same network structure as the class predictor
except having only one output.

During the training procedure, images are first resized to
256 × 256 pixels, randomly flipped horizontally, and then
randomly cropped and resized to 224×224 pixels. The only
exception is for VisDA-2017 [6], where center-cropping of
size 224 × 224 is used. During the test procedure, images
are first resized to 256×256 pixels and then center-cropped
to 224× 224 pixels.

To train the model, we adopt mini-batch Stochastic Gra-
dient Descent (SGD) with momentum of 0.9. Learning rate
is scheduled as lr = lr0 ∗ (1 + 1e−3 · i)−0.75, where lr0 is
initial learning rate, i is training step. The learning rate of
parameters of vision transformer backbone is set to be 1/10
of lr. Complete hyper-parameters used for our experiments
are listed in Tab. 1. Note that the same hyper-parameters are
used for source-only training and baseline methods when-
ever applicable.

B. More Analysis on Multi-layer Perturbation
Figure 1 provides additional results when adding the

same amount of perturbation to each layer while not using
safe training. As can be seen in the left figure, the best layer
to apply perturbation varies across tasks. Besides, a layer

1https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/vision transformer.py

2https://github.com/google-research/vision transformer

Table 1. Complete list of SSRT hyper-parameters used in the ex-
periments.

Office-31 Office-
Home

VisDA-
2017

DomainNet

α 0.3
β 0.2
ϵ 0.4
T 1000
L 4
batch size 64 (32 source images + 32 target images)

center crop False False True False
lr0 0.001 0.004 0.002 0.004
max iters 10k 20k 20k 40k
bottleneck dim 1024 2048 1024 1024
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Figure 1. Perturbation at different layer. †No gradient back-
propagation for blx.

that works for one task may fail on others. To see the im-
portance of allowing gradient back-propagation for blx (see
Sec. 3.3 and Sec. 3.4 in the paper), the right figure shows
that the model collapses when add perturbation to relatively
deep layers while blocking the gradients of blx.

Table 5 includes comparison results when adding the
perturbation to raw input or a single layer ({0} or {4} or
{8}) in our proposed SSRT method. As can be seen, per-
turbing raw input performs similarly to perturbing the 0-th
transformer block. Besides, perturbing any single layer de-
grades the performance on some adaptations tasks. In con-
trast, multi-layer perturbation combines their merits and ob-
tains the best results.
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C. More Analysis on Bi-directional Self-
Refinement

Table 2 provides additional results when blocking gra-
dient back-propagation for different variables. Similar to
the results listed in the paper (see Tab. 7), allowing gradient
back-propagation of the teacher probabilities in KL diver-
gence and blx works better than other variants.

Table 2. Blocking gradient back-propagation for different vari-
ables. Note that px and p̃x in the table only refer to the teacher
probability in KL divergence. (Safe Training not applied)

blx px p̃x Cl�Ar Cl�Pr Cl�Rw

ω = 0 × 1.61 12.71 6.08
ω = 1 × 81.17 85.00 87.28
ω ∼ B(0.5) × × 83.68 85.69 88.04

ω ∼ B(0.5) × 84.55 87.27 89.49
ω ∼ B(0.5) 85.21 87.88 89.58

D. More Analysis on Safe Training
In our method, we adopt a Confidence Filter to remove

noisy supervisions. If it not used (i.e., ϵ = 0), the per-
formance may deteriorate. Table 3 shows that using Safe
Training can avoid significant performance drops, making
the method much safer.

Table 3. Accuracies (%) without Confidence Filter. (†Safe Train-
ing not applied)

Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw

Baseline-B 80.06 84.12 86.67 79.52 67.03 89.44
SSRT-B† 59.33 86.98 89.74 73.92 20.30 90.59
SSRT-B 84.51 86.98 89.30 82.65 67.79 91.16

E. Analysis on Model’s Robustness
In our proposed SSRT, we use perturbed target domain

data to refine the model during the training procedure. In
this section, we provide analysis on model’s robustness
against perturbation during the test procedure. For each
testing target domain data, we follow the same way as de-
scribed in the paper to add a random offset to its latent token
sequence, and use the perturbed token sequence to make
prediction. To analyze model’s robustness against pertur-
bation at different layers, we add perturbation to different
transformer block as well as the raw input. The perturbation
magnitude is controlled by a scalar α as used in the paper.
Figure 3 shows results (averaged over 6 random runs) on
Pr → Ar and clp → pnt. As can be seen, our method
is more robust than Baseline. Even when adding a larger
amount of perturbation (α = 0.4) than seen during training,
SSRT incurs less accuracy decrease.

F. Comparison with SSL methods

Since Unsupervised Domain Adaptation (UDA) is
closely related to Semi-Supervised Learning (SSL), in this
section, we compare our method with two representative
techniques in SSL, i.e., Mixup [11] and VAT [4].

Mixup regularizes the model to predict linearly between
samples. Specifically, let x1 and x2 be two target domain
data, p1 = h(x1) and p2 = h(x2) be the correspond-
ing model predictions, Mixup first interpolates between two
samples by

λ ∼ Beta(αλ, αλ) (1)

x′ = λx1 + (1− λ)x2 (2)

p′ = λp1 + (1− λ)p2 (3)

Its loss function is

Lmixup = Ex1,x2∼Dt
∥h(x′)− p′∥2 (4)

VAT enforces the model to predict consistently within
the norm-ball neighborhood of each target data x. Its loss
function is

LVAT = Ex∼Dt

[
max
∥r∥≤ρ

DKL (h(x)∥h(x+ r))

]
(5)

We use Lmixup and LVAT as the Ltgt in our objective
function. The trade-off parameter β is set to be 0.2 for both,
same as used in our method. For Mixup, αλ is set to be 0.5.
We linearly ramp up β to its maximum value over 1/4 of all
training steps as used in [1,9]. Instead of interpolating prob-
abilities, we interpolate unnormalized logits, as it is shown
to perform slightly better. For VAT, ρ is set to be 100. Both
two techniques are applied to the raw input images.

Table 4 presents results on three benchmarks using ViT-
base backbone. Detailed numbers can be found in Tables 5-
7. On Office-Home [10] and VisDA-2017 [6], Mixup and
VAT perform better than Baseline-B, and slightly worse
than ours. On DomainNet [5], VAT still works. However,
for Mixup, although we tried different hyper-parameters, it
is still inferior to Baseline-B. Figure 2 shows two adapta-
tions tasks where Mixup fails.

Table 4. Comparisons with SSL methods. X† means averaged
over all 5 tasks with X being the target domain.

Office-
Home

VisDA Domain-
Net

clp† inf† pnt† qdr† rel† skt†

Baseline-B 81.1 85.2 38.5 50.6 25.6 44.9 11.6 57.0 41.5
Mixup-B 83.2 88.2 – – – – – – –
VAT-B 84.1 88.5 41.1 54.8 27.6 48.3 12.5 58.4 45.0
SSRT-B 85.4 88.8 45.2 60.0 28.2 53.3 13.7 65.3 50.4
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Figure 2. Mixup with different hyper-
parameters. The legend for Mixup is
formed as Mixup(β,αλ).
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Figure 3. Analysis of model’s robustness. The dashlines indicate true test accuracy on the
target domain data. The bars show decreases of accuracies when adding perturbations to
different layers during the test procedure.

Table 5. Accuracies (%) on DomainNet. In each sub-table, the column-wise means source domain and the row-wise means target domain.
“-S/B” indicates ViT-small/base backbones, respectively.

MDD+
SCDA [3] clp inf pnt qdr rel skt Avg. ViT-B clp inf pnt qdr rel skt Avg. Baseline-B clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9 clp - 27.2 53.1 13.2 71.2 53.3 43.6 clp - 30.9 53.3 16.3 72.7 55.4 45.7
inf 32.7 - 34.5 6.3 47.6 29.2 30.1 inf 51.4 - 49.3 4.0 66.3 41.1 42.4 inf 43.0 - 40.8 7.8 56.4 35.9 36.8
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2 pnt 53.1 25.6 - 4.8 70.0 41.8 39.1 pnt 55.7 28.6 - 7.4 70.5 48.3 42.1
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3 qdr 30.5 4.5 16.0 - 27.0 19.3 19.5 qdr 25.5 5.2 9.7 - 15.5 17.1 14.6
rel 55.5 23.7 52.9 9.5 - 45.2 37.4 rel 58.4 29.0 60.0 6.0 - 45.8 39.9 rel 62.3 32.5 62.5 8.2 - 50.7 43.2
skt 55.8 20.1 46.5 15.0 56.7 - 38.8 skt 63.9 23.8 52.3 14.4 67.4 - 44.4 skt 66.4 30.6 58.0 18.1 70.1 - 48.6

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3 Avg. 51.5 22.0 46.1 8.5 60.4 40.3 38.1 Avg. 50.6 25.6 44.9 11.6 57.0 41.5 38.5

VAT-B [4] clp inf pnt qdr rel skt Avg. SSRT-B
raw input clp inf pnt qdr rel skt Avg. SSRT-B

{0} clp inf pnt qdr rel skt Avg.

clp - 33.1 57.1 19.5 75.8 59.8 49.0 clp - 32.7 60.0 19.0 75.3 59.8 49.3 clp - 33.2 59.7 19.6 75.3 58.7 49.3
inf 48.3 - 45.2 9.8 55.0 37.4 39.2 inf 55.0 - 54.0 8.9 67.8 48.1 46.8 inf 54.8 - 53.5 9.3 67.7 46.1 46.3
pnt 60.0 30.9 - 7.9 71.1 52.6 44.5 pnt 61.6 28.6 - 8.2 71.3 55.4 45.0 pnt 61.2 29.0 - 7.1 71.2 55.0 44.7
qdr 26.7 5.4 9.2 - 18.1 18.3 15.5 qdr 36.3 6.2 16.1 - 32.1 31.2 24.4 qdr 40.8 7.0 13.2 - 35.4 31.1 25.5
rel 68.7 35.3 65.0 7.8 - 56.8 46.7 rel 69.8 35.6 66.1 12.4 - 59.2 48.6 rel 69.6 35.7 65.7 10.7 - 58.7 48.1
skt 70.2 33.3 65.0 17.6 72.2 - 51.7 skt 70.3 30.5 62.3 20.0 73.2 - 51.3 skt 69.7 32.1 62.0 19.0 72.8 - 51.1

Avg. 54.8 27.6 48.3 12.5 58.4 45.0 41.1 Avg. 58.6 26.7 51.7 13.7 63.9 50.8 44.2 Avg. 59.2 27.4 50.8 13.1 64.5 49.9 44.2

SSRT-B
{4} clp inf pnt qdr rel skt Avg. SSRT-B

{8} clp inf pnt qdr rel skt Avg. SSRT-B
{0,4,8} clp inf pnt qdr rel skt Avg.

clp - 31.8 58.9 17.8 75.7 59.4 48.7 clp - 32.4 59.0 18.6 75.6 59.9 49.1 clp - 33.8 60.2 19.4 75.8 59.8 49.8
inf 53.5 - 50.5 8.6 67.8 47.5 45.6 inf 55.9 - 54.8 7.6 68.5 48.2 47.0 inf 55.5 - 54.0 9.0 68.2 44.7 46.3
pnt 61.3 29.2 - 8.1 71.3 54.3 44.8 pnt 61.5 27.4 - 8.5 71.4 54.6 44.7 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0
qdr 42.5 7.7 17.0 - 23.3 33.4 24.8 qdr 33.6 5.7 11.3 - 31.4 31.8 22.7 qdr 42.5 8.8 24.2 - 37.6 33.6 29.3
rel 68.7 36.1 65.5 8.2 - 57.6 47.2 rel 69.6 36.2 65.9 6.9 - 58.1 47.3 rel 69.9 37.1 66.0 10.1 - 58.9 48.4
skt 70.1 31.8 62.2 17.7 73.1 - 51.0 skt 69.9 30.9 62.3 19.8 73.3 - 51.2 skt 70.6 32.8 62.2 21.7 73.2 - 52.1

Avg. 59.2 27.3 50.8 12.1 62.2 50.4 43.7 Avg. 58.1 26.5 50.6 12.3 64.0 50.5 43.7 Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2

ViT-S clp inf pnt qdr rel skt Avg. Baseline-S clp inf pnt qdr rel skt Avg. SSRT-S clp inf pnt qdr rel skt Avg.

clp - 23.0 46.2 11.9 66.3 46.2 38.7 clp - 27.0 49.0 12.8 68.2 49.1 41.2 clp - 28.5 53.1 12.1 69.9 52.1 43.1
inf 42.9 - 42.8 3.8 62.3 33.9 37.1 inf 41.8 - 43.1 2.7 63.0 33.0 36.7 inf 47.5 - 49.8 1.5 64.9 39.7 40.7
pnt 45.2 22.2 - 3.5 66.5 35.7 34.6 pnt 48.8 25.7 - 3.1 67.0 40.8 37.1 pnt 53.0 26.5 - 4.4 67.3 46.7 39.6
qdr 19.7 3.3 7.8 - 14.6 12.7 11.6 qdr 21.8 5.8 9.6 - 15.3 15.2 13.5 qdr 31.3 6.9 13.0 - 24.4 24.0 19.9
rel 50.8 24.2 54.2 4.6 - 37.3 34.2 rel 54.6 28.7 57.5 3.6 - 41.3 37.1 rel 60.0 31.2 60.5 4.6 - 48.5 41.0
skt 57.2 19.5 47.1 13.9 62.5 - 40.0 skt 60.9 26.2 53.9 10.6 67.5 - 43.8 skt 63.8 28.6 57.0 13.7 68.7 - 46.4

Avg. 43.1 18.5 39.6 7.5 54.4 33.2 32.7 Avg. 45.6 22.7 42.6 6.5 56.2 35.9 34.9 Avg. 51.1 24.4 46.7 7.3 59.0 42.2 38.4



Table 6. Accuracies (%) on Office-Home.

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg.

Baseline-B 66.96 85.74 88.07 80.06 84.12 86.67 79.52 67.03 89.44 83.64 70.15 91.17 81.05
Mixup-B [11] 71.32 86.66 88.82 82.45 84.79 87.58 82.90 71.68 90.77 85.46 74.36 91.37 83.18
VAT-B [4] 71.52 89.39 90.48 86.11 88.53 89.33 84.59 72.23 90.84 86.61 72.83 92.48 84.58
SSRT-B (ours) 75.17 88.98 91.09 85.13 88.29 89.95 85.04 74.23 91.26 85.70 78.58 91.78 85.43

Table 7. Accuracies (%) on VisDA-2017.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

Baseline-B 98.55 82.59 85.97 57.07 94.93 97.20 94.58 76.68 92.11 96.54 94.31 52.24 85.23
Mixup-B [11] 98.88 86.56 88.64 72.32 98.06 98.07 95.91 83.00 94.09 98.07 94.55 50.36 88.21
VAT-B [4] 99.15 87.71 90.85 67.81 98.81 98.17 97.57 76.65 92.88 98.73 96.27 57.37 88.50
SSRT-B (ours) 98.93 87.60 89.10 84.77 98.34 98.70 96.27 81.08 94.86 97.90 94.50 43.13 88.76

G. Results with ViT-small Backbone

ViT-small is a smaller version of ViT-base by halving
the number of Self-Attention Heads and token embedding
dimension of ViT-base. It has fewer parameters (∼22M
params) than ResNet-101 (∼45M params). We empirically
found that it convergences much slower than ViT-base, so
we double the maximum training iterations. An alternative
is to pretrain on the source data first and then adapted to
the target data. As can be seen from Tab. 5, our proposed
SSRT-S achieves +5.1% higher accuracy than MDD+SCDA
(ResNet-101 backbone) on DomainNet, despite that ViT-
small has fewer parameters than ResNet-101.
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