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Automatic Spatially Varying Illumination
Recovery of Indoor Scenes Based on a Single

RGB-D Image
Guanyu Xing, Yanli Liu, Haibin Ling, Xavier Granier, and Yanci Zhang

Abstract—We propose an automatic framework to recover the illumination of indoor scenes based on a single RGB-D image. Unlike
previous works, our method can recover spatially varying illumination without using any lighting capturing devices or HDR information.
The recovered illumination can produce realistic rendering results. To model the geometry of the visible and invisible parts of scenes
corresponding to the input RGB-D image, we assume that all objects shown in the image are located in a box with six faces and build a
planar-based geometry model based on the input depth map. We then present a confidence-scoring based strategy to separate the
light sources from the highlight areas. The positions of light sources both in and out of the camera’s view are calculated based on the
classification result and the recovered geometry model. Finally, an iterative procedure is proposed to calculate the colors of light
sources and the materials in the scene. In addition, a data-driven method is used to set constraints on the light source intensities.
Using the estimated light sources and geometry model, environment maps at different points in the scene are generated that can
model the spatial variance of illumination. The experimental results demonstrate the validity and flexibility of our approach.

Index Terms—Illumination recovery, Automatic, Indoor scenes, Single RGB-D image.

�

1 INTRODUCTION

PHOTO-realistic integration between virtual objects and
images or videos is required in applications such as vi-

sualization and augmented reality, where recovering the il-
lumination distribution from real scenes plays an important
role. Although cameras with high dynamic range (HDR)
sensors can capture an HDR image from a single or several
exposures [1], [2], in practice, for convenience, most people
capture low dynamic range (LDR) images when recording
real scenes. Therefore, illumination recovery based on a
single LDR image is highly desirable in practice.

Numerous methods have been proposed to acquire the
illumination of real scenes [3], and impressive results have
been achieved. However, most of these methods use ei-
ther extra equipments, such as light probes [4], [5] or
expensive customized cameras [6], require user input [7],
[8], or assume that a series of images of the scene were
available [9], [10]. These conditions limit the applicability of
these methods. RGB-D images are getting easier to acquire
even with hand-held devices. Consumers products, such as
Kinect, provide this kind of information. Furthermore, more
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and more smart phones embed two cameras that may be
used for stereo reconstruction. In this paper, we address the
problem of recovering lighting based on a single LDR RGB-
D indoor scene image, without requiring any additional
equipment or assistance from users.

As we know, the observed color of each point in a
scene is the result of complex interactions between scene
geometry, material, and the illumination condition. The in-
formation contained in a single LDR RGB-D image is inher-
ently incomplete for lighting estimation, which causes the
problem ill-posed. The first challenge lies in the fact that a
single RGB-D image cannot record portions of a scene out of
the camera’s view, which makes 3D geometry reconstruction
and further lighting recovery difficult. Secondly, even when
light sources are captured, both the light source pixels and
the highlight pixels are usually saturated (because the light
sources are too bright to be captured by an LDR image),
making it difficult to distinguish between light sources and
highlights from a single image. Moreover, lacking knowl-
edge of the material in a scene causes the determination of
the light source intensities an ill-posed problem, even when
the scene geometry and the positions of light sources are
known. Last but not least, indoor illumination often varies
greatly from one location to another in real scenes. While
this property has been widely utilized in the application of
indoor lighting design, recovering spatially varying illumi-
nation is still a challenging problem.

This paper proposes an automatic framework to recover
the illumination distribution from an RGB-D image of an
indoor scene. To obtain the scene geometry behind the cam-
era, we coarsely synthesize a 3D model of the invisible scene
based on the input RGB-D image, under the assumption
that all objects shown in the image are located in a box
with six faces (a common assumption for indoor scenes).
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Then, we propose a confidence-scoring based strategy to
separate saturated pixels into light sources and highlight
areas, which helps in detecting light sources both in and
out of the camera’s view. Using the recovered model, an
iterative procedure is developed to estimate the intensity
of light sources and scene materials by adopting spherical
harmonics, in which a data-driven method is used to set
constraints on the light source intensities. To further im-
prove the efficiency of illumination estimation, an acceler-
ation strategy is introduced. Finally, using the recovered
light sources and the geometry model, we generate 2D
environment maps at different points in the scene and use
them to render virtual objects at different positions.

The main contributions of this paper are as follows. (1)
We propose a confidence-scoring based strategy to separate
pixels of a saturated region into light sources and high-
lights by exploiting both color and geometry features. (2)
We introduce a reliable approach to detect light sources
both in and out of the camera’s view. (3) We present an
iterative strategy to estimate the intensity of light sources,
in which a data-driven method is used to set constraints
on the light source intensities. These contributions lead to a
novel framework that automatically estimates the spatially
varying illumination of indoor scenes from a single RGB-D
image. Experimental results have validated the effectiveness
of the proposed method.

2 RELATED WORKS

Current methods for recovering illumination from images
can be roughly classified into two categories: those that
recover the illumination condition at a specific point and
those that recover the illumination of the entire scene.
The former category is inconvenient for embedding virtual
objects into a scene, particularly at different positions. The
latter category can solve the above problems; however,
the existing methods require special equipments, multiple
images or HDR information to recover the illumination.

Assuming that the scene geometric model is known,
some researchers tried to directly estimate the illumination
utilizing shadow cues [11], critical points [12], etc. Mei et
al. [13] found that images produced by a Lambertian scene
can be efficiently represented by a sparse set of images gen-
erated by directional light sources. To obtain the illumina-
tion from images with unknown geometry, Lopes-Moreno et
al. [5] presented a method to estimate multiple light sources
from a single image. One object in the image is selected as
a virtual light probe; then, the direction and intensity of the
light sources are calculated based on the silhouette of the
light probe. Unfortunately, all the methods mentioned above
ignore spatially varying illumination. Reinhard [14] mapped
the background image area around an inserted virtual object
to a hemisphere to form environments both in front of
and behind the image plane. However, this work does
not recover any HDR information, which causes the light
source intensities to be inaccurate. More recently, Karsch
et al. [15] proposed an automatic strategy for estimating
illumination using a single image of a Lambertian scene
that adopts a data-driven approach to estimate the out-of-
view light sources. However, this method ignores occlusions
of visible light sources, and the invisible light sources and

environmental light are recorded by only one environment
map. Thus, it still needs improvement to be able to han-
dle spatially varying illumination. Moreover, the invisible
scene is recovered according to the best matched luminaire-
annotated panorama of the background image selected from
a panorama data set. It cannot be demonstrated theoretically
that the date-driven strategy of recovering invisible scene
mentioned in their work can detect accurately light sources
which are not appeared in the image.

Unger et al. [16], [17], [18] conducted a series of works
on dense spatial light sampling to record the spatially vary-
ing illumination in 1D, 2D and 3D. They use HDR video
cameras, light probes and customized special equipments in
all their methods. To capture illumination based on sparse
sampling, Sato et al. [19] employed two omni-directional
cameras to generate the spatial radiance distribution of the
environment using stereo matching; the resulting 3D mesh
with lighting information can provide spatially varying illu-
mination for rendering scenes. Banterle et al. [20] introduced
EnvyDepth that allows users to “paint” depth onto an HDR
environment map to create a rough scene model that cap-
tures both geometry and illumination. Meilland et al. [21]
proposed a system based on dense real-time 3D tracking and
mapping with an RGB-D camera. The dense scene structure
is estimated simultaneously with the observed dynamic
range to compute a radiance map of the scene and fuse a
stream of low dynamic range images (LDR) into an HDR
image.

However, all the methods discussed above to recover
spatially varying illumination require special devices or
multiple images of the examined scene to be captured; thus,
they are unsuitable for the problem of estimating lighting
based on a single LDR image. Hara et al. [22] attempted to
estimate the surface reflectance property of an object as well
as the position of a light source from a single view without
an assumption of distant illumination. Unfortunately, this
method requires that the scene contains only a single point
light source, which limits its application. The authors of [7],
[8], [23] explored how to estimate spatially varying lighting
conditions based on a legacy LDR photograph. However,
[8] is designed for outdoor scenes and models only the sun
and sky as light sources. Moreover, these three methods all
require users to provide the geometry and light sources of
the scene.

3 INDOOR ILLUMINATION MODEL

Objects in indoor scenes receive direct illumination from
light sources and indirect illumination from the environ-
ment, both of which can be regarded as area light sources
distributed over a sphere. Therefore, we can record the light
at a point p using an environment map and denote its
distribution as Dp. Our approach adopts the assumption
that scene materials are diffuse, which is also used in other
illumination estimation methods [5], [7], [15]; thus, we ig-
nore specular reflection. Adopting the rendering equation
proposed in [24], the appearance of p in image I is:

Ip(λ) = ρp(λ)

∫
Ω(np)

Dp(ω, λ)(np · ω)dω (1)

where λ denotes the R, G, B channels, ρp is the diffuse
coefficient, np is the surface normal at p, Ω(np) is the upper
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hemisphere over the surface at where p locates, and ω is a
unit direction vector.

We adopt spherical harmonics Ylm, with l ≥ 0 and −l ≤
m ≤ l, to approximate the integral in Eq. 1. It has been
shown that Ip can be represented by a linear combination of
Ylm [24]

Ip(λ) = ρp(λ)
∑
l,m

ÂlLlm,p(λ)Ylm(np) (2)

where Âl is related to the combination coefficients of A =
(np · ω), which is a constant, and Llm,p(λ) can be calculated
as follows [8]:

Llm,p(λ) =
∑

(θ,φ)∈Ωp

Dp(λ, θ, φ)Ylm(θ, φ) sin θΔθΔφ (3)

Here, Ωp is the unit sphere surface, which can be divided
into Ω<s,i>

p , i ∈ {1, 2, · · · , n} and Ωenv
p corresponding to

the n light sources and surrounding objects, respectively. To
analyze the light sources and indirect illumination separate-
ly, we write Llm,p(λ) as:

Llm,p(λ) =
n∑

i=1

L<s,i>
lm,p + Lenv

lm,p

=
n∑

i=1

∑
(θ,φ)∈Ω<s,i>

p

Dp(λ, θ, φ)Ylm(θ, φ) sin θΔθΔφ

+
∑

(θ,φ)∈Ωenv
p

Dp(λ, θ, φ)Ylm(θ, φ) sin θΔθΔφ

(4)
We assume the color of each light source is homo-

geneous. Our experiments show that this approximation
can reasonably keep the accuracy of the estimation re-
sults, while at the same time save a lot of computations.
Denote Ls

i as the color of the ith light source, and set
R<s,i>

lm,p =
∑

(θ,φ)∈Ω<s,i>
p

Ylm(θ, φ) sin θΔθΔφ from Eq. 4.
Then, we have:

Llm,p(λ) =
n∑

i=1

Ls
i (λ)R

<s,i>
lm,P + Lenv

lm,p(λ) (5)

Substituting this back into Eq. 2, we obtain

Ip(λ) =ρp(λ)(
n∑

i=1

Ls
i (λ)

∑
l,m

ÂlR
<s,i>
lm,P Ylm(np)

+
∑
l,m

ÂlL
env
lm,p(λ)Ylm(np))

(6)

Finally, by calculating P<s,i>
p =

∑
l,m ÂlR

<s,i>
lm,p Ylm(np)

and Eenv
p (λ) =

∑
l,m ÂlL

env
lm,p(λ)Ylm(np), our indoor illu-

mination model at point p is

Ip(λ) = ρp(λ)
n∑

i=1

P<s,i>
p Ls

i (λ) + ρp(λ)E
env
p (λ) (7)

4 INDOOR LIGHTING RECOVERY

This section describes our lighting recovery method. We
separate the input scene into visible and invisible parts re-
spectively corresponding to the areas in and out of the cam-
era’s view. We first propose a new approach for synthesizing

a geometry model containing both visible and invisible parts
of the scene based on the input depth map. Then, we discuss
how to estimate the positions of light sources. Finally, an
iterative procedure is presented to calculate the colors of the
light sources. Based on the recovered geometry model and
light sources, an environment map can be created for any
point in the scene.

4.1 Geometry Modeling

Similar to [7], we assume that all the objects visible in
the input image are located in a closed hexahedral box;
therefore, they can be represented by the composition of a
few planes, which is a reasonable assumption for indoor
scenes. Compared to triangle-based models, this planar
model requires considerably less computation to determine
the cross points, which makes generating an environment
map more efficient.

For the visible parts of the scene, the depth map pro-
vides sufficient information to reconstruct the 3D geometry.
Specifically, we first cluster pixels based on their normal
directions and 3D positions using mean shift. The pixels
belonging to the ith cluster are used to calculate a plane Pi

using the method proposed in [25]. All the recovered planes
are added to a plane set Sp. Fig. 1 (b) and Fig. 2 (b) show
the recovered planar models of two test scenes.

It is impossible to recover an exact model of the invisible
scene, because of the large ambiguity. To address this issue,
we assume that no extra objects exist behind the camera.
Combined with the closed hexahedral box assumption, the
problem of invisible scene reconstruction is converted to
that of recovering the box in which the scene is located.
The six faces of the box will correspond to the scene’s
floor, ceiling, and walls. We can adopt RGB-D semantic
segmentation methods [27], [28], [29] to find such faces,
however, the implementations of these methods are usually
difficult. In this work, we propose a simple but effective
approach that selects several planes from Sp to assemble the
box based on the fact that all the scene objects are located
on the same side of each face. If a box face is not found in
Sp, we set it as a directly designed plane. Scene textures are
also generated based on the input image. The details of our
geometry modeling method can be found in Sec. 5. Fig. 1 (c)
and Fig. 2 (c) show the visible part of the recovered box.
The invisible part of the box can be found in the recovered
environment maps, which are demonstrated in Fig. 1 and
Fig. 2.

4.2 Estimating Light Source Positions

Light sources in an indoor scene are usually too bright to be
captured by a camera, which suggests that we could assume
that saturated pixels are likely to be light sources. However,
highlights will also cause saturated pixels. Therefore, the
saturated pixels in an image can be divided into two classes
that correspond to light sources and highlights respectively.
In the remainder of this section, we first discuss how to
distinguish whether a pixel belongs to a light source or a
highlight area; then, we introduce our method for calculat-
ing the light source positions.
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(a) Input image (b) Recovered planes (c) Recovered box (d) Recovered shading (e) Recovered material

(f) Input depth (g) Environment map at point A (h) Environment map at point B (i) Synthetic result

Fig. 1. A test scene from the SUN RGB-D dataset [26] captured by a Kinect V2: (a) the input RGB image; (b) the recovered planar model of the
visible scene; (c) the visible part of the recovered box; (d) the shading image calculated by the recovered illumination and 3D scene model; (e) the
material of the scene estimated according to the shading image; (f) the input depth data; the white areas correspond to pixels whose depths are not
captured; (g) and (h) the recovered environment maps at point A and B, respectively. The two points are demonstrated in (a); (i) the final synthetic
result, the swivel chair and white torus are the two virtual objects rendered by the environment maps shown in (g) and (h), respectively.

(a) Input image (b) Recovered planes (c) Recovered box (d) Recovered shading (e) Recovered material

(f) Input depth (g) Environment map at point A (h) Environment map at point B (i) Synthetic result

Fig. 2. A test scene from the NYU dataset [27] captured by a Kinect V1: (a) the input RGB image; (b) the recovered planar model of the visible
scene; (c) the visible portion of the recovered box; (d) a shading image calculated by the recovered illumination and the 3D scene model; (e) scene
material; (f) input depth data; (g) and (h) recovered environment maps at points A and B, respectively; and (i) the final synthetic result.

4.2.1 Pixel Classification

Didyk et al. [30] have proposed a method to classify a
saturated region into light source and highlight. However, in
practice light source and highlight may be mixed in a same
saturated area. Such as the first image of Fig. 3, highlights
located around the lamp and the lamp together form a satu-
rated area in the image. Didyk’s method cannot handle this
situation. In our work, a confidence-scoring based strategy,
which adopts both color and geometry features of a region,
is presented to solve the problem.

We consider pixels whose maximum color channel is
greater than 250 (the color channel value range is [0, 255])
and whose minimum color channel is larger than 230 as
saturated pixels. Pixels belonging to an upward plane are
discarded, because light sources are rarely embedded into
surfaces such as floors or table tops. Shen’s method [31] is
adopted to detect the highlight pixels. Together highlight
pixels and saturated pixels form a pixel set D that includes
all the light sources and highlights in an image.

We first cluster the pixels in D. Pixels located in a
connected area are composed as one class. We then give each
class a score based on the fact that light sources usually have
indistinct boundaries in an image, while the boundaries for
highlight areas are fuzzier. The score of the ith connected
area Ci is calculated as follows:∑

p∈B(Ci)

w(p)V arbright(N(p))

where B(Ci) is the set of Ci’s boundary points, N(p) is p’s
neighborhood, and we set its radius to 0.005∗(imagewidth+
imageheight); V arbright(S) indicates the brightness variance
of pixel set S (the pixel values range is [0, 1] when calculat-
ing the variance), and there will be a small value for a pixel
set located in a highlight area boundary. w(p) is a weight
function defined as follows:

w(p) =
w1(p) · w2(p)

Σq∈B(Ci)w1(q) · w2(q)
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TABLE 1
The pixel classification strategy in Ci, where thigh and tlow are two

thresholds.

score classification strategy
S(Ci) > thigh All pixels are labeled as light source
S(Ci) < tlow All pixels are labeled as highlight

S(Ci) ∈ [tlow, thigh] Containing light source and highlight pixels

We call w1(p) a geometry constraint item; its value is
calculated by

w1(p) =

∑
q∈N(p) |Vp · Vq|

‖N(p)‖
where Vp is the normal vector of p, and ‖N(p)‖ is the size
of N(p). This item mainly penalizes the pixels located at the
edge of the geometry, because the variations around such
pixels may not be due solely to changing illumination.

We call w2(p) a material constraint item. Because the
differences in pixel values caused by material are usually
larger than those caused by illumination, we select only
pixels whose neighborhoods have a smaller variance value
to estimate the final score. Here, w2(p) is calculated as
follows:

w2(p) =

{
0 V arbright(N(p)) > τ

τ − V arbright(N(p)) V arbright(N(p)) ≤ τ

where τ is a threshold. In this study, we set τ to
1.5

Σp∈B(Ci)
V arbright(N(p))

‖B(Ci)‖ .
There are three possibilities for the ith connected area Ci:

(1) all pixels in Ci belong to a light source; (2) Ci contains
both light source pixels and highlight pixels; and (3) all
pixels in Ci are highlight pixels. We denote the score of Ci as
S(Ci). Unsaturated pixels in Ci will be labeled as highlight,
while the remaining pixels are labeled as listed in Table 1.
When S(Ci) ∈ [tlow, thigh], the pixels near Ci’s center point
will be labeled as light source pixels. To avoid the size of a
light source too small, the proportion of light source pixels
in Ci is set by max(0.1, S(Ci)−tlow

thigh−tlow
). Through our experi-

ments, the upper bound thigh is set to 0.1, and the lower
bound tlow is defined as min(0.06,max(0.026, 0.4∗avers)),
where avers is the average score of all the connected areas.
The second column of Fig. 3 demonstrates the results of our
pixel classification algorithm.

4.2.2 Calculating Light Source Positions
Light sources may be located both in and out of the camera’s
view; called visible and invisible light sources, respectively.
We introduce a new way to estimate the positions of these
two types of light sources in the rest of this section.

Visible Light Sources. Visible light sources exist in the
input image; therefore, all pixels previously labeled as light
sources are classified as visible light sources. To simplify
the algorithm, light source pixels belonging to the same
connected area form one light source, and the position of
that light source is calculated using the recovered geometry
model.

Invisible Light Sources. Light from light sources reflect-
ed by a specular surface will cause a highlight when the
camera is looking in the direction of the reflected ray. We can

Input Classification Adopted highlight

Fig. 3. Pixel classification results and the highlight areas adopted to esti-
mate invisible light sources. The first column shows the input images; the
second column indicates our pixel classification results (purple for high-
light areas and green for light sources). The third column demonstrates
the highlight areas adopted to estimate the invisible light sources (blue
pixels).

roughly estimate the position of invisible light sources by
the highlights shown in the image. However, pixels labeled
as highlight may be caused by either visible light sources
or erroneous detection, which will make the detection result
inaccurate. To remove such pixels, we first discard the pixels
belonging to areas that contain both light source pixels and
highlight pixels, because highlights often appear around
light sources. Considering a pixel p from the remaining
highlight pixels, we calculate the reflection ray rp of the
gaze direction at p. If rp intersects with a visible part of the
scene or floor, p will be abandoned. If rp intersects with the
invisible scene, but the intersection point is too distant from
p, p will also be abandoned. This restriction is mainly due
to the limited range of indoor light sources. The distance is
set to 6 meters in our work. Points without depth values
are discarded as well, because these points cannot supply
exact geometry information. The remaining highlight points
that form a point set Sh are used to estimate the positions
of the invisible light sources. Suppose there are n connected
areas belonged to Sh, and denote the ith connected highlight
area as Si

h which corresponds to a single light source. The
third column of Fig. 3 shows the pixels adopted to estimate
invisible light sources. Our method can reject most errors
from detected highlight pixels while preserving highlight
areas caused by invisible light sources.

For a highlight point p̃ ∈ Si
h caused by the ith invis-

ible light source, we calculate the reflection ray r̃p of the
gaze direction g̃p at p̃, and assume that all invisible light
sources are embedded in the walls or ceiling; therefore, the
intersection point p̂ of r̃p and the wall or ceiling belongs to
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Fig. 4. Geometric configuration to detect the light source position from
its resulting highlight in the RGB-D image.

the ith invisible light source (Fig. 4). Obviously, all points
belonging to Si

h together decide the shape and position of
the ith light source. To ensure that the invisible light source
forms a connected area, wall or ceiling points around the
recovered position are also set as part of the light source.

Fig. 5 illustrates the positions of light sources recovered
by the described method. We adopt two virtual scenes here,
therefore, the ground truths of all light sources are available.
The comparisons between the recovered light sources and
the ground truths show that our method can capture most
of the light sources in the scene, and the positions of light
sources in the recovered environment maps are very close
to those in the ground truths.

4.3 Estimating Light Source Colors
Looking back to Eq. 7, for point p in the visible scene,
P s,i
p can be calculated according to the position of the ith

light source. Eenv
p can also be estimated based on the scene

model. From this point on, the unknowns in Eq. 7 are the
material parameters and light color parameters. An iterative
procedure is proposed to calculate materials in the scene and
the colors of light sources. The values of these unknown
parameters are solved based on several sampled pixels. We
first remove the highlight and light source pixels because
they do not satisfy our illumination model. Then, we sample
pixels uniformly. The set of all sampled pixels is denoted as
Ns in the rest of this section.

4.3.1 Material Parameter Estimation
If we know the colors of all the light sources, an objective
function based on the theory of intrinsic images [32] can be
developed to solve the material ρ of all the points in Ns .

argminρ

∑
λ∈{R,G,B}

∑
p∈Ns

(ρp(λ)Kp(λ)− Ip(λ))
2

+ μ
∑

λ∈{R,G,B}

∑
p,q∈Ns

w(p, q) · (ρp(λ)− ρq(λ))
2

(8)
where Kp(λ) =

∑n
i=1 P

<s,i>
p Ls

i (λ)+Eenv
p (λ); μ is a weight

parameter; it is set to 400 in our experiments; w(p, q) is a
weighting function defined as follows:

w(p, q) = exp(−0.02 · ‖Ip − Iq‖2)
The first term in Eq. 8 is the data term, which ensures

that the synthesized image conforms with the original im-
age; the second term is the global smoothness term, which
penalizes pixel pairs with different RGB values.

Input images

Light sources estimated by our method

Ground truths

Error analysis

Fig. 5. The accuracy of our light source position calculation method.
The first row demonstrates the input images; the second and third
rows compare our recovered light sources with the ground truths; the
last row illustrates the results of accuracy evaluations of the recovered
light sources positions: the red and green pixels correspond to the
light source areas belonging to the ground truth and to our results
respectively, while the yellow pixels indicate the light source area overlap
of the ground truth and our method.

4.3.2 Calculating Light Source Colors
Using the recovered material, the light color of each light
source can be calculated by solving a linear system of
equations. Additional constraints are adopted to provide a
lower bound for the light color parameters.

We first investigate the luminance of the light sources
and the objects in real scenes. A data driven method is
proposed to estimate their luminance. We use 26 HDR
environment maps of real scenes. Two thresholds are set
to divide each environment map into areas corresponding
to objects, highlights and light sources. Based on the fact
that light sources and highlights are much brighter than
other part of a scene, the first threshold τ1, which is used
to separate objects and highlight areas, can be estimated by
as follows:

τ1 = min(2 · lave, (lmin + lmax)

2
) (9)

where lave is the average luminance of the environment
map, and lmin and lmax are the minimum and maximum
luminance value of the environment map.

Similarly, light sources are much brighter than high-
lights. Therefore, the second threshold, τ2, is the average
luminance of the pixels whose values are larger than τ1;
pixels whose luminance are greater than τ2 will be consid-
ered as light sources. The detection results are shown in
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Environment maps Light sources and highlights

Fig. 6. The detected light sources and highlights of two HDR images.
The white areas in the second column indicate the positions of light
sources and the grey pixels correspond to highlights.

Without constrains With constrains

Fig. 7. Virtual objects rendered under illuminations calculated with and
without using the constraint of light color.

Fig. 6, where the white pixels indicate the positions of light
sources, and the grey pixels correspond to highlights.

From the HDR data, the average luminance ratio be-
tween the objects and light sources of our environment
map data set is 76.6. The brightness of the pixels in LDR
image corresponding to objects with normal light exposure
is approximately 122.5; therefore, the average brightness of
light sources for an LDR image should be η = 76.6×122.5 ≈
9384. We set η as the lower bound of all invisible light
sources.

For a visible light source svis, its lower bounders for
different channels should relate with its color in the image.
Thus, the value of its channel λ, λ ∈ {R,G,B} should
be larger than Llow(svis, λ) = fvis(svis) · Avep(svis, λ), in
which Avep(svis, λ) is the average value of all the pixels
belonging to svis in the λ channel, and fvis(svis) is defined
as

fvis(svis) = max(1,min(κ, (κ−1)·Avemin
p (svis)− 230

250− 230
+1))

(10)
where Avemin

p (svis) = min(Avep(svis, λ)), λ ∈ {R,G,B};
κ is the ratio factor. We set κ = 38.3, due to the reason that
the values of saturated pixels are usually twice 122.5. To
penalize light source whose pixels’ values are smaller than
250, fvis(svis) is set to a value smaller than κ. The lower
bound of all the light sources are used to set the initial light
parameters of the entire iterative procedure. Fig. 7 illustrates
virtual objects rendered under illuminations calculated with
and without using the constraints of light colors. The virtual
statue looks inconsistent with the background image if we
do not adopt the color constraints.

4.3.3 Updating Model Parameters
After each iteration, we obtain new illumination parameters;
thus, the material of the visible scene can be updated by
Eq. 7. The material of the invisible scene is then calculated
using a texture generation strategy similar to that intro-
duced in Sec. 5.3. Fig. 1 (e) and Fig. 2 (e) show the recovered
material of the visible part of the scene. We can also render
the recovered scene model using the estimated illumination.
Fig. 1 (d) and Fig. 2 (d) demonstrate the rendered shading
image based on the geometry model. The scene update
causes a change in the value of Eenv

p ; therefore, we must
recalculate Eenv

p for each p ∈ Ns.
Unfortunately, there are usually over 10, 000 points in

Ns; consequently, calculating Eenv
p for every point is time-

consuming. To solve this problem, we recover the environ-
ment maps and update Eenv

p at only several sampled points
in the scene. The Eenv

p of points in Ns can be calculated
by bilinear interpolation based on each point’s four nearby
sampling points.

The method for selecting sampling points is as follows.
We find the intersection point of the scene geometry model
and the ray using (0, 0, 0) as the origin and (0, 0, 1) as the
direction. The z value of the intersection point is denoted as
pi(z). The central point pc of the scene is set to (0, 0, 3) when
pi(z) > 6; otherwise, pc is set to (0, 0, 0.5pi(z)). Sample
directions as all combinations of polar angles from [−π

2 ,
π
2 ]

and azimuth angles from [0, 2π], at intervals of π
6 ; shooting

rays from pc along all sampling directions. The intersection
points between all rays and the geometry model constitute
the set of sampling points.

4.4 Recovering Spatially Varying Illumination
To model spatially varying illumination, one can model
light sources as area sources, since their shapes, positions
and intensities have already calculated by the illumination
modeling method. Combining with the estimated geometry
model, virtual objects can be rendered through global illu-
mination rendering technology. As the global illumination
rendering is generally time-consuming and the image based
lighting methods save a lot of rendering time, we choose
an image based lighting method to illuminate the virtual
objects in this work. We simply need to generate environ-
ment maps according to the recovered planar model and
light sources at appropriate points in the scene. The final
environment maps created by our method are demonstrated
in Fig. 1 (g, h), Fig. 2 (g, h) and Fig. 8. More results of our
lighting recovery algorithm can be found in Sec. 6.

5 GEOMETRY MODELING DETAILS

This section provides the details of our scene reconstruction
method. We first introduce the camera calibration strategy
adopted in our work and then discuss the implementation
details of the scene geometry model creation algorithm.
Finally, scene texture generation is described at the end of
this section.

5.1 Camera Calibration
To reconstruct planar scene models, the first step is to
calibrate the camera. The RGB-D images used in this paper
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Fig. 8. Recovered environment maps of four test scenes.

were captured by a Kinect; therefore, we set the focal length
of the camera to 519 (the Kinect’s focal length). For images
captured in other ways, the focal length can be calculated
by computing a simple pinhole camera as proposed by [33].
We also let the world and the camera share the same
coordinate system, therefore the extrinsic parameters matrix
is an identity matrix. The 3D position and normal vector of
each pixel can then be calculated easily using the camera
parameters and the recorded depth map.

5.2 Geometry Modeling

An input depth map provides a reliable geometry model of
the visible scene; therefore, the major geometry modeling
challenge involves creating the geometry for the invisible
scene. As mentioned in Sec. 4.1, the reconstruction of invis-
ible scene is equivalent to that of recovering the box where
the scene was located. Our method considers only an image
captured by a forward-facing camera (the most common
way people take a photo in real life). The rectangular coordi-
nate system in this paper is set so that the positive direction
of the x-axis is to the right of the camera, the positive
direction of the y-axis is down, and the positive direction
of the z-axis points toward the front. We next describe how
to estimate the floor, ceiling and walls.

Floor Estimation. The floor must face up; therefore, we
select the planes whose normal vectors have y components
smaller than −0.8 from SP as the candidates. To select the
correct plane, we assume that all the objects in the scene
are located above the floor; thus, the selected plane cannot
occlude any object in the scene. However, errors in the
recovered planar model may not meet this assumption. This
paper introduces a new strategy to solve the problem. We
give each selected plane Pk a score calculated as follows:

Score(Pk) =
∑

Pi∈SP ,Pi �=Pk

Occlu(Pi)

Num(Pi)
·min(1,

Num(Pi)

0.1 · imgSize
)

(11)
where Num(Pi) indicates the number of pixels Pi contains,
imgSize is the size of the input image, and Occlu(Pi) rep-
resents the number of pixels belonging to Pi but occluded
by Pk. We do not consider pixels whose depth values are
not recorded when calculating Occlu(Pi). From Eq. 11, the
combination of the number of pixels in Pi and the ratio
of occluded pixels in Pi determine Pi’s contribution to
Pk’s score: Pi has less contribution when it contains few
pixels, and the larger the part of Pi that is occluded by

TABLE 2
When a wall cannot be found in Swall

P , we can set it as a plane based
on this table. Here, minX is the minimum x value of all points in the

visible scene, while maxX and maxZ are the maximum x and z
values respectively.

wall corresponding plane
left wall x = 1.5 ·minX with (1, 0, 0) as normal

front wall z = 1.5 ·maxZ with (0, 0,−1) as normal
right wall x = 1.5 ·maxX with (−1, 0, 0) as normal
back wall z = −2 with (0, 0, 1) as normal

Pk, the larger the contribution provided by Pi is. A plane
that occludes only a small object or small parts of several
objects has a higher probability of being the floor plane;
this formula gives such plane a low score. Therefore, we
select planes whose scores are smaller than 0.3 from among
all the candidate planes. If no plane is chosen, we set the
floor plane to y = max(1.6, 1.5 · maxY ) (with normal as
(0,−1, 0)), where maxY is the maximum y value of all
points in the visible scene. When only one plane is selected,
we set that plane as the floor directly; when more than one
plane remains, we adopt the one that contains the most
pixels.

Ceiling Estimation. The procedure for estimating the
ceiling is quite similar to that of estimating the floor. The
differences are that we need to select planes whose normal
vectors have y components larger than 0.8. When no plane
is chosen according to the scores, we set the ceiling plane to
y = min(−1.5, 1.5 ·minY ) (with normal as (0, 1, 0)), where
minY is the minimum y value of all points in the visible
scene.

Wall Estimation. There are four walls in the scene: front,
left, right, and back walls. The absolute value of the normal
vector’s y component of a wall should be small. We select
planes whose normal vectors have y components larger than
−0.5 and smaller than 0.5 as candidates, and implement
the same operations used for floor estimation. The acquired
plane set of this procedure is denoted as Swall

P . When two
planes in Swall

P share similar normals, the one containing
fewer pixels is removed from Swall

P . While Swall
P contains

more than three planes, we select the two planes whose
normal vectors differ the most. Then, for each unselected
plane, we estimate the angles between it and the two select-
ed planes and calculate their sum; the plane with the largest
summed value is adopted as the third wall.

We keep only these three selected planes in Swall
P . From

this point forward, up to three planes remain in Swall
P , each

of which may be the left wall, front wall or right wall. We
can register them according to their normal vectors. Walls
that are not in Swall

P are considered directly as planes, as
shown in Table 2.

5.3 Texture Generation

For the visible portion of the scene, we simply map the im-
age to the model based on the transformation from camera
space to world space.

For textures in the invisible scene, we assume that each
face of the box is composed of uniform material. For an
indoor scene, at least one wall should appear in a photo
captured by a forward-facing camera. We first find the wall
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Fig. 9. Virtual objects are inserted into images selected from SUN RGB-D data set [26]. The original picture is inset above the result.

with the largest visible area in the input image and then
train a Gaussian model of that wall. The color of the out-
of-view part of the selected wall is set as Cmean, which is
the mean of the Gaussian model. A wall will not supply
reliable color information when only a small part of that
wall appears in the image. The appearance of the remaining
three walls is calculated by

Cwall = wwall · Cinit
wall + (1− wwall) · Cmean (12)

where Cinit
wall is the color of current wall estimated by the

method for obtaining Cmean, and wwall is the weight pa-
rameter of the current wall, defined as follows:

wwall =

{
Numvis

wall

0.1·imgSize Numvis
wall < 0.1 · imgSize

1.0 Numvis
wall ≥ 0.1 · imgSize

where Numvis
wall is the number of pixels belonging to the

current wall, and imgSize is the size of the image. The
appearance of a wall with only a small part appears in the
image will be decided jointly by that wall and Cmean.

This method is also used to recover the ceiling and
floor colors. The only difference is that Cmean changes to
0.5Cmean when calculating the floor’s color because floors
are usually darker than walls in practice. The appearance of
the invisible scene is updated when materials or light source
colors are renewed.

6 EXPERIMENTS

We selected several images from SUN RGB-D data
set [26] (captured by a Kinect V2) to test our method.
We first recover the illumination of each test scene using
our method; then, we generate environment maps at the
points where virtual objects will be located. Finally, the
virtual objects rendered using our recovered environment
maps are embedded into the test image following Debevec’s
strategy [4]. Windows in a scene are regarded as area light
sources in our method. The experimental results demon-
strate the validity of this approximation. Fig. 9 demonstrates
the synthetic results. As can be seen by the captured s-
patially varying illumination, the recovered light produces
convincing composite results.

Fig. 10. Virtual objects inserted into images selected from the NYU data
set [27]. The original picture is inset above the result.

frame10 frame80 frame210

frame20 frame150 frame270

Fig. 11. Embedded animations of a virtual robot into two background
images.

We also used images selected from NYU data set [27]
to evaluate our method. The NYU data set images were
captured by a Kinect V1; thus, more noise is present in the
depth map. Fig. 10 shows the final synthetic results, from
which we can see that our approach still performs well.

Two animation sequences of a virtual robot were pro-
duced to explore how well our method captures spatially
varying illumination during movement. Fig. 11 shows some
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Light probe [4] Reinhard [14] Karsch [7] Ours

Fig. 12. Comparison between our synthetic results and those of Reinhard’s method [14] and Karsch’s method [7] and those using a light probe [4].
We insert a bunny and a basketball into the first scene and a basketball and a vase into the second scene. Closeups of the virtual objects are
presented under the synthetic results of each scene.

video frames from the synthetic video sequences.
We compared the virtual objects under the illumination

recovered by our method with that use a light probe [4],
Karsch’s method [7] and Reinhard’s method [14]. The results
are shown in Fig. 12. Reinhard’s method maps the LDR
background image to a hemisphere without calculating the
intensities of saturated pixels, which causes the rendered
virtual objects to lose highlight areas. Karsch’s method
requires user to provide geometry and light sources of the
scene corresponding to the input image, which produces
more realistic rendering results. However, the positions
of highlights on the virtual objects are not very accurate
comparing to the results generated by the light probe. Our
method estimates the intensity of light sources automati-
cally and produces HDR environment maps for different
positions in the scene. Although the results still lose some
detail, the virtual object shading is close to that of the results
generated by the light probe.

To further compare our method and Karsch’s method [7],
we adopted two rendered images whose light sources are
partly visible or totally invisible. We recover the illumina-
tion conditions of these two images by our method and
Karsch’s method, and render virtual objects (the white bun-
ny and two balls) using the estimated illuminations. Ground
truths can be also created by rending the virtual scenes.
The comparison results are demonstrated in Fig. 13, from
which we can see that the appearances of virtual objects
under the illumination recovered by Karsch’s method are
different from the ground truths. This is mainly because that
a user can hardly find the accurate positions of light sources
which are not appeared in the image. Our method utilizes

Ground truth Karsch [7] Ours

Fig. 13. Further comparison between our synthetic results and those
of Karsch’s method [7]. We insert a bunny and two balls with different
materials into these two images. Closeups of the virtual objects are
presented under the synthetic results of each scene.

highlights caused by light sources out of cameras view when
estimating the positions of invisible light sources, which is
supported by the law of reflection, thus the estimated light
sources are more reliable. Therefore, the synthetic results
generated by using our method are very close to the ground
truths.

We adopted two images taken at different scene posi-
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Image 1

Debevec’s method [4] Ours

Light sources’ positions Virtual objects

Image 2

Debevec’s method [4] Ours

Light sources’ positions Virtual objects

Fig. 14. The accuracy of our light recovery algorithm when the light sources are inside (image 1) and outside (image 2) of the camera’s view. The
first row demonstrates the synthetic results produced by the ground truth and estimated illumination; the second row shows the closeups of the
virtual objects; the third and fourth rows compare the environment maps recovered by Debevec’s [4] method and our method at different exposure
times. The left figures in the last row illustrate the results of accuracy evaluations of the recovered light sources’ positions: the red and green pixels
correspond to the light source areas belonging to the ground truth and to our results respectively, while the yellow pixels indicate the light source
area overlap of the ground truth and our method. The error maps corresponding to the red boxed areas in the first row are shown in the right figures
in the last row.

tions to test the accuracy of our lighting recovery algorithm
when the light sources are inside (image 1) and outside (im-
age 2) the camera’s view. We followed Debevec’s method [4]
to capture the illumination conditions at specified positions.
This method is based on a light probe that attempts to record
the exact illumination of the scene: those closest to the real
lighting conditions. The environment maps generated by
these two methods should be adjusted to a uniform scale by
letting them have similar luminance values. The test results
are shown in Fig. 14. For each image, we first render two vir-
tual balls with different materials and a virtual dragon un-
der illumination created by the light probe and our method.
The rendered results are then inserted into the background
images. The synthetic results are shown in the first row
of Fig. 14. From these images, we can see that regardless
of whether the light sources exist inside or outside the
image, the shadings of our rendered objects are close to the
results rendered by the captured environment maps, which
indicates that our method produces a correct illumination
distribution. We also evaluated the accuracy of our rendered

results quantitatively. The right figure in the last row of
Fig. 14 illustrates the absolute error of our rendered virtual
objects, showing that large errors are mainly located in the
highlighted areas of the virtual objects. The relative errors of
the RGB channels of the virtual objects are listed in Table 3.
Environment maps with different exposures are shown in
the third and fourth rows, which reveal the positions and
sizes of light sources. For each image, the left figure in the
last row shows the errors of the light sources’ positions.
Our recovered light source areas are closely consistent with
the ground truth in image 1. The errors of light sources’
shapes occur mainly because a small part of the window
is not captured in the background image. More over, the
differences between the estimated environment map and the
captured one shown in the third row of Fig. 14 are mainly
caused by highlights located around the window, however,
it impacts a little on the appearances of rendering results
due to the fact that light sources are usually much brighter
than highlights. For image 2, although our method fails to
find all the light source areas, it still detects the main light
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TABLE 3
Relative errors of virtual objects rendered under our recovered

illumination in Fig. 14.

image R channel G channel B channel
image 1 2.9% 4.7% 4.0%
image 2 4.4% 7.1% 5.8%

source whose luminance in our estimated environment map
is brighter than that in the captured one; consequently, it
still performs well.

To further examine the accuracy of our illumination
recovery results, we compare more synthetic results with
real scenes. We used two real white plastic balls as the
reference objects, and captured RGB-D images of several
indoor scenes with these balls as ground truth images,
while the captured images without balls served as back-
ground images. Then, we recovered the 3D models of the
two balls and inserted them as virtual objects into the
background images. We initially assumed that the plaster
models were composed of a uniform Lambert material
with weak specular reflectance. Then, we adjusted their
reflectance coefficients interactively until they matched one
of the chosen test images successfully. Finally, the rendered
synthetic scenes were compared with the ground truths. We
tested 15 different scenes. Fig. 15 shows two scenes of our
comparison results. For the ground truth and the synthetic
result of the same scene, we also measured the error by
comparing the pixel intensity differences on each ball (the
intensity value of each pixel has a range of [0, 1]). The
results are demonstrated in Fig. 15. The average RMSE of all
models is 0.099 and the RMSEs of most balls are less than
0.135. However, the RMSE may be affected by errors in the
estimated material. Consequently, we measured the RMSE
adjusted error [7] to remove the influence of the material to
be able to evaluate how accurately the shading distribution
on each model is reproduced. We first calculated the mean
intensity of each ball and then removed the mean intensity
value from each pixel, from both the ground truth image
and the synthetic image. Finally, we obtained the RMSE
based on the adjusted pixels’ values. The experimental data
showed a mean adjusted RMSE of 0.087, and the errors of
most models are below 0.12.

Our recovered illumination may differ from the real
lighting conditions; however, the difference does not pre-
clude obtaining a realistic synthetic result. We conducted a
user study to measure how well a user can differentiate be-
tween the ground truth and the synthetic result. As subjects,
71 graduate students were recruited for this task; most had
a computer science background. Our test used 20 scenes,
among which 14 included both a real photo and a synthetic
result, while the other 6 contained only real photos or only
synthetic results. Fig. 16 shows two test scenes from this
user study; the dragon, the red ball and the green ball in the
synthetic results are virtual objects. All these scenes were
presented in a random sequence. The image placement (left
or right) was also randomized. The users were told that
there were three possible conditions for each pair of images:
(1) one is real photo and the other is synthetic; (2) both
are real photos; (3) both are synthetic results. The subjects
were given three options: the left image is a real photo, the

Ground truth Synthetic

Ground truth

Synthetic

Scene 6

Ground truth Synthetic

Ground truth

Synthetic

Scene 10

Fig. 15. The root mean squared error (RMSE) and the adjusted RMSE
per sphere. For each metric, the blue horizontal line denotes the average
error, and the red box indicates the 25% to 75% variance. The error data
is represented by the blue circles. The images below the graph show
two of the scenes used in this error test. The green triangle indicates
the error of the right sphere illustrated in scene 6.

TABLE 4
Time consumptions for solving different number of light sources’ colors.

Number of light sources 2 3 6 7 12
Time consumption (seconds) 112 133 165 203 308

right image is a real photo, and not sure. The result of this
user study is shown in Fig. 16. We found that nearly half
the subjects were unable to identify the ground truth in
most scenes. Some subjects thought that the synthetic results
were more realistic, and most subjects admitted that it was
difficult to discern abnormalities in the synthetic images
without comparing them to the ground truth.

We implemented the proposed approach on a PC with
Corei7-7700 3.60GHz CPU and 32GB of RAM. It spends
over 2 minutes to process a 770 × 530 image, in which 14
seconds are used for geometry modeling, while rest of the
time for estimating the light sources’ colors. The exact time
consumption for light sources’ colors calculation is related
to the number of light sources, and the more light sources
in the scene the more time is required to solve their values.
Table 4 shows the time consumptions for solving different
number of light sources’ colors.

7 CONCLUSION AND FUTURE WORK

This paper introduced an automatic framework for recov-
ering the spatially varying illumination of indoor scenes
based on a single RGB-D image. We first proposed a method
to obtain a rough 3D planar model of a scene’s visible
and invisible parts based on an input depth map and the
assumption that the scene is located in a box with six faces.
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Ground truth Synthetic

Ground truth

Synthetic

Scene 5

Ground truth Synthetic

Ground truth

Synthetic

Scene 10

Fig. 16. The results of a user study. For each scene, the blue bar
represents the percentage of users who were unable to identify the
ground truth, while the green line represents the percentage of users
who think our result is more realistic. The horizontal red line indicates
the 50% level. The average time required to make a decision for each
scene is also demonstrated. Two examples of scenes used in the user
study appear below the graph.

Then, we proposed a confidence-scoring based strategy to
differentiate and classify light sources and highlights in
image. Next, the positions of the visible and invisible light
sources are calculated based on the classification result
and the geometry model. Spherical harmonics are adopted
in an iterative procedure that calculates the intensities of
light sources and scene materials based on the recovered
scene model. A data-driven method is also proposed to
set constraints on light source intensities. An acceleration
strategy is employed to make this process more efficient.
Using the estimated light sources and geometry model, we
generate environment maps at different points in the scene
that subsequently support the realistic rendering of virtual
objects at these different positions. The experimental results
demonstrated the validity and flexibility of our approach.

However, our work still has some limitations. The
method cannot process images that contain no light sources
or highlights, because such images contain too little infor-
mation to detect the light sources (e.g., Fig. 17 (a)). Although
our method can generate logical environment maps, the
appearance of the recovered invisible scene still looks fake,
which causes the rendering of objects with strong specular
reflection to be unrealistic (e.g., the mirror ball in Fig. 17 (b)).
Another limitation is when composting the rendered virtual
objects with background image, currently we do not spe-
cially matching the blur, ISO etc settings of the input image,
causing some inserted objects stick out. In the future, we will
utilize the techniques of image restoration to recover and
match the settings. Furthermore, the low-quality materials

(a) (b)

Fig. 17. Failure cases. The dragon in the left image does not cast a
shadow on the floor, which is not consistent with the surrounding objects.
It is easy to see that the mirror ball in the right image is unrealistic.

of the inserted virtual objects make some composting results
not completely realistic, which is also a limitation for most
of the realistic augmented system. We hope the develop-
ment of material modeling and illumination estimation join
together to enhance the realistic rendering in the future. Last
but not least, we will extend our single image illumination
estimation method to RGB-D video by adopting additional
constrains to keep the temporal stability of the recovered
illuminations in our future work.
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